JPS6125888B2 - - Google Patents

Info

Publication number
JPS6125888B2
JPS6125888B2 JP9173080A JP9173080A JPS6125888B2 JP S6125888 B2 JPS6125888 B2 JP S6125888B2 JP 9173080 A JP9173080 A JP 9173080A JP 9173080 A JP9173080 A JP 9173080A JP S6125888 B2 JPS6125888 B2 JP S6125888B2
Authority
JP
Japan
Prior art keywords
lng
working fluid
turbine
gas
regasified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9173080A
Other languages
Japanese (ja)
Other versions
JPS5718407A (en
Inventor
Yoshitsugu Yoshikawa
Tsuyoshi Aio
Takeshi Funabashi
Kazumi Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP9173080A priority Critical patent/JPS5718407A/en
Publication of JPS5718407A publication Critical patent/JPS5718407A/en
Publication of JPS6125888B2 publication Critical patent/JPS6125888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、液化天然ガス(LNG)の再ガス化
において発生する冷熱を有効利用して、同時に発
生する多量のボイルオフガスの圧縮用エネルギー
として使用する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of effectively utilizing cold heat generated during regasification of liquefied natural gas (LNG) and using it as energy for compressing a large amount of boil-off gas generated at the same time.

LNGの再ガス化は、一般には第1図に示す如
くLNGはオープンラツクベーパライザー3に導
びかれここで海水によつて暖められ再ガス化し消
費者へと送られる。近年、再ガス化に際して、そ
の冷熱を有効に利用する方法、例えば特公昭54−
34761が開発されているが、LNGタンク内で発生
する多量のボイルオフガスについては常圧である
ため、コンプレツサーで圧縮した後ボイラーの燃
料ガスあるいは都市ガスとして輸送されている。
この際使用する圧縮機は通常電動機で駆動され、
一般的には買電電力で賄われている。
Generally, in the regasification of LNG, as shown in FIG. 1, LNG is led to an open rack vaporizer 3, where it is heated by seawater, regasified, and sent to consumers. In recent years, methods for effectively utilizing the cold energy during regasification have been developed, such as the
34761 has been developed, but since the large amount of boil-off gas generated in the LNG tank is at normal pressure, it is compressed in a compressor and then transported as boiler fuel gas or city gas.
The compressor used at this time is usually driven by an electric motor,
Generally, it is covered by purchased electricity.

本発明は、LNGの再ガス化設備での消費エネ
ルギーの節減を計り、再ガス化設備トータルから
のLNG冷熱の回収エネルギーの極大化と設備投
資の低減とが図れるLNGの再ガス化方法を提供
しようとするものである。
The present invention provides an LNG regasification method that reduces energy consumption in LNG regasification equipment, maximizes the energy recovered from LNG cold energy from the total regasification equipment, and reduces capital investment. This is what I am trying to do.

本発明は、LNGの再ガス化に於いて、LNGを
冷熱源、海水等を高熱源として作動流体にランキ
ンサイクルを行わせ、LNGを再ガス化させつつ
タービンを回転させてLNGの冷熱を動力として
回収するとともに、該再ガス化されるLNGを供
給するLNGタンクを含む複数のLNGタンク内で
発生するボイルオフガスを、前記タービンと連結
して駆動するコンプレツサーにより、該再ガス化
されるLNGの有する圧力まで圧縮し、この圧縮
ガスを該再ガス化されたLNGと合流させること
を特徴とするLNGの再ガス化方法である。
In the regasification of LNG, the present invention uses LNG as a cold heat source and seawater as a high heat source, causing the working fluid to undergo a Rankine cycle, and rotates a turbine while regasifying LNG to use the cold heat of the LNG as power. The boil-off gas generated in multiple LNG tanks, including the LNG tank that supplies the LNG to be regasified, is collected by a compressor connected to and driven by the turbine to recover the LNG to be regasified. This is a method for regasifying LNG, which is characterized in that the compressed gas is compressed to a certain pressure, and the compressed gas is combined with the regasified LNG.

本発明によれば、極めて効率的にLNGの冷熱
を回収しつつ、ボイルオフガスの圧縮が可能とな
ると同時に、冷熱回収再ガス化設備の建設費の節
減も可能となる。
According to the present invention, boil-off gas can be compressed while recovering the cold heat of LNG extremely efficiently, and at the same time, it is also possible to reduce the construction cost of cold heat recovery regasification equipment.

本発明の作動流体としては、種々のものを使用
することが可能であるが、ランキンサイクルにお
けるLNGの蒸発曲線と作動流体の冷却曲線を最
小温度差で合わせ冷熱を効率的に回収する上で
は、作動流体を炭素数1〜4の炭化水素及び窒素
より選ばれた複数成分の混合物からなるものとす
るのが好ましく、更に好ましくは、窒素0〜5モ
ル%メタン20〜30モル%、エタン又はエチレン30
〜60モル%、プロパン及びプロピレン0〜10%の
混合物を選ぶことにより目的が達成できる。
Various types of working fluid can be used as the working fluid of the present invention, but in order to match the evaporation curve of LNG and the cooling curve of the working fluid with the minimum temperature difference in the Rankine cycle and efficiently recover cold heat, The working fluid is preferably composed of a mixture of multiple components selected from hydrocarbons having 1 to 4 carbon atoms and nitrogen, more preferably 0 to 5 mol% nitrogen, 20 to 30 mol% methane, ethane or ethylene. 30
The objective can be achieved by choosing a mixture of ~60 mol %, propane and propylene 0-10%.

一方、ランキンサイクルさせる作動流体の高圧
側圧力は8〜30Kg/cm2absとするのが好ましく、
圧力が高過ぎるとアルミ製のプレートフイン熱交
換器が適用できず建設費が嵩むことになり、又低
過ぎると回収エネルギーが小さくなる。作動流体
の膨張比につにては、1.5〜10の範囲での設定が
望ましく、大き過ぎる場合には低圧側がバキユー
ムとなり安全面での諸対策を講ずる必要が生じま
た小さ過ぎる場合には回収エネルギーが小さい。
On the other hand, it is preferable that the pressure on the high pressure side of the working fluid used in the Rankine cycle is 8 to 30 Kg/cm 2 abs.
If the pressure is too high, an aluminum plate-fin heat exchanger cannot be used and the construction cost will increase, and if the pressure is too low, the recovered energy will be small. Regarding the expansion ratio of the working fluid, it is desirable to set it in the range of 1.5 to 10; if it is too large, the low pressure side will become vacuumed and it will be necessary to take various safety measures, and if it is too small, the recovered energy will be lost. is small.

また、ランキンサイクルにおける熱源として海
水を使用する場合、作動流体が暖められる温度を
10〜30℃、より好ましくは10〜20℃とするのが望
ましい。温度差を大きく取る際には熱交換器は小
さくて済むが回収エネルギーは小さくなる一方、
小さい場合には、海水が凍結する場合がある。
Also, when using seawater as a heat source in the Rankine cycle, the temperature at which the working fluid is warmed must be
The temperature is preferably 10 to 30°C, more preferably 10 to 20°C. When creating a large temperature difference, the heat exchanger can be made smaller, but the recovered energy will be smaller.
If it is small, seawater may freeze.

以下、本発明の一実施例を示す第2図を参照し
つつ本発明を更に詳細に説明する。
Hereinafter, the present invention will be explained in more detail with reference to FIG. 2 showing one embodiment of the present invention.

LNGはLNGタンク10よりポンプ11で加圧
され多流体熱交換器6へと送液される。ここで最
適な混合作動流体(以下作動流体と略す)と熱交
換して加熱され、再ガス化された後消費者へと送
られる。一方、作動流体は、例えばメタン、エタ
ン、プロパン、ブタン等の混合物であり、タービ
ン3から出た気相の低圧作動流体はLNG並びに
高圧作動流体と熱交換して冷却されて総て液相と
なる。こうして液化した作動流体はポンプ9で昇
圧され高圧作動流体となつて、再び多流体熱交換
器に入り、LNGと同様に低圧作動流体の凝縮潜
熱と熱交換して昇温され気液混相となる。多流体
熱交換器6を出た高圧の作動流体は熱交換器7に
おいて海水あるいは温排水のような比較的低温の
熱源により加熱昇温され、総て気化する。
LNG is pressurized by a pump 11 from an LNG tank 10 and sent to a multifluid heat exchanger 6. Here, it is heated by exchanging heat with an optimally mixed working fluid (hereinafter referred to as working fluid), and after being regasified, it is sent to consumers. On the other hand, the working fluid is a mixture of, for example, methane, ethane, propane, butane, etc., and the gas phase low pressure working fluid that comes out of the turbine 3 is cooled by exchanging heat with LNG and the high pressure working fluid, and becomes a liquid phase. Become. The liquefied working fluid is pressurized by the pump 9, becomes a high-pressure working fluid, enters the multi-fluid heat exchanger again, and, like LNG, exchanges heat with the latent heat of condensation of the low-pressure working fluid to raise its temperature and become a gas-liquid mixed phase. . The high-pressure working fluid exiting the multi-fluid heat exchanger 6 is heated and heated by a relatively low-temperature heat source such as seawater or heated waste water in the heat exchanger 7, and is completely vaporized.

気化した高圧作動流体はタービン8に至り、タ
ービンに動力を与え減圧され、温度も低下し、そ
の後多流体熱交換器6へと戻り循環される。
The vaporized high-pressure working fluid reaches the turbine 8, powers the turbine, is depressurized, and has a reduced temperature, and then returns to the multifluid heat exchanger 6 for circulation.

一方、多流体熱交換器6にて再ガス化された
LNGは、必要があれば、更に熱交換器12にて
海水あるいは温排水等によつて暖められ消費者へ
と送られる。
On the other hand, the gas regasified in the multifluid heat exchanger 6
If necessary, the LNG is further heated in a heat exchanger 12 with seawater or heated wastewater, and then sent to the consumer.

LNG貯蔵タンク内で発生するボイルオフガス
は、遠心式の圧縮器13、または要求圧力によつ
ては更に圧縮機13′で所定の圧力まで加圧され
た後、消費者へ送られる。本発明ではこの圧縮機
は前述のタービン8に結合して構成され、作動流
体の作動により回転するタービンに準じて駆動す
るが、圧縮機とタービンの回転数が一致しない際
には、増減速機を介して動力を伝達しても、本発
明の妨げとなるものではない。
The boil-off gas generated in the LNG storage tank is compressed to a predetermined pressure by a centrifugal compressor 13 or, depending on the required pressure, a further compressor 13', and then sent to the consumer. In the present invention, this compressor is configured to be coupled to the turbine 8 described above, and is driven in accordance with a turbine that rotates by the action of the working fluid. However, when the rotational speeds of the compressor and turbine do not match, an increase/decelerator is used. Even if the power is transmitted via the above, the present invention will not be hindered.

タービンと圧縮機を結合して駆動させること
は、従来考えられていたLNGの冷熱をタービン
より電気エネルギーとし回収する一方で、ボイル
オフガスコンプレツサーを電気あるいは蒸気等の
異系列のエネルギーで作動させる場合に較べ、冷
熱の回収効率の向上は明らかである。
Combining and driving the turbine and compressor means that while the conventional idea was to recover the cold heat of LNG from the turbine as electrical energy, the boil-off gas compressor can be operated using a different type of energy such as electricity or steam. It is obvious that the recovery efficiency of cold energy is improved compared to the conventional case.

また、タービンと圧縮機を直結することによ
り、タービン、圧縮機を別個に建設する必要がな
くなり、建設費の節減にも大きな効果が発揮でき
る。すなわち、通常はタービンと発電機とを連結
し電気エネルギーとして回収し、一方、ボイルオ
フガスの圧縮機のためにはモーターを設置し、こ
れに電力を供給し圧縮機を運転することになる。
これに対して本発明は、これら付帯設備を省略
し、設備費を低減するとともに各機器が有する運
転効率によつて免れれ得ないエネルギーの中間損
失も予め排除することができる。
Furthermore, by directly connecting the turbine and compressor, there is no need to construct the turbine and compressor separately, which can greatly reduce construction costs. That is, normally a turbine and a generator are connected to recover electrical energy, while a motor is installed for the boil-off gas compressor, and electric power is supplied to the motor to operate the compressor.
In contrast, the present invention can omit these incidental equipment, reduce equipment costs, and eliminate intermediate energy losses that cannot be avoided due to the operating efficiency of each equipment.

ランキンサイクルを形成する作動媒体としてプ
ロパンを用いたものがあるが、この場合にはプロ
パンの沸点が−40℃であるため、この温度より低
い冷熱を効率的に回収することができず、その結
果得られる動力は小さい。また、メタン、エタ
ン、プロパンの各ランキンサイクルをカスケード
した場合には、回収される動力はかなり大きい
が、必要となるタービン数が増加し、それに対応
する圧縮器も分割する必要が生じ、更には熱交換
器の必要数も増加するため、建設費が嵩み経済的
に劣る。
There are systems that use propane as a working medium to form a Rankine cycle, but in this case, the boiling point of propane is -40°C, so cold energy below this temperature cannot be efficiently recovered, and as a result, The power obtained is small. Furthermore, if Rankine cycles for methane, ethane, and propane are cascaded, the power recovered is quite large, but the number of turbines required increases, the corresponding compressors also need to be divided, and Since the required number of heat exchangers also increases, the construction cost increases and it is less economical.

これに反し、本発明の方法は炭素数1〜4の炭
化水素及び窒素から選ばれた複数成分の混合物か
ら成る作動流体を用いて冷熱を回収するため、比
較的簡易なプロセスで済み、必要タービン数も1
基のみなので建設費が安くすむ。また、LNGの
蒸発曲線に対して後述の実施例のような適切な作
動流体組成を選ぶことにより、多流体熱交換器内
の各流体間の温度差を小さくして、エクセルギー
損失を少なくし、効果的な冷熱の回収を行なうこ
とができる。本発明の実施例を示すと次のとおり
である。
On the other hand, the method of the present invention recovers cold heat using a working fluid consisting of a mixture of multiple components selected from hydrocarbons having 1 to 4 carbon atoms and nitrogen, so it is a relatively simple process and requires a turbine. The number is also 1
Construction costs are low because it only requires the base. In addition, by selecting an appropriate working fluid composition for the LNG evaporation curve as shown in the example below, the temperature difference between each fluid in the multifluid heat exchanger can be reduced and exergy loss can be reduced. , effective cooling and heat recovery can be performed. Examples of the present invention are as follows.

実施例 第2図に示したLNGの再ガス化プロセスを示
すフローシートに於いて、40トン/時のLNGを
圧力70Kg/cm2Gで再ガス化した。LNGは貯蔵タン
ク10よりポンプ11により−160℃で送り出
し、多流体熱交換器6で作動流体と熱交換し−26
℃まで加熱し、次いで20℃の海水と熱交換し0℃
まで昇温し、消費者へ送るガスを得た。一方、こ
こで使用した作動流体は、メタン、エタン、プロ
パン、ブタンが各々30、37、23、10モル%の組成
のものであり、その流量は3027.8Kgmol/時であ
つた。タービン8を出た作動流体(気相)は、圧
力2.3Kg/cm2Gで多流体熱交換器6に入り、LNGお
よび加圧作動流体と熱交換し、−129℃まで冷却さ
れ総て液相となつた。この冷却された作動流体
は、ポンプ9で13.0Kg/cm2Gまで昇圧し、再び多
流体熱交換器6に入りLNGと同様に作動流体の
凝縮潜熱と熱交換して−26℃まで昇温し、気液混
相流体となつた。多流体熱交換器を出た気液混相
の作動流体は熱交換器7において20℃の海水との
熱交換で12.5℃まで加熱され総て気化した。気化
した高圧作動流体は膨張比4.2のタービン8に動
力を与え、2.3Kg/cm2Gまで減圧され、温度も−23
℃まで低下し、再度多流体熱交換器へと循環す
る。この際発生したタービンの動力は約1600kw
であつた。
Example In the flow sheet showing the LNG regasification process shown in FIG. 2, 40 tons/hour of LNG was regasified at a pressure of 70 Kg/cm 2 G. LNG is sent out from the storage tank 10 by the pump 11 at -160°C, and heat exchanged with the working fluid in the multifluid heat exchanger 6.
℃, then heat exchanged with 20℃ seawater to 0℃
The temperature was raised to 100%, and gas was obtained to be sent to consumers. On the other hand, the working fluid used here had a composition of methane, ethane, propane, and butane of 30, 37, 23, and 10 mol %, respectively, and the flow rate was 3027.8 Kgmol/hour. The working fluid (gas phase) leaving the turbine 8 enters the multifluid heat exchanger 6 at a pressure of 2.3 Kg/cm 2 G, exchanges heat with LNG and the pressurized working fluid, is cooled to -129°C, and is completely turned into a liquid. It became a phase. This cooled working fluid is pressurized to 13.0Kg/cm 2 G by the pump 9, enters the multifluid heat exchanger 6 again, and exchanges heat with the latent heat of condensation of the working fluid in the same way as LNG, raising the temperature to -26℃. It became a gas-liquid multiphase fluid. The gas-liquid multiphase working fluid that exited the multi-fluid heat exchanger was heated to 12.5°C by heat exchange with 20°C seawater in heat exchanger 7, and was completely vaporized. The vaporized high-pressure working fluid powers the turbine 8 with an expansion ratio of 4.2, reducing the pressure to 2.3 Kg/cm 2 G and the temperature at -23
℃ and circulated again to the multifluid heat exchanger. The power of the turbine generated at this time was approximately 1600kw.
It was hot.

他方、LNG貯蔵タンクからのボイルオフガス
の発生量は8t/時であり−140℃常圧のボイルオ
フガスがタービン8に直結して駆動される圧縮機
13により21.6Kg/cm2Gまで加圧され温度も86.1℃
まで上昇した。このボイルオフガスは熱交換器1
4で25℃まで冷却され再度タービン8に直結して
駆動される圧縮機13′へ導かれ70Kg/cm2Gまで圧
縮し、消費者へ送るガスを得た。この際、圧縮に
要する動力は約1300KWで、LNG再ガス化のラン
キンサイクルにより発生した動力で十分であつ
た。
On the other hand, the amount of boil-off gas generated from the LNG storage tank is 8 tons/hour, and the boil-off gas at -140℃ normal pressure is pressurized to 21.6 kg/cm 2 G by the compressor 13 that is directly connected to the turbine 8 and driven. The temperature is also 86.1℃
It rose to This boil-off gas is transferred to heat exchanger 1
4, the gas was cooled to 25° C., and then introduced again to the compressor 13', which is directly connected to and driven by the turbine 8, and compressed to 70 kg/cm 2 G to obtain gas to be sent to consumers. At this time, the power required for compression was approximately 1,300 KW, and the power generated by the Rankine cycle of LNG regasification was sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般化しているLNGの再ガス化
プロセスを示すフローシートである。第2図は本
発明の一実施例を示すフローシートである。 1,10;LNG貯蔵タンク、2,9,11;
ポンプ、3;オープンラツクベーパライザー、
4;モーター、5;ボイルオフコンプレツサー、
6;多流体熱交換器、7,12;熱交換器、8;
タービン、13,13′;遠心式圧縮機。
Figure 1 is a flow sheet showing the conventional LNG regasification process. FIG. 2 is a flow sheet showing one embodiment of the present invention. 1, 10; LNG storage tank, 2, 9, 11;
Pump, 3; open rack vaporizer,
4; Motor, 5; Boil-off compressor,
6; Multifluid heat exchanger, 7, 12; Heat exchanger, 8;
Turbine, 13, 13'; centrifugal compressor.

Claims (1)

【特許請求の範囲】[Claims] 1 液化天然ガス(LNG)の再ガス化におい
て、LNGを冷熱源、海水等を高熱源として作動
流体にランキンサイクルを行わせ、LNGを再ガ
ス化させつつタービンを回転させてLNGの冷熱
を動力として回収するとともに、該再ガス化され
るLNGを供給するLNGタンクを含む複数のLNG
タンク内で発生するボイルオフガスを、前記ター
ビンと連結して駆動するコンプレツサーにより、
該再ガス化されるLNGの再ガス化圧力まで圧縮
し、この圧縮ガスを該再ガス化されたLNGと合
流させることを特徴とするLNGの再ガス化方
法。
1 In the regasification of liquefied natural gas (LNG), the working fluid undergoes a Rankine cycle using LNG as a cold heat source and seawater as a high heat source, and while the LNG is being regasified, a turbine is rotated and the cold heat of the LNG is used as power. Multiple LNG tanks, including LNG tanks that supply the LNG to be recovered and regasified.
The boil-off gas generated in the tank is driven by a compressor connected to the turbine,
A method for regasifying LNG, which comprises compressing the LNG to be regasified to a regasification pressure and combining the compressed gas with the regasified LNG.
JP9173080A 1980-07-07 1980-07-07 Method of driving boil-off compressor by utilizing cold heat of lng Granted JPS5718407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173080A JPS5718407A (en) 1980-07-07 1980-07-07 Method of driving boil-off compressor by utilizing cold heat of lng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173080A JPS5718407A (en) 1980-07-07 1980-07-07 Method of driving boil-off compressor by utilizing cold heat of lng

Publications (2)

Publication Number Publication Date
JPS5718407A JPS5718407A (en) 1982-01-30
JPS6125888B2 true JPS6125888B2 (en) 1986-06-18

Family

ID=14034621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173080A Granted JPS5718407A (en) 1980-07-07 1980-07-07 Method of driving boil-off compressor by utilizing cold heat of lng

Country Status (1)

Country Link
JP (1) JPS5718407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533329A (en) * 2018-03-26 2018-09-14 西安交通大学 LNG cold energy use systems in a kind of LNG receiving stations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322692A (en) * 2005-05-20 2006-11-30 Ebara Corp Steam generator and exhaust heat power generating device
AU2015388393B2 (en) * 2015-03-26 2019-10-10 Chiyoda Corporation Natural gas production system and method
CN105508872B (en) * 2016-01-22 2017-08-25 池州森大轻工制品有限公司 The retracting device of residual gas in a kind of pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533329A (en) * 2018-03-26 2018-09-14 西安交通大学 LNG cold energy use systems in a kind of LNG receiving stations

Also Published As

Publication number Publication date
JPS5718407A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
US20170038008A1 (en) Cold utilization system, energy system comprising cold utilization system, and method for utilizing cold utilization system
US7493763B2 (en) LNG-based power and regasification system
KR880002380B1 (en) Recovery of power from vaporization of liquefied natural gas
CN102209867B (en) Rankine cycle for lng vaporization/power generation process
US6367258B1 (en) Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
JP2898092B2 (en) Power generation from LNG
CN109184837A (en) LNG Power Vessel fuel cold energy generates electricity gradient utilization system and using method entirely
CN109386316B (en) LNG cold energy and BOG combustion energy combined utilization system and method
CN106939802B (en) Utilize the power generation of mixed working fluid step and remaining cooling capacity output system and method for LNG cold energy
JP5875253B2 (en) Combined power generation system
KR20110023856A (en) Gas supply systems for gas engines
KR102061294B1 (en) Liquefied Air Energy Storage System and Method
JPH03215139A (en) Power generating method
JP6168866B2 (en) Liquefied natural gas cold power generation system
JPH10288047A (en) Liquefied natural gas evaporating power generating device
JP2000204909A (en) Lng cryogenic power generation system
JP7050782B2 (en) Organic Rankine cycle in cryogenic applications or frozen fluids
JPH0711320B2 (en) Liquefied natural gas storage system
JPS6125888B2 (en)
JP2006022872A (en) Gasification equipment for low-temperature liquid
JP2017075594A (en) Super-critical pressure cold heat power generation system with liquefied gas
KR20190114540A (en) Re-gasification system capable of cold energy utilization
CN109386323B (en) LNG cold energy utilization system and method
JPS58106109A (en) Recovery method of power from lng by turbine
JP2000120404A (en) Combined power generating plant