JPS61259119A - Apparatus for controlling depth of underwater measuring device - Google Patents

Apparatus for controlling depth of underwater measuring device

Info

Publication number
JPS61259119A
JPS61259119A JP10222185A JP10222185A JPS61259119A JP S61259119 A JPS61259119 A JP S61259119A JP 10222185 A JP10222185 A JP 10222185A JP 10222185 A JP10222185 A JP 10222185A JP S61259119 A JPS61259119 A JP S61259119A
Authority
JP
Japan
Prior art keywords
rotations
measuring device
underwater
winch
underwater measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222185A
Other languages
Japanese (ja)
Inventor
Tadayoshi Katsuyama
勝山 忠慶
Shigeru Nakano
茂 中野
Riyuunosuke Sagara
相良 隆ノ介
Shuichi Yoshioka
吉岡 修一
Kiyomi Suenaga
末永 清己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP10222185A priority Critical patent/JPS61259119A/en
Publication of JPS61259119A publication Critical patent/JPS61259119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To make it possible to rapidly collect underwater information by allowing a submerged measuring device to easily reach an objective depth even from a ship during high speed sailing, by controlling the objective depth of the underwater measuring device by using the speed of the ship as a factor. CONSTITUTION:An operation circuit 4 operates the integrated under (n) of rotations of a towing cable winch 3 allowing an underwater measuring device 1 to reach an objective depth by inputting a ship speed v0, the free sedimentation speed v1 of the underwater measuring device 1 and a set measuring depth D. The integrated number (n) of rotations are inputted to an order circuit 5 and, after the underwater measuring device 1 thrown, the integrated number n' of rotations of the which 3 are simultaneously fed back to an order circuit 5. If the integrated number n' of rotations of the which 3 become equal to the integrated number (n) of rotations, the delivery rotation of the winch 3 is stopped by the order circuit 5 and a towing cable 2 begins to tension from this point of time. At this time, the underwater measuring device 1 has reached a predetermined depth and measurement is enabled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、水中計測器の深度制御装置に関し、詳しく
は水中翼を有し危い水中計測器を迅速に目的深度にまで
到達させるための沈降制御を行う装置に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a depth control device for underwater measuring instruments, and more specifically, to a depth control device for underwater measuring instruments having hydrofoils and for quickly reaching a target depth. This invention relates to a device that performs sedimentation control.

〈従来の技術〉 従来、一定深度下における正確な水温情報等を得るため
、計測センサーを内蔵した水中計測器を目的深度にまで
沈降させることが行なわれる。
<Prior Art> Conventionally, in order to obtain accurate water temperature information at a certain depth, an underwater measuring device with a built-in measurement sensor is lowered to a target depth.

これら水中計測器は一般に曳索に給止されて水中に投下
されるのであるが、測定深度が100m〜700mある
いはそれ以上に達すると曳索の繰出0巻上操作が非常に
困難となる問題があった。
These underwater measuring instruments are generally suspended by a towline and dropped into the water, but when the measurement depth reaches 100m to 700m or more, there is a problem that it becomes extremely difficult to operate the towline. there were.

〈従来の問題点〉 例えば、航走中の船舶より上記水中計測装置を水中に投
入する場合、曳索ガ張ると計測器は引かれて浮上するた
め、船速と水中計測装置の沈降速度とを勘案しこれを上
回る速度で曳索を繰出さねばならず、一方、この繰出量
が多すぎると余剰の曳索iJ工水面上を漂い、深度調整
のため曳索を巻き上げても、この浮遊している部分の曳
索のみを巻き上げることとなり、水中測定器を耐圧限度
以上に沈下させ、あるいは着床により破損させることが
あった。
<Conventional problems> For example, when the above-mentioned underwater measuring device is dropped into the water from a moving ship, when the tow line is stretched, the measuring device is pulled and floats, so the ship speed and the sinking speed of the underwater measuring device are On the other hand, if the towline is fed out too much, the excess towline will float on the water surface, and even if the towline is wound up to adjust the depth, this floating As a result, only the part of the tow rope that was attached to the tow rope had to be hoisted up, which could cause the underwater measuring instrument to sink beyond its pressure limit or be damaged by landing on the ground.

そして、これらを勘案して曳索の繰出9巻上操作をする
には相当の熟練と勘を要し、作業が非常に困難であると
いった問題があった。
Taking these into consideration, there was a problem in that considerable skill and intuition were required to carry out the operation of letting out and hoisting up the towline, making the work extremely difficult.

もつとも、上記難点は観測点ごとに船を停め、その位置
で曳索を垂直に降ろしていけば良いが1、観測点ごと急
の船舶の移動、停止に相当時間が掛り、多点観測には迅
速性に著るしぐ欠け、実用上問題がある。
However, the above-mentioned difficulty can be solved by stopping the ship at each observation point and lowering the tow line vertically at that position, but 1. It takes a considerable amount of time to suddenly move and stop the ship at each observation point, and multi-point observation is not possible. There is a noticeable lack of speed and there are practical problems.

また、水中翼を有する水中計測器を用い、水中翼で生じ
る沈降力と曳索の張力とのバランスにより目的深度に到
達させることも行なわれているが、前記沈降力により曳
索の張力が非常に強大となり、浅深度観測であればとも
角、前述のような深深度観測には相当太い曳索を用いね
ばならず、ウィンチなども大型化する必要があり、実用
はきわめて困難である。
In addition, underwater measuring instruments with hydrofoils are used to reach the target depth by balancing the sedimentation force generated by the hydrofoils with the tension of the towline, but the tension of the towline is extremely low due to the sedimentation force. This makes it extremely difficult to put it into practical use, as it requires the use of a fairly thick towline and a large winch, even for shallow depth observation.

〈発明が解決する問題点〉 この発明は上記問題点に鑑み、高速航走中の船上からで
も容易に水中計測器を目的深度に到達させ、もって迅速
に水中情報を収集出来る水中計測器の制御装置を提供す
ることを目的としてなされたものである。
<Problems to be Solved by the Invention> In view of the above-mentioned problems, the present invention provides a control for an underwater measuring instrument that allows the underwater measuring instrument to easily reach a target depth even from a ship during high-speed cruising, thereby quickly collecting underwater information. This was done for the purpose of providing equipment.

く問題点を解決するに至った技術〉 この発明の水中計測器の深度制御装置は、水中計測器の
自然沈降を妨げないよう曳索の繰出回転速度を最大船速
以上の船速を基準として定めた曳索ウィンチと、入力さ
れた目的深度及び実際の船速より前記曳索ウィンチの積
算回転数を演算する演算回路と、前記曳索ウィンチの繰
り出し回転数が積算されてフィードバックされ。
Technology that has solved the above problems> The depth control device for an underwater measuring instrument according to the present invention sets the rotational speed at which the tow line is drawn out based on a ship speed higher than the maximum ship speed so as not to disturb the natural settling of the underwater measuring instrument. An arithmetic circuit calculates the cumulative number of revolutions of the towing winch based on the determined towing winch, the input target depth and the actual ship speed, and the number of rotations of the towing winch is integrated and fed back.

前記演算回路で算出された積算回転数と一致したとき曳
索ウィンチの繰出回転を停止させると共に、初期巻き上
げ状態にまで巻上作動を指令する指令回路とから構成さ
れたことを特徴とするものである。
It is characterized by comprising a command circuit that stops the rotation of the towing winch when it matches the cumulative number of revolutions calculated by the arithmetic circuit, and also commands the hoisting operation to the initial hoisting state. be.

〈実施例〉 次に、この発明を実施例により説明する。<Example> Next, the present invention will be explained with reference to examples.

第1図はこの発明の実施例の構成ブロック図、第2図は
水中測定器の作動説明図である。
FIG. 1 is a block diagram of the configuration of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the underwater measuring instrument.

この発明の水中計測器の深度制御装置Aは、水中計測器
1を水中に投入した際、曳索2により引張られたりして
自然沈降が妨げられないよう、繰出回転速度を回収船V
の最大船速、又はそれ以上の船速を基準として定めた曳
索ウィンチ3と、入力された目的深度D(第2図)、及
び実際の船速vo(%’)より曳索ウィンチの積算回転
数nを演算する演算回路4と、この曳索ウィンチ3の繰
り出し回転数n′が、ウィンチ3に設けたカウンタ3人
よりフィードバックされ。
The depth control device A for an underwater measuring instrument according to the present invention is configured to adjust the rotational speed of the underwater measuring instrument 1 to the recovery vessel V so that when the underwater measuring instrument 1 is put into the water, it will not be pulled by the tow rope 2 and its natural sedimentation will not be hindered.
The towing winch 3 is determined based on the maximum ship speed or higher ship speed, the input target depth D (Fig. 2), and the actual ship speed vo (%'). An arithmetic circuit 4 that calculates the number of rotations n and the number of rotations n' at which the towing winch 3 is fed out are fed back by three counters provided on the winch 3.

前記積算回転数nと一致したとき(n=n’)曳索ウィ
ンチ3の繰出回転を停止させ、初期巻き上げ状態にまで
巻上作動を指令する指令回路5とから構成されている。
It is comprised of a command circuit 5 which stops the feeding rotation of the towline winch 3 when it matches the cumulative rotational speed n (n=n') and instructs the hoisting operation to the initial hoisting state.

なお、図中6は、ウィンチの原動装置である。Note that 6 in the figure is a winch driving device.

く作用〉 今、水中計測器の自然沈降速度をv+(%)、設定測定
深度をD (m)、曳索の必要繰出長さをE(m)、船
速をvo(n)i)とすると、水中計測器1は水中へ投
入後、垂直に沈降し、一方、船速にょつて水中計測器1
が引張られないようにするためには、少なくとも船速v
o(’X)に等しい速さで曳索2を繰り出す必要がある
ため、繰り出し長さl (F?1)と繰り出し時間to
 (秒)との間には。
Now, let the natural sedimentation rate of the underwater measuring device be v + (%), the set measurement depth D (m), the required length of the towline to be drawn out E (m), and the ship speed vo (n) i). Then, the underwater measuring instrument 1 sinks vertically after being thrown into the water, and on the other hand, due to the speed of the ship, the underwater measuring instrument 1
In order to avoid being pulled, at least the ship speed v
Since it is necessary to let out the towline 2 at a speed equal to o('X), the let-out length l (F?1) and the let-out time to
(seconds) between.

vlto+voLo′:J 、’、 t o=l/ (v o +v I)・・・・
・・・・・・・・・・・・■の関係が成フ立ち、一方、
目的深度D (FFi)に対するまでの必要時間tと水
中計測器lの沈降速度Vlとの間には。
vlto+voLo': J,', t o=l/ (vo + v I)...
・・・・・・・・・・・・■ relationship is established, on the other hand,
Between the required time t to reach the target depth D (FFi) and the sinking velocity Vl of the underwater measuring instrument l.

D = vlt  ・・・・・・・・・・・・・・・・
・・・・・・・・■の関係があるから■を■に代入して DQn)=vllIl/(vo+v1)・・・・・・・
・・・・・■の関係が得られる。
D = vlt・・・・・・・・・・・・・・・
・・・・・・・・・Since there is a relationship of ■, substitute ■ into ■DQn)=vllIl/(vo+v1)・・・・・・・・・
...The relationship of ■ is obtained.

次に、ウィンチの積算回転数nと曳索の繰出長lとの関
係は、第4図(イ)、(ロ)を参照して、ウィンチドラ
ム30に巻かれた各段における曳索の長さ10は、同一
段nQ内における巻数をm(1とすると、 lo=moeπ(r+Δ(+J了Δr(no  l)]
・ユΦ(rニドラム半径、△r:曳索の断面における半
径、 f丁△r :任意段における曳索の中心位置から、一段
歩ない段の曳索中心 位置間の垂直距離を示す) で表わせ、ドラムにはn1段にわたり曳索が巻き付けら
れるから、曳索2の長さlは。
Next, the relationship between the cumulative number of revolutions n of the winch and the length l of the towline is determined by referring to FIGS. Assuming that the number of turns in the same stage nQ is m (1, lo=moeπ(r+Δ(+J了Δr(no l))
・U Φ (r Nidram radius, △r: radius in the cross section of the tow rope, f d △r: indicates the vertical distance from the center position of the tow rope in any step to the center position of the tow rope in the steps that do not step) Since the tow rope is wrapped around the drum in n1 stages, the length l of the tow rope 2 is.

l;ΣmQ @ ff [r+Δr+fiΔr(no 
1)l・・■no=工 で表わせる。
l;ΣmQ @ ff [r+Δr+fiΔr(no
1) It can be expressed as l...■no = engineering.

ここにant”mo=nの関係があるから、0式より、 1 = nπ(r+Δr)+πJ了・Δran(n−m
o)/2m。
Since there is the relationship ant"mo=n, from equation 0, 1 = nπ(r+Δr)+πJ了・Δran(n-m
o)/2m.

・・・・・・・・・・O 0式を変形すれば、 1 = (ff−△r”1丁・/2mo)n2+[(1
−V’T/2)Δr+rJπn ” ” ”°0H+1
0−″+++0006■■式において、π、八へ#mo
  はすべて機知であるから。
・・・・・・・・・・・・O If we transform the formula 0, we get 1 = (ff−△r”1d/2mo)n2+[(1
-V'T/2)Δr+rJπn ” ” ”°0H+1
0-″+++0006 ■■ In the formula, π, 8 #mo
Because it's all about wit.

πΔr・J丁/ 2m 6 = a (1−、/T /2 )−Δr+r=bとおけば、■式
は 1 = an2+bn・・・−・・・・・・・・・・・
・・・・・・・・・■と置ける。
If we set πΔr・J/2m 6 = a (1−, /T /2 )−Δr+r=b, then the formula ■ is 1 = an2+bn・・・−・・・・・・・・・・・・・
It can be placed as ・・・・・・・・・■.

従って、0式と0式より。Therefore, from formula 0 and formula 0.

an”+bn−D・(vo+vx)/vl=o  + 
++ + ++■■式を解けば、 n=(1/2a)(−b+ b2+4a(vo+vt)
・D/vl)・・ ・・ ・・ ・・ 0 が得られる。
an”+bn-D・(vo+vx)/vl=o+
++ + ++ Solving the formula, n=(1/2a)(-b+ b2+4a(vo+vt)
・D/vl)... ... 0 is obtained.

演算回路4においては、上記0式にVQ*VlaDを入
力することによりn、即ち曳索ウィンドラス3の目的深
度にまで達する積算回転数が演算される。
In the calculation circuit 4, by inputting VQ*VlaD into the above equation 0, n, that is, the cumulative number of revolutions at which the towing windlass 3 reaches the target depth is calculated.

この積算回転数nは指令回路5ヘデータとして入力され
、同時に水中計測器1を投入後、ウィンチ3の積算回転
数n/が指令回路5へとフィードバックされる。
This cumulative rotation speed n is inputted to the command circuit 5 as data, and at the same time, after the underwater measuring instrument 1 is turned on, the cumulative rotation speed n/ of the winch 3 is fed back to the command circuit 5.

このとき、ウィンチ3よりの曳索繰出し速度は実際の船
′速Vt3 よシかなり速いため、h!!12図に図示
のように曳索2(d水中で充分にたるみ。
At this time, the towline payout speed from winch 3 is considerably faster than the actual ship's speed Vt3, so h! ! As shown in Figure 12, the towline 2 (d) is sufficiently slack in the water.

この結果、水中計測器1は殆んど垂直に降下していく。As a result, the underwater measuring instrument 1 descends almost vertically.

次に、ウィンチ3の積算回転数n/がデータ入力された
積算回転数nと等しくなれば、ウィンチ3の繰出し回転
が指令回路5により停止され、この時点より、曳索は張
シ始める。
Next, when the cumulative number of revolutions n/ of the winch 3 becomes equal to the cumulative number of revolutions n inputted as data, the command circuit 5 stops the rotation of the winch 3, and from this point on, the towline starts to be stretched.

しかし、このとき曳索は、実際の船速よシ速い速度で繰
り出されており、従って、仮に高速で船舶が航走中であ
っても、水中計測器1の曳索2が張った時点で、所定深
度に達しており。
However, at this time, the towline is let out at a faster speed than the actual speed of the ship, so even if the ship is sailing at high speed, when the towline 2 of the underwater measuring instrument 1 is stretched, , the specified depth has been reached.

所定の水温、塩分濃度等の測定が可能となる。It becomes possible to measure predetermined water temperature, salinity concentration, etc.

次いで、ウィンチ3は指令回路5により巻き上げが開始
され1点線で示す状態で巻き上げられていく。
Next, the winch 3 is started to be hoisted by the command circuit 5, and the winch 3 is hoisted in the state shown by the single dotted line.

そして、初期の巻き上げ状態となれば、再び繰出を行な
い、前述の作動を繰り返すのである。
Then, when it reaches the initial winding state, it is unrolled again and the above-mentioned operation is repeated.

なお、測定を繰り返す場合は、水中計測器は第3図に示
すように作動し、各最深部位置にて情報を収集すれば、
航走中の船舶であっても正確な水深における多点観測が
迅速に行なえるのである。
In addition, when repeating measurements, the underwater measuring instrument operates as shown in Figure 3, and if information is collected at each deepest position,
Multi-point observations at accurate water depths can be quickly performed even when a ship is sailing.

く効果〉 この発明は以上のように構成されているので、水中計測
器の目的深度を船速をファクターとして制御するため、
深度調整が正確に行なえ、また、船速、目的深度をイン
プットするのみで唯でも簡単に水中観測が正確に行なえ
、実施が容易となる効果を有するほか、ウィンチの繰出
し量が大きいため、船速が小さい場合、第3図に鎖線で
示すように観測回数も増加させることが出来ふといつた
効果を有する。
Effect> Since the present invention is configured as described above, in order to control the target depth of the underwater measuring instrument using the ship speed as a factor,
Depth adjustment can be performed accurately, and underwater observation can be performed accurately and easily by simply inputting the ship speed and target depth.In addition, the winch has a large payout amount, so the ship speed can be adjusted easily. When is small, the number of observations can be increased, as shown by the chain line in FIG. 3, which has an unexpected effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成ブロック図、第2図は水中計測
器の作動説明図、第3図は繰り返し計測の場合の説明図
、第4図(イ)、(ロ)はウィンチのドラムと巻回曳索
の長さの関係を示す説明図である。 とイジ ヲO(歩イシチメ゛ラム2〉 4回 (r))
Fig. 1 is a block diagram of the configuration of the present invention, Fig. 2 is an explanatory diagram of the operation of the underwater measuring instrument, Fig. 3 is an explanatory diagram of repeated measurement, and Figs. 4 (a) and (b) are the winch drum and It is an explanatory view showing the relationship of the length of a winding towline. To Ijiwo O (Ayu Ishichi Malum 2〉 4 times (r))

Claims (1)

【特許請求の範囲】[Claims] (1)水中計測器の自然沈降を妨げないよう曳索の繰出
回転速度を最大船速以上の船速を基準として定めた曳索
ウインチと、入力された目的深度及び実際の船速より前
記曳索ウインチの積算回転数を演算する演算回路と、前
記曳索ウインチの繰り出し回転数が積算されてフイード
バツクされ、前記演算回路で算出された積算回転数と一
致したとき、曳索ウインチの繰出しを停止させると共に
、初期巻き上げ状態にまで巻上作動を指令する指令回路
とから構成されたことを特徴とする水中計測器の深度制
御装置。
(1) A towline winch that sets the rotation speed of the towline on the basis of a ship speed higher than the maximum ship speed so as not to disturb the natural settling of underwater measuring instruments, and an arithmetic circuit that calculates the cumulative number of rotations of the rope winch and the number of rotations the tow winch is fed out; and when the number of rotations the tow winch is fed back and matched with the cumulative number of rotations calculated by the arithmetic circuit, the feed-out of the tow winch is stopped; What is claimed is: 1. A depth control device for an underwater measuring instrument, comprising: a command circuit for instructing a hoisting operation to an initial hoisting state;
JP10222185A 1985-05-14 1985-05-14 Apparatus for controlling depth of underwater measuring device Pending JPS61259119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222185A JPS61259119A (en) 1985-05-14 1985-05-14 Apparatus for controlling depth of underwater measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222185A JPS61259119A (en) 1985-05-14 1985-05-14 Apparatus for controlling depth of underwater measuring device

Publications (1)

Publication Number Publication Date
JPS61259119A true JPS61259119A (en) 1986-11-17

Family

ID=14321609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222185A Pending JPS61259119A (en) 1985-05-14 1985-05-14 Apparatus for controlling depth of underwater measuring device

Country Status (1)

Country Link
JP (1) JPS61259119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180339756A1 (en) * 2016-08-09 2018-11-29 Li Fang Flying underwater imager with multi-mode operation for locating and approaching underwater objects for imaging and maintaining depths and altitudes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180339756A1 (en) * 2016-08-09 2018-11-29 Li Fang Flying underwater imager with multi-mode operation for locating and approaching underwater objects for imaging and maintaining depths and altitudes
US10640187B2 (en) * 2016-08-09 2020-05-05 Li Fang Flying underwater imager with multi-mode operation for locating and approaching underwater objects for imaging and maintaining depths and altitudes

Similar Documents

Publication Publication Date Title
RU2419574C1 (en) Towed submarine apparatus
CN110254633B (en) Automatic displacement control system and control method for stone throwing ship
US3596070A (en) Winch control system for constant load depth
CN109890691A (en) Dynamic towboat winch control
EP3186139B1 (en) Shipboard winch with computer-controlled motor
US2402789A (en) Power transmission
CN113525591B (en) Automatic traction method and system for entering and exiting tunnel of submersible
JPS61259119A (en) Apparatus for controlling depth of underwater measuring device
US2361053A (en) Ship cargo rig
CN103913210B (en) Concrete casting lifting height self-operated measuring unit
CA2137846C (en) System for collecting oceanographic data from a moving vessel
US4150911A (en) Control device for the laying of pipe in deep water
CN112977728A (en) Intelligent position correction device for acoustic evaluation system
IE39331L (en) Raising an underwater pipeline
SU714606A1 (en) Boat hoist electric motor control device
Seymour et al. Tracked vehicle for continuous nearshore profiles
RU2004103234A (en) DEVICE AND METHOD FOR DEPTH CONTROL OF UNDERWATER OBJECTS
CN107314848B (en) Force measuring system of marine anchor winch and calibration method thereof
JP3313010B2 (en) Position control system for large structures
SU647575A1 (en) Winch testing stand
KR101572540B1 (en) Method using a hydraulic winch and auto shipping mooring
CN219842079U (en) Liquid level variable throw-in type temperature sensor
JPH0138123Y2 (en)
DE2252838C3 (en) Device for monitoring the condition of a pipe to be laid under water
SU771010A1 (en) Oceanographic winch