JPS61259748A - Gas-liquid dispersing device of three-phase fluidized reaction apparatus - Google Patents

Gas-liquid dispersing device of three-phase fluidized reaction apparatus

Info

Publication number
JPS61259748A
JPS61259748A JP10159285A JP10159285A JPS61259748A JP S61259748 A JPS61259748 A JP S61259748A JP 10159285 A JP10159285 A JP 10159285A JP 10159285 A JP10159285 A JP 10159285A JP S61259748 A JPS61259748 A JP S61259748A
Authority
JP
Japan
Prior art keywords
cap
gas
fluid
liquid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10159285A
Other languages
Japanese (ja)
Inventor
Shigeo Makino
牧野 重男
Takafumi Shimada
嶋田 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10159285A priority Critical patent/JPS61259748A/en
Publication of JPS61259748A publication Critical patent/JPS61259748A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant

Abstract

PURPOSE:To prevent catalyst particles from invading a dispersing cylinder, by providing communication holes to the periphery of the almost central part of the upper part of a cap and providing a valve movable up and down between the upper end surface of the dispersing cylinder and the lower surface of the cap through a slide pin. CONSTITUTION:When a fluid 15 flows in a dispersing cylinder 4 from a gas- liquid mixing bed 5, a valve body 8 is pushed up by the pressure of a fluid and the fluid 15 flows in a cap 9 from the gap between the valve seat 2 and valve body 8 of the dispersing cylinder and further flowed to a fluidized catalyst bed 2 from the lower part of the cap 9. Because the valve body 8 and the cap 9 form a contact seal at the inflow time of the fluid 15, the falling and mixing of catalyst particles from the upper part of the cap is prevented. When the flow of the fluid 15 is stopped, the value body 8 is pushed down by the static pressure of the catalyst bed 2 through the passing holes 10 of the cap 9 to be contact with the valve seat 12 under pressure and, therefore, the catalyst bed is blocked from the gas-liquid mixing bed 5 to prevent the catalyst particles from flowing in the dispersing cylinder 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体、気体、液体を同時接触させるための三相
流動反応装置の気液分散器に関するものである。さらに
詳しくは、気体、液体を、上方に流通させることにより
、固体層を一定しベμに膨張さす様な三相流動反応器に
おいて、ガス及び液を分散させる気液分散器の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a gas-liquid disperser for a three-phase flow reactor for bringing solids, gases, and liquids into simultaneous contact. More specifically, the present invention relates to improvements in a gas-liquid disperser for dispersing gas and liquid in a three-phase flow reactor in which a solid layer is expanded in a uniform manner by flowing the gas and liquid upward. be.

(従来の技術) 固体、気体、液体による三相流動反応器は、三相の接触
効率が良く、流動状態にあることから生起する反応が著
しい発熱反応の場合に有効であることが知られている。
(Prior art) It is known that a three-phase fluidized reactor using solid, gas, and liquid has good three-phase contact efficiency and is effective in cases where the reaction that occurs is a significantly exothermic reaction because it is in a fluidized state. There is.

その例としては原油から分留した重、中質油留分を触媒
の存在下にて水素を供給して反応せしめる、水素化脱硫
反応装置又は水素化分解反応装置等の接触反応器がある
An example thereof is a catalytic reactor such as a hydrodesulfurization reactor or a hydrocracking reactor, in which heavy and medium oil fractions fractionated from crude oil are reacted by supplying hydrogen in the presence of a catalyst.

三相流動反応装置の一般的流動状態は田中栄−:化学工
学第34巻、第12号(1970年)等に詳しく述べら
れている通シであシ、立竪円筒状容器に充填された触媒
等の固体粒子を少なくとも静止状態に比し10チ以上大
きな容積を占める。いわゆる流動化させるに充分であシ
、かつ固体粒子が同伴上昇しない速度で液体及び気体を
反応容器下部より流通させることによ多安定した固体粒
子の流動層を形成せしめるものである。
The general flow state of a three-phase flow reactor is described in detail in Sakae Tanaka: Chemical Engineering Vol. 34, No. 12 (1970), etc. Solid particles such as a catalyst occupy a volume that is at least 10 cm larger than that in a static state. A stable fluidized bed of solid particles is formed by flowing the liquid and gas from the lower part of the reaction vessel at a rate sufficient for so-called fluidization and at a rate that does not cause the solid particles to rise along with them.

この流動状態を得るためには、膨張した触媒層の上部か
ら液を抜き出し、ポンプを用いて反応容器下部に供給す
る液の循環、並びに同様に抜き出されたガスの循環が不
可欠の要素となる。
In order to obtain this fluid state, it is essential to extract the liquid from the upper part of the expanded catalyst bed and supply it to the lower part of the reaction vessel using a pump, as well as to circulate the extracted gas. .

これは触媒の流動上必要な液及びガス流速を循環により
維持するために行なう。
This is done in order to maintain the necessary liquid and gas flow rates for catalyst flow through circulation.

また、この三相流動反応装置を用いた具体例を挙げれば
石油系型、中質油留分の水素化脱硫を行なわしめる場合
は、50〜150 kliJ/cN”G。
A specific example using this three-phase fluidized reactor is 50 to 150 kliJ/cN''G when hydrodesulfurizing petroleum-based and medium oil fractions.

350〜420℃の条件下で0.5〜5 mφの円柱状
、若しくは球状のニッケμmモリブデン系、コバルト−
モリブデン系又はタングステン−モリブデン系の触媒と
供給油及びガス状水素を接触させることによシ水素化反
応が達成される。
Under conditions of 350 to 420°C, 0.5 to 5 mφ cylindrical or spherical nickel μm molybdenum-based, cobalt-based
The hydrogenation reaction is accomplished by contacting the feed oil and gaseous hydrogen with a molybdenum-based or tungsten-molybdenum-based catalyst.

第2図は従来の分散器を示すものであり、反応器本体1
内下部に設けられた分散筒取付板5の上部が触媒層2で
あシ、液、ガスの上昇流により、触媒層2は膨張する。
Figure 2 shows a conventional disperser, with the reactor main body 1
The upper part of the dispersion tube mounting plate 5 provided at the inner lower part is the catalyst layer 2, and the catalyst layer 2 expands due to the upward flow of liquid and gas.

反応器1よシ排出された液及びガスは大部分循環ガ入6
及び循環液7として再び反応器1へ循環される。流入し
たガス、液は混合層5を経て分散機構に多数膜けられた
分散管4′f:通って触媒層2へ供給される。分散管4
には、触媒層2から混合層5への触媒の落下、侵入によ
る触媒の堆積を防止するためのキャップ9が取シ付けら
れている。
Most of the liquid and gas discharged from the reactor 1 are transferred to the circulation gas input 6.
And it is circulated to the reactor 1 again as a circulating liquid 7. The gas and liquid that have flowed in are supplied to the catalyst layer 2 through the mixing layer 5 and the dispersion tube 4'f, which is provided with multiple membranes in the dispersion mechanism. Dispersion tube 4
A cap 9 is attached to the cap 9 to prevent the catalyst from falling or entering the catalyst layer 2 into the mixed layer 5 and thereby preventing the catalyst from accumulating.

しかしながらこの様な構造の場合、供給された液ガス、
主としてガスの分散が充分でなく、したがってガス−液
の接触効率が悪くなるため極度に過剰なガスを供給する
ことにょシ、気−液の接触効率を確保しなければならな
い。
However, in the case of such a structure, the supplied liquid gas,
Mainly, the gas is not sufficiently dispersed, resulting in poor gas-liquid contact efficiency, so it is necessary to ensure the gas-liquid contact efficiency even if an extremely excessive amount of gas is supplied.

さらに触媒落下防止のキャップ9を保持しているとは云
うものの混合層5への落下、堆積に対し極めて不充分で
あり、循環液7のラインの閉塞を引起しかねない。
Further, although the cap 9 is provided to prevent the catalyst from falling, it is extremely insufficient to prevent the catalyst from falling and accumulating on the mixed layer 5, which may cause clogging of the circulating fluid 7 line.

第5図は他の従来方式の分散器を示すものである。供給
液及び供給ガスは混合流体15となり分散筒4へ流入し
流出口13よシキャップ9の底部よシ触謀層内へ流通さ
れる。この分散方式は例えば蒸留塔に多用されるバブル
キャップ方式と類似の形状を有しており、この形状は反
応器の水平断面の液、ガス分布の不均一を極力小さくす
ることを主目的とじ九ものであシ、ガス粒径(気泡径)
の微細化には充分ではない。
FIG. 5 shows another conventional type disperser. The feed liquid and the feed gas form a mixed fluid 15 that flows into the dispersion tube 4 and is circulated through the outlet 13, through the bottom of the cap 9, and into the interstitial layer. This dispersion method has a shape similar to the bubble cap method often used in distillation columns, for example, and the main purpose of this shape is to minimize unevenness in liquid and gas distribution in the horizontal section of the reactor. Monodashi, gas particle size (bubble size)
is not sufficient for miniaturization.

従って、本方式の場合、ガス供給量当シの9jcff!
接触界面積が少ないため、反応に必要なガスを液中に溶
解させるためには必要以上にガスを供給しなければなら
ない。
Therefore, in the case of this method, the gas supply amount is 9jcff!
Since the contact interfacial area is small, it is necessary to supply more gas than necessary in order to dissolve the gas necessary for the reaction into the liquid.

また三相流動反応器は気−液一固の=相反応であり、固
体粒子の供給系への流入は重大な危険を招く恐れがある
。すなわち固体粒子の流入によp主として液の供給が阻
害され流動層を継持するに必要な流量(流速)を確保出
来なくなシ、固定層の状態に至シそのため異常反応を引
起し、反応器に致命的な欠陥を与えかねないととKなる
In addition, a three-phase flow reactor is a gas-liquid-solid = phase reaction, and the inflow of solid particles into the supply system may pose a serious danger. In other words, the influx of solid particles primarily obstructs the supply of liquid, making it impossible to secure the flow rate (flow rate) necessary to maintain a fluidized bed, resulting in a fixed bed state, which causes abnormal reactions and I am concerned that this may cause a fatal flaw to the vessel.

(作用) 第1図に本発明による三相流動反応装置の気液分散器の
1つである実施の態様を示す。分散筒保持板3は触媒流
動層2と気液混合層5とを区画し、上部にキャップ9を
有する分散筒4を多数保持する。分散筒4とキャップ9
との間に上下摺動可能な弁体8を設ける。該弁体8は上
、下面中央に摺動ビン14を設けて、キャップ9の上部
中央の中央孔と分散筒内に設けた支持体16の中央孔に
該摺動ピンが挿入され、該弁体8はキャップ9と分散筒
4の上端部との間を、流体圧によ如上下に摺動する。該
キャップ9は上部の中央孔の周囲に連通孔1oを設けて
触媒層2の流体圧を弁体8に迅速に伝達可能とするとと
もに、弁体8との所定の間隔を調節保持するために、シ
ム17を介して分散筒4にボ/I/)Kより固定される
。分散筒4の上端面及びキャツブ9の下面は弁体8と接
するときにはり一μを形成させるために、弁座12及び
11を分散筒4及び弁体8に設ける。弁座は弁体の表面
裏面に設けてもよいし、キャップ裏面に設けてもよい。
(Function) FIG. 1 shows an embodiment of the gas-liquid disperser of the three-phase fluidized reactor according to the present invention. The dispersion cylinder holding plate 3 partitions the catalyst fluidized bed 2 and the gas-liquid mixed layer 5, and holds a large number of dispersion cylinders 4 each having a cap 9 on the top. Dispersion tube 4 and cap 9
A valve body 8 that is vertically slidable is provided between the valve body and the valve body. The valve body 8 is provided with sliding pins 14 at the center of the upper and lower surfaces, and the sliding pins are inserted into the center hole at the center of the upper part of the cap 9 and the center hole of the support body 16 provided in the dispersion cylinder. The body 8 slides up and down between the cap 9 and the upper end of the dispersion tube 4 by fluid pressure. The cap 9 has a communication hole 1o around the central hole in the upper part so that the fluid pressure of the catalyst layer 2 can be quickly transmitted to the valve body 8, and also to adjust and maintain a predetermined distance from the valve body 8. , is fixed to the dispersion cylinder 4 via the shim 17 by the cylinder (I/)K. Valve seats 12 and 11 are provided on the dispersion tube 4 and the valve body 8 so that the upper end surface of the dispersion tube 4 and the bottom surface of the cap 9 form a beam when they come into contact with the valve body 8. The valve seat may be provided on the front and back surfaces of the valve body, or may be provided on the back surface of the cap.

また、摺動ビンをキャップ及び支持体に設け、弁体には
摺動ピンを受ける孔を設けても −よい。なお、キャッ
プの連通孔10は、弁座の内側中央周辺に位置させ、弁
体とキャップが接してシールを形成するときに連通孔1
0は閉じられて流体の連通を阻止するようになっている
Alternatively, a sliding pin may be provided on the cap and the support, and a hole may be provided on the valve body to receive the sliding pin. The communication hole 10 of the cap is located around the inner center of the valve seat, and when the valve body and the cap come into contact to form a seal, the communication hole 10
0 is closed to prevent fluid communication.

気液混合層5から流体15が分散筒4に流入すると、流
体圧により弁体8は押上げられ分散筒の弁座12と弁体
8との間隙より、キャップ9内に流出し、さらにキャッ
プ下部よシ触謀流動層2に流出する。特に該間隙を通過
する間に流体中の気体が一層細分化され、微細な気泡を
形成する。また、流体15の流入時には弁体8とキャッ
プ9とは接触しV−μを形成する丸め、キャップ上部か
らの触媒粒子の落下混入することはない。一方、前記流
体15の流れが止まるとキャップの連通孔10を介して
触媒層2の静止水圧が弁体8を押し下げ弁座12に圧着
するため、触媒層2と気液混合層5とは遮断され、流体
の逆流もなく触媒粒子が分散筒4内に流入することもな
くなる。
When the fluid 15 flows into the dispersion tube 4 from the gas-liquid mixing layer 5, the valve body 8 is pushed up by the fluid pressure, flows out into the cap 9 through the gap between the valve seat 12 of the dispersion tube and the valve body 8, and then flows into the cap 9. From the bottom, it flows out into the fluidized bed 2. In particular, while passing through the gap, the gas in the fluid is further divided into fine bubbles. Further, when the fluid 15 flows in, the valve body 8 and the cap 9 are in contact with each other to form a V-μ, and catalyst particles are not mixed in by falling from the upper part of the cap. On the other hand, when the flow of the fluid 15 stops, the static water pressure of the catalyst layer 2 pushes down the valve body 8 through the communication hole 10 of the cap and presses it against the valve seat 12, so that the catalyst layer 2 and the gas-liquid mixed layer 5 are cut off. Therefore, there is no backflow of fluid and no catalyst particles flowing into the dispersion cylinder 4.

(実施例) プラスチック製コールドモデ〃を用い、本発明の具体例
について性能テストを行った。
(Example) A performance test was conducted on a specific example of the present invention using a plastic cold model.

反応器本体は内径300−1高さ300011mでちゃ
、分散器は分散筒の内径が20m、キャップ径が30−
でキャップと分散筒取付板との間隙が2smである。こ
のような分散筒を4個取付は友。
The reactor body has an inner diameter of 300m and a height of 300011m, and the dispersion cylinder has an inner diameter of 20m and a cap diameter of 30m.
The gap between the cap and the dispersion cylinder mounting plate is 2 sm. Installing four such dispersion cylinders is a good idea.

供給液はJI8規定の白灯油を用い、ガスは窒素を、触
媒は見掛は比重1.55で、直径1.5■、長さ約5−
の押し出し成型品を用いた。操作温度は常温、操作圧力
は常圧である。ガスは空塔速度が4 cptt / B
B(2となる様供給した。また、触媒は静止時の充填層
高が、1700mとなる様充填した。液は空塔速度が1
〜10 cm / secの範囲で供給した。
The supply liquid used was JI8 standard white kerosene, the gas was nitrogen, and the catalyst had an apparent specific gravity of 1.55, a diameter of 1.5 cm, and a length of about 5 mm.
An extrusion molded product was used. The operating temperature is normal temperature and the operating pressure is normal pressure. The gas has a superficial velocity of 4 cptt/B
B (2).The catalyst was packed so that the height of the packed bed at rest was 1700 m.The liquid had a superficial velocity of 1.
It was supplied in the range of ~10 cm/sec.

この様な条件下で試験を行い、ガスの滞留量(カスホー
ルドアツプ)を測定したところ、20 vol %に達
しておシ、気泡も直径数−以上のものはほとんど認めら
れず、均一な流動状態を形成した。また、触媒粒子の逆
流あるいは侵入によるトラプμは全くなかった。
When the test was conducted under these conditions and the amount of gas retained (cashold up) was measured, it reached 20 vol %, and there were almost no bubbles larger than a few diameters, indicating a uniform flow. formed the state. Furthermore, there was no trap μ due to backflow or intrusion of catalyst particles.

(比較例) 第3図に示す分散器を用いて上記実施例と同様の条件の
下試験を行った。
(Comparative Example) A test was conducted using the disperser shown in FIG. 3 under the same conditions as in the above example.

分散筒の上部は閉塞して、周囲に等分に4ケ所に5−径
の流出口を設けた以外は、条件に差異はない。
There are no differences in the conditions except that the upper part of the dispersion tube is closed and 5-diameter outlet ports are provided at four equal locations around the circumference.

この様な条件下で試験し、ガスの滞留量(カスホールド
アツプ)を測定したところ、12〜15 vol %で
あり、直径数■を越える大きな気泡が多数認められた。
When the test was carried out under such conditions and the amount of gas retained (cashold up) was measured, it was found to be 12 to 15 vol %, and many large bubbles exceeding several square meters in diameter were observed.

また、触媒の分散器内への侵入も見られ、特に液、ガス
を止めた時など、多数の触媒が侵入し、再流通時に偏流
を生じた。
In addition, catalyst intrusion into the disperser was also observed, especially when the liquid and gas were stopped, causing a large amount of catalyst to enter, causing uneven flow during recirculation.

(発明の効果) 本発明は上記構成を採用することにより、分散器を流出
するときの、ガスの微細化を促進して気液接触界面積を
著しく増大しその結果として、ガスの供給量を低下させ
ることができた。
(Effects of the Invention) By adopting the above configuration, the present invention promotes the miniaturization of gas when it flows out of the disperser, significantly increasing the gas-liquid contact area, and as a result, reducing the amount of gas supplied. I was able to lower it.

ま九、触媒の流動層を安定した均一な流動化を維持でき
るとともに、分散筒内への触媒粒子の侵入を防ぐことが
でき、三相流動叉応装置の効率的で、かつ円滑な稼動を
可能とした。
(9) It is possible to maintain stable and uniform fluidization of the catalyst fluidized bed, and it is also possible to prevent catalyst particles from entering the dispersion cylinder, ensuring efficient and smooth operation of the three-phase fluidized reactor. made possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例である、血相流動反応装置の
ガス−液分散器を拡大した断面図、第2vAは従来の血
相流動反応装置の下部断面図、第3図は従来のガス−液
分散器の拡大断面図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is an enlarged sectional view of a gas-liquid disperser of a blood phase fluid reaction device, which is an embodiment of the present invention, 2vA is a lower sectional view of a conventional blood phase fluid reaction device, and FIG. - An enlarged sectional view of the liquid disperser. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 三相流動反応装置の下部に設けられ、上下に触媒流動層
と気液混合層とに区画する分散筒保持板と、該保持板を
貫通して前記流動層と前記混合層とを連通する複数の、
キャップ付分散筒と、からなる三相流動反応装置の気液
分散器において、キャップ上部のおよそ中央周辺に連通
孔を設け、該分散筒上端面と該キャップ下面との間を摺
動ピンを介して上下運動可能とした弁体を配置し、弁体
が分散筒上端面若しくはキャップの下面にそれぞれ接す
るときに接触面でそれぞれシールを形成可能とし、分散
筒下方より流入する気液混相流体により弁体が持ち上げ
られるときに、弁体によりキャップの連通孔を閉じてシ
ールを形成するようにしたことを特徴とする三相流動反
応装置の気液分散器。
A dispersion cylinder holding plate provided at the lower part of the three-phase fluidized reactor and partitioning into a catalyst fluidized bed and a gas-liquid mixed layer above and below, and a plurality of dispersion cylinder holding plates that penetrate the holding plate and communicate the fluidized bed and the mixed bed. of,
In a gas-liquid disperser for a three-phase flow reactor comprising a dispersion cylinder with a cap, a communication hole is provided around the center of the upper part of the cap, and a sliding pin is provided between the upper end surface of the dispersion cylinder and the lower surface of the cap. The valve element is arranged so that it can move up and down, and when the valve element contacts the upper end surface of the dispersion tube or the lower surface of the cap, a seal can be formed on each contact surface. A gas-liquid disperser for a three-phase flow reactor, characterized in that when the body is lifted up, a communicating hole in the cap is closed by a valve body to form a seal.
JP10159285A 1985-05-15 1985-05-15 Gas-liquid dispersing device of three-phase fluidized reaction apparatus Pending JPS61259748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159285A JPS61259748A (en) 1985-05-15 1985-05-15 Gas-liquid dispersing device of three-phase fluidized reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159285A JPS61259748A (en) 1985-05-15 1985-05-15 Gas-liquid dispersing device of three-phase fluidized reaction apparatus

Publications (1)

Publication Number Publication Date
JPS61259748A true JPS61259748A (en) 1986-11-18

Family

ID=14304651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159285A Pending JPS61259748A (en) 1985-05-15 1985-05-15 Gas-liquid dispersing device of three-phase fluidized reaction apparatus

Country Status (1)

Country Link
JP (1) JPS61259748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824961A1 (en) * 1996-08-23 1998-02-25 Shell Internationale Researchmaatschappij B.V. Gas sparger for a suspension reactor and use thereof
US6868795B2 (en) * 2003-05-29 2005-03-22 The Babcock & Wilcox Company Bubble cap assembly
CN115628628A (en) * 2022-10-31 2023-01-20 镇海石化建安工程股份有限公司 Heat exchanger and polycrystalline silicon production system applying same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824961A1 (en) * 1996-08-23 1998-02-25 Shell Internationale Researchmaatschappij B.V. Gas sparger for a suspension reactor and use thereof
WO1998007511A1 (en) * 1996-08-23 1998-02-26 Shell Internationale Research Maatschappij B.V. Gas sparger for a suspension reactor and use thereof
US6868795B2 (en) * 2003-05-29 2005-03-22 The Babcock & Wilcox Company Bubble cap assembly
CN115628628A (en) * 2022-10-31 2023-01-20 镇海石化建安工程股份有限公司 Heat exchanger and polycrystalline silicon production system applying same

Similar Documents

Publication Publication Date Title
KR100833826B1 (en) Mixing device comprising a swirl chamber for mixing liquid
Sie et al. Process development and scale up: III. Scale-up and scale-down of trickle bed processes
US4478707A (en) Process for the hydrotreatment of hydrocarbons in an expanded or ebullated catalyst bed
CA1210572A (en) Grid plate assembly for ebullated bed reactor
US3592612A (en) Two-stage apparatus for mixing fluids in concurrent downflow relationship
US7523923B2 (en) Fluid distribution tray and method for the distribution of a highly dispersed fluid across a bed of contact material
JP5528021B2 (en) A treatment or hydrotreatment reactor comprising a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the granular bed
JP2000506924A (en) Gas pocket distributor and method for hydrotreating a hydrocarbon feed stream
JPH09225290A (en) Device for distributing multiphase mixture passing through catalyst bed
JP4702660B2 (en) Improved mixing and distribution apparatus for gas and liquid phases fed to a granular bed
US4087252A (en) Fluids mixing and distributing apparatus
US4102778A (en) Method and apparatus for carrying out hydrogenation reactions
RU2134286C1 (en) Crude hydrocarbon material hydrofining method (versions) and catalyst
JP7158412B2 (en) Novel apparatus for dispensing multiphase mixtures in chambers containing flowing media
JPS61259748A (en) Gas-liquid dispersing device of three-phase fluidized reaction apparatus
US11731097B2 (en) Catalyst particle shape
CN101618305A (en) Fluidized bed reactor
Degirmenci et al. Design of catalytic micro trickle bed reactors
JP6395709B2 (en) Hydrocarbon oil hydrotreating method
US3195987A (en) Apparatus for contacting mixed phase fluids with a solid catalyst
JPS63252540A (en) Three-phase fluidized reaction apparatus
JPS61259749A (en) Gas-liquid dispersing device of three-phase fluidized reaction apparatus
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor
JPH04166223A (en) Parallel flow type gas-liquid contact device and gas-liquid reactor
JPS627436A (en) Dispersing mechanism of three-phase fluidized reactor