JPS6125779B2 - - Google Patents

Info

Publication number
JPS6125779B2
JPS6125779B2 JP54057783A JP5778379A JPS6125779B2 JP S6125779 B2 JPS6125779 B2 JP S6125779B2 JP 54057783 A JP54057783 A JP 54057783A JP 5778379 A JP5778379 A JP 5778379A JP S6125779 B2 JPS6125779 B2 JP S6125779B2
Authority
JP
Japan
Prior art keywords
coating
heating source
amorphous
spot
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057783A
Other languages
Japanese (ja)
Other versions
JPS55148752A (en
Inventor
Tetsuo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5778379A priority Critical patent/JPS55148752A/en
Publication of JPS55148752A publication Critical patent/JPS55148752A/en
Publication of JPS6125779B2 publication Critical patent/JPS6125779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は金属の表面に非晶質の急速凝固表面被
覆層を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an amorphous, rapidly solidifying surface coating layer on a metal surface.

一般に耐食性、耐摩耗性を向上するために、一
般機械、建設、造船、車輌、化学装置等におい
て、溶射技術が広く活用されている。
In general, thermal spraying technology is widely used in general machinery, construction, shipbuilding, vehicles, chemical equipment, etc. to improve corrosion resistance and wear resistance.

溶射はガス溶射、高周波溶射、プラズマ溶射等
があるが、これらの方法では溶射皮膜の気孔をな
くすことはできない。
Thermal spraying includes gas spraying, high frequency spraying, plasma spraying, etc., but these methods cannot eliminate pores in the sprayed coating.

また、この気孔に原因する耐食性の劣化に対し
ては、溶射皮膜の上に、さらにプラスチツクを溶
射し気孔を塞ぐか、ニツケル基合金、コバルト基
合金からなる自溶性合金を用いて、その溶射皮膜
をアセチレン炎、電気炉等により加熱溶融し気孔
を塞ぐ操作(ヒユージング)が行なわれる。
In addition, to prevent the deterioration of corrosion resistance caused by these pores, it is possible to seal the pores by spraying plastic on top of the thermal sprayed coating, or by using a self-fusing alloy consisting of a nickel-based alloy or a cobalt-based alloy. An operation (fusing) is performed by heating and melting it using an acetylene flame, an electric furnace, etc. to close the pores.

しかし、プラスチツクによる皮膜は機械的強度
が弱く、剥離し易い。またアセチレン炎、電気炉
等によるヒユージング操作を行なうと、1000℃以
上の高温になるため基材の組織が変化したり、熱
による変形を生じ易い。
However, the plastic film has low mechanical strength and is easily peeled off. Furthermore, when a fusing operation is performed using an acetylene flame, an electric furnace, etc., the temperature reaches a temperature of 1000° C. or higher, which tends to change the structure of the base material and cause deformation due to heat.

本発明の目的は上記欠点を補い、特殊な被覆材
料と処理条件を組み合わせた新しい金属の表面被
覆形成方法の提供にある。
The object of the present invention is to compensate for the above-mentioned drawbacks and to provide a new method for forming a metal surface coating that combines special coating materials and processing conditions.

最近、ある種の合金(遷移金属元素と半金属元
素の組合わせ)では溶融状態から105〜107℃/秒
の冷却速度で急冷凝固すると原子配列に長周期秩
序を持たない、液体と類似した構造の非晶質状態
となり、強度、耐食性、磁性、光学特性等の優れ
た材料が得られ、この非晶質材料に関する大量生
産方式も確立されつつある。
Recently, some types of alloys (combinations of transition metal elements and metalloid elements) have been rapidly solidified from a molten state at a cooling rate of 10 5 to 10 7 °C/sec, resulting in a state similar to that of a liquid, with no long-period order in the atomic arrangement. This structure results in an amorphous state, and a material with excellent strength, corrosion resistance, magnetism, optical properties, etc. can be obtained, and a mass production method for this amorphous material is being established.

ここで非晶質状態とは、通常のX線あるいは電
子線回折で結晶に特有な回折線が得られず、液体
状態に類似したハローパターンが得られる状態を
いう。
Here, the amorphous state refers to a state in which diffraction lines characteristic of crystals are not obtained by ordinary X-ray or electron beam diffraction, and a halo pattern similar to that in a liquid state is obtained.

ところが前述のような大きな冷却速度を得るた
めには、普通、製品の厚さは0.1mm程度以下とな
り、製品形状としてフイラメント、箔、リボン状
などに限定される。
However, in order to obtain the above-mentioned high cooling rate, the thickness of the product is usually about 0.1 mm or less, and the product shape is limited to filament, foil, ribbon, etc.

そこで本発明者は、上記非晶質合金のすぐれた
耐食性を鉄鋼、金属製品に与える方法として、表
面に遷移金属元素と半金属元素の組合わせからな
る被覆材料を付着、または合金化しておき、その
表面を再度急速溶融凝固させることにより、すぐ
れた耐食性能を有する表面処理方法を特開昭52―
66834号としてすでに出願した。
Therefore, the present inventor proposed a method of imparting the excellent corrosion resistance of the amorphous alloy to steel and metal products by attaching or alloying a coating material made of a combination of a transition metal element and a metalloid element to the surface, By rapidly melting and solidifying the surface again, a surface treatment method with excellent corrosion resistance was developed.
It has already been filed as No. 66834.

本発明は、特開昭52―66834号の発明におい
て、エネルギー密度104Watt/cm2以上を有するア
ルゴンアーク、プラズマアーク、電子ビーム、レ
ーザー等のスポツト状高エネルギー加熱源を用い
た場合の効率的な表面被覆形成方法を提供するも
のである。
The present invention is based on the invention of JP-A No. 52-66834 , and is based on the efficiency when using a spot-like high-energy heating source such as an argon arc, plasma arc, electron beam, or laser having an energy density of 10 4 Watt/cm 2 or more. The present invention provides a method for forming a surface coating.

すなわち、本発明はスポツト状高エネルギー加
熱源を用いて、連続した平面状の非晶質被覆ある
いは急速凝固被覆を容易に得る方法である。
That is, the present invention is a method of easily obtaining a continuous planar amorphous coating or rapidly solidifying coating using a spot-shaped high-energy heating source.

本発明方法は第1図に示すように、まず鋼板等
の金属基材の表面に、B,C,Si,Pの一種また
は二種以上5〜30(原子)%、Cr,Mo,W,
Mn,Ti,Aの一種または二種以上0.2〜30(原
子)%、残部がFe,Ni,Coの一種または二種以
上からなる被覆材料を溶射または拡散処理等の手
段により数十μm乃至数百μmの厚さに付着させ
る工程と、その後、該表面をスポツト状高エネル
ギー密度加熱源をもつて走査し急速溶融する工程
と、スポツト状加熱源の走査方向の後方およびピ
ツチ方向の後方に、予めL字型に配置した冷却媒
体の接触と非溶融部分への熱伝導により103℃/
秒以上の冷却速度で急速凝固する工程とからな
る。
As shown in Fig. 1, the method of the present invention is to first coat the surface of a metal base material such as a steel plate with 5 to 30 (atomic)% of one or more of B, C, Si, P, Cr, Mo, W,
A coating material consisting of 0.2 to 30 (atomic)% of one or more of Mn, Ti, and A, with the balance being one or more of Fe, Ni, and Co, is applied to a coating material ranging from tens of micrometers to several tens of micrometers by thermal spraying or diffusion treatment. a step of depositing it to a thickness of 100 μm, then a step of scanning the surface with a spot-shaped high energy density heating source to rapidly melt it, and behind the spot-shaped heating source in the scanning direction and behind the pitch direction, 10 3 °C /
It consists of a step of rapid solidification at a cooling rate of seconds or more.

なおここで凝固時の冷却速度を103℃/秒以
上、スポツト状加熱源のエネルギー密度を
104Watt/cm2以上としたのは、現在液体からの急
冷法で最も非晶質化しやすい合金であるPd80
Si20(原子%)の凝固時に必要とされる臨界冷却
速度が実験的に上記の値以上必要とされたこと、
またこのような冷却速度をスポツト状加熱源と基
材への熱伝導により得るためには104Watt/cm2
上の電力密度を必要とすることを実験的に確認し
たためである。
Note that the cooling rate during solidification is 10 3 °C/sec or more, and the energy density of the spot-shaped heating source is
10 4 Watt/cm 2 or more is used for Pd 80 , which is currently the alloy that most easily becomes amorphous by rapid cooling from a liquid.
The critical cooling rate required for solidification of Si 20 (atomic %) was experimentally determined to be higher than the above value;
Furthermore, it has been experimentally confirmed that a power density of 10 4 Watt/cm 2 or more is required to obtain such a cooling rate using a spot heating source and heat conduction to the base material.

また特許請求の範囲に示した成分の組合せを必
要とする理由は以下のような経験的事実に基づい
ている。
Furthermore, the reason why the combination of components shown in the claims is required is based on the following empirical facts.

非晶質金属が形成されるには添加元素の種
類、量に大きく依存する。
Formation of an amorphous metal largely depends on the type and amount of added elements.

半金属元素を一種または二種以上で5〜30
(原子%)含むものは非晶質化し易い。
5 to 30 of one or more metalloid elements
(atomic %) Those containing it tend to become amorphous.

急速凝固により非晶質化する場合、液体から
固体に遷移する臨界温度をガラス化温度
(Tg)と呼び、溶融温度を(Tm)と呼ぶと、
冷却速度を大にし、過冷によりTmを下げ、粘
性を大きくしてTg温度を上げることが、非晶
質化に効果がある。このためには共晶合金成分
が適しており、この合金化により凝固温度が低
下することが非晶質化に影響しているものと思
われる。
When it becomes amorphous due to rapid solidification, the critical temperature at which it transitions from liquid to solid is called the vitrification temperature (Tg), and the melting temperature is called (Tm).
Increasing the cooling rate, lowering Tm by supercooling, and increasing Tg temperature by increasing viscosity are effective in making the material amorphous. For this purpose, a eutectic alloy component is suitable, and it is thought that the lowering of the solidification temperature due to this alloying has an effect on the formation of an amorphous material.

そこで本発明においては、ベース成分として用
途面から第8族遷移元素中Fe,Co,Niを選択
し、さらに融点を下げ、共晶合金となり、非晶質
化を容易にするB,C,Si,P等の半金属元素の
一種または二種以上を5〜30(原子)%加え、ま
た耐食性、強度、靭性等の特性向上、製造性能の
向上のために、Cr,Mo,W,Mn,Ti,A等
の一種または二種以上を0.2〜30(原子)%含さ
せる。
Therefore, in the present invention, we selected Fe, Co, and Ni among Group 8 transition elements from the viewpoint of use as base components, and B, C, and Si, which lower the melting point, form a eutectic alloy, and facilitate amorphization. , P, etc. are added in an amount of 5 to 30 (atomic) % of one or more metalloid elements such as Cr, Mo, W, Mn, Contains 0.2 to 30 (atomic)% of one or more of Ti, A, etc.

例えばFe―P13―C7(原子%)成分にCrを10%
(原子%)加えると現用ステンレス鋼を上まわる
耐食性が得られる。
For example, 10% Cr is added to the Fe-P 13 -C 7 (atomic%) component.
(atomic %), corrosion resistance exceeding that of currently used stainless steel can be obtained.

Mo,Wも同様に数%以上の添加で耐食性が向
上する。またMnは硬度を向上し、A,Tiは0.2
〜1%の添加でロール離れを良くし製造を容易に
する。
Corrosion resistance is similarly improved by adding several percent or more of Mo and W. In addition, Mn improves hardness, and A and Ti are 0.2
Addition of ~1% improves roll separation and facilitates production.

本発明はこのような非晶質被覆構成元素を基材
の表面に付着させ、これをスポツト状高密度エネ
ルギー加熱源からの熱により溶融させ基材表面に
非晶質被覆を形成させるのであるが、しかしスポ
ツト径数十μmから数mmのスポツト状の高エネル
ギー密度の加熱源を用いて単に被覆面を走査する
のみでは非晶質被膜を得ることは困難である。そ
の理由の説明として第2図、第3図を示す。第3
図は鉄鋼あるいは金属の基材3の表面に予め付着
させた非晶質成分の被覆材料2(遷移金属元素と
半金属元素の組合せ)がスポツト状高エネルギー
密度加熱源により溶融し、基材の不溶融部分への
熱伝導により急冷凝固されたビード部分1が非晶
質金属あるいは急冷凝固組織となつて被覆されて
いる状態を示す。また第2図は面状の非晶質金属
被覆を得るため、スポツト状高エネルギー密度加
熱源をピツチ方向に距離hだけ移動して走査した
場合を示す。この場合後から走査したビード部分
4は非晶質となるが、この急冷凝固の際生ずる熱
流移動より、先に非晶質化されたビード部分1は
加熱により結晶化してしまう。すなわち、スポツ
ト状高エネルギー密度加熱源を単に走査した場
合、得られる被覆は結晶化してしまうのである。
なお5は第1ビードと第2ビードとの重なり部、
6は熱影響部である。
In the present invention, such amorphous coating constituent elements are attached to the surface of a base material, and this is melted by heat from a spot-shaped high-density energy heating source to form an amorphous coating on the surface of the base material. However, it is difficult to obtain an amorphous coating simply by scanning the coated surface using a spot-like high energy density heating source with a spot diameter of several tens of micrometers to several millimeters. FIGS. 2 and 3 are shown to explain the reason. Third
The figure shows a coating material 2 of an amorphous component (a combination of transition metal elements and metalloid elements) attached in advance to the surface of a steel or metal base material 3, which is melted by a spot-shaped high energy density heating source, and the base material is melted. The bead portion 1, which has been rapidly solidified by heat conduction to the unmelted portion, is covered with an amorphous metal or a rapidly solidified structure. Further, FIG. 2 shows the case where a spot-shaped high-energy density heating source is moved and scanned by a distance h in the pitch direction in order to obtain a planar amorphous metal coating. In this case, the bead portion 4 scanned later becomes amorphous, but the bead portion 1, which was previously amorphous, is crystallized by heating due to the heat flow movement that occurs during this rapid solidification. That is, if a spot-like high energy density heating source is simply scanned, the resulting coating will crystallize.
In addition, 5 is the overlapping part of the first bead and the second bead,
6 is a heat affected zone.

また第4図およ第5図はスポツト状高エネルギ
ー密度加熱源のエネルギーまたは加熱時間を変え
ることによつて非晶質化する深さが変化すること
を示すもので第4図は被覆材料2が基材3との境
界部迄非晶質化している状態を示し、また第5図
は基材3迄熱影響が及び被覆材料との合金拡散部
7が出来た状態を示す。
Furthermore, FIGS. 4 and 5 show that the depth of amorphization changes by changing the energy or heating time of the spot-shaped high-energy density heating source. FIG. 5 shows a state in which the substrate 3 has become amorphous up to the boundary with the base material 3, and FIG.

そこで本発明は、スポツト状高密度エネルギー
密度加熱源の走査方向の後方およびピツチ方向の
後方を冷却する冷却媒体をL字型に配置すること
により、前記のような一旦非晶質化した被覆材料
が、隣設部への加熱により結晶化してしまうこと
を防止することを特徴とするものである。
Therefore, the present invention provides cooling medium that cools the back of the spot-shaped high-density energy density heating source in the scanning direction and the back of the pitch direction in an L-shape. However, it is characterized in that it prevents crystallization due to heating of adjacent parts.

第6図乃至第10図は本発明を実施する装置の
実例を示すもので第6図はその全体を、第7図乃
至第10図はその要部を示すものである。第7図
および第8図においては冷却媒体でスポツト状高
密度エネルギー加熱源10走査方向後方に配置
し、溶融した金属表面に直接接触させ、該溶融金
属(非晶質被膜形成金属)を急冷凝固させる役割
を果す。また冷却媒体9はスポツト状高密度エネ
ルギー加熱源の熱流がすでに急冷凝固により非晶
質化した処理済の被膜の温度が結晶化温度まで上
昇することを防止する役割を果す。この冷却媒体
8および9は第7図に示すように一体に構成して
も、あるいは別々に構成してもよい。要はスポツ
ト状高密度エネルギー加熱源から照射されるビー
ム10′に対してL字型に配置されていればよい
のである。またこの冷却媒体8および9は一般に
熱伝導率が良好な銀、銅、鉄、超硬合金を用いる
が、凝固後の結晶構造によつてはセラミツクを用
いてもよく、またアルゴン、ヘリウム、窒素等ガ
ス、液体を吹きつける方法でもよい。また冷却媒
体8の材質、冷媒、圧力等を調整することによ
り、冷却速度、被膜厚さ、結晶構造の制御等を容
易に行うことができる。11は冷却媒体8および
9の冷却水用通路、12は被覆処理されるパイプ
材、13は該パイプ材の末処理部、13′は処理
済み部である。14はスポツト状高密度エネルギ
ー加熱源10(以下加熱源と略称する。)の固定
台で、該固定台は移動用ガイド15および移動用
ネジ16によつてピツチ方向に移動できるように
構成している。17は冷却媒体8,9の押圧用シ
リンダー、18はパイプ材12内に冷却水を供給
するための回転継手、19は加熱源10にプラズ
マトーチを使用する場合の電源、20は加熱源1
0と電源19を結ぶリード線、21はパイプ材1
2の回転支承部、22はパイプ材12を保持する
チヤツクである。
6 to 10 show an example of an apparatus for carrying out the present invention. FIG. 6 shows the entire device, and FIG. 7 to 10 show the main parts thereof. In FIGS. 7 and 8, a spot-shaped high-density energy heating source 10 is placed behind the scanning direction using a cooling medium, and brought into direct contact with the molten metal surface to rapidly solidify the molten metal (amorphous film-forming metal). fulfill the role of The cooling medium 9 also serves to prevent the heat flow of the spot-like high-density energy heating source from raising the temperature of the treated coating, which has already become amorphous due to rapid solidification, to the crystallization temperature. The cooling media 8 and 9 may be constructed integrally as shown in FIG. 7, or may be constructed separately. In short, it is sufficient that they are arranged in an L-shape with respect to the beam 10' irradiated from the spot-shaped high-density energy heating source. The cooling media 8 and 9 are generally made of silver, copper, iron, or cemented carbide, which have good thermal conductivity, but depending on the crystal structure after solidification, ceramics may be used, or argon, helium, nitrogen, etc. A method of spraying gas or liquid may also be used. Further, by adjusting the material, refrigerant, pressure, etc. of the cooling medium 8, the cooling rate, coating thickness, crystal structure, etc. can be easily controlled. 11 is a cooling water passage for the cooling media 8 and 9; 12 is a pipe material to be coated; 13 is a final treatment section of the pipe material; and 13' is a treated section. Reference numeral 14 denotes a fixing base for the spot-shaped high-density energy heating source 10 (hereinafter referred to as the heating source), and the fixing base is configured to be movable in the pitch direction by a moving guide 15 and a moving screw 16. There is. 17 is a cylinder for pressing the cooling mediums 8 and 9; 18 is a rotary joint for supplying cooling water into the pipe material 12; 19 is a power source when a plasma torch is used as the heating source 10; 20 is the heating source 1.
Lead wire connecting 0 and power supply 19, 21 is pipe material 1
The rotary support part 2, 22, is a chuck that holds the pipe material 12.

そこで被覆処理を行うには、予め前記組成の非
晶質被覆元素を表面に付着させたパイプ材12の
一端をチヤツク22で固定し、他端を回転継手1
8で固定し、該回転継手18からパイプ材12中
に冷却水を流しながら回転機構(図示せず)によ
り所定の速度で回転させ、表面に加熱源10から
104Watt/cm2以上のエネルギー密度を有するビー
ム10′を照射する。その結果非晶質被覆元素は
予め定めた厚さだけ溶融し、その直後、加熱源1
0の後方に位置する冷却媒体8と接触し、急速冷
却されて凝固し非晶質状態とる。パイプ材12は
前記のように所定の速度で回転しているので、ビ
ーム10′はパイプ材12の表面を連続的に走査
することになり、パイプ材12の表面は非晶質被
覆される。パイプ材12が1周すると加熱源10
は移動用ガイド15および移動用ネジ16によつ
てビームの大きさ分だけピツチ方向(パイプ材1
2の軸方向)に移動し、再び作業を続行する。こ
のとき重要なことは、本発明においては加熱源1
0のピツチ方向に冷却体9を設けてあるので、被
覆処理中の部分に隣接する処理済み部13′は該
冷却体9と接触して冷却される。従つて処理済み
部13′が現在処理中の部分から熱影響を受け結
晶化温度まで上昇することを防止することができ
るので、上記の作用を繰返せば全面にわたつて被
覆処理を行うことができる。
Therefore, in order to carry out the coating treatment, one end of the pipe material 12, on which the amorphous coating element of the above composition has been adhered to the surface, is fixed with a chuck 22, and the other end is fixed with a rotary joint 1.
8, and rotated at a predetermined speed by a rotation mechanism (not shown) while flowing cooling water into the pipe material 12 from the rotary joint 18, and heat source 10 is applied to the surface.
A beam 10' having an energy density of 10 4 Watt/cm 2 or more is irradiated. As a result, the amorphous coating element melts to a predetermined thickness, and immediately after that, the heating source 1
It comes into contact with the cooling medium 8 located behind 0, and is rapidly cooled and solidified into an amorphous state. Since the pipe material 12 is rotating at a predetermined speed as described above, the beam 10' continuously scans the surface of the pipe material 12, and the surface of the pipe material 12 is coated with an amorphous material. When the pipe material 12 goes around once, the heating source 10
is moved in the pitch direction (pipe material 1
2 axis direction) and continue the work again. What is important at this time is that in the present invention, the heating source 1
Since the cooling body 9 is provided in the direction of the zero pitch, the treated part 13' adjacent to the part being coated comes into contact with the cooling body 9 and is cooled. Therefore, it is possible to prevent the treated area 13' from being affected by heat from the area currently being treated and rising to the crystallization temperature, so that by repeating the above action, the entire surface can be coated. can.

次に本発明の特長を列記する。 Next, the features of the present invention will be listed.

1 スポツト状の加熱源(104Watt/cm2以上の高
エネルギー密度を有する加熱)の使用で、連
続、面状の耐食性、耐摩性、に優れたコーテイ
ング被膜が得られる。
1. By using a spot-shaped heating source (heating with a high energy density of 10 4 Watt/cm 2 or more), a coating film with excellent continuous and planar corrosion resistance and abrasion resistance can be obtained.

2 加熱源および本発明の一つのポイントとなる
L字型に配置した冷却媒体の選択使用および走
査速度の調整によつて、コーテイング被覆の結
晶構造(非晶質、半結晶質、微結晶質等)、さ
らに再溶融処理層の深さの調節を容易にでき
る。
2. The crystal structure of the coating (amorphous, semi-crystalline, microcrystalline, etc.) can be changed by selectively using the heating source and the cooling medium arranged in an L-shape, which is one of the points of the present invention, and by adjusting the scanning speed. ), furthermore, the depth of the remelting layer can be easily adjusted.

3 鉄鋼、あるいは金属表面への被覆材料の付着
を溶射法によるならば、一般的溶射―ヒユージ
ング処理とは異つて、基材を予熱することなし
に逆に冷却して行うことが可能な為、母材の組
織変化をきたすことなく、また熱ひずみも与え
ることなしに耐食性に優れたコーテイング被膜
が得られる。
3 If the coating material is attached to the steel or metal surface using the thermal spraying method, unlike the general thermal spraying-fusing process, it is possible to do so by cooling the base material without preheating it. A coating film with excellent corrosion resistance can be obtained without causing a change in the structure of the base material or applying thermal strain.

4 内部に気泡、介在物(酸化物)等の少ない、
均一な再溶融被覆層が得られる。
4. Few internal bubbles, inclusions (oxides), etc.
A uniform remelted coating layer is obtained.

これはスポツト状高エネルギー密度加熱源の使
用と、L字型冷却媒体、特に冷却体8に固体
(鋼、工具鋼、セラミツク等)を使用し圧力を付
加することにより得られる効果である。
This is an effect obtained by using a spot-shaped high energy density heating source and by applying pressure by using an L-shaped cooling medium, especially a solid material (steel, tool steel, ceramic, etc.) for the cooling body 8.

さらに、冷却体8あるいは母材に高周波振動を
与えることは、再溶融被覆層内の気泡を極度に少
くする。(但し高周波振動を付加する場合、金属
表面への被覆材料の付着はプラズマ溶射、爆烈溶
射等の使用により強固なものとしておくが、また
は一度熱拡散結合をしておくことが強固な被覆を
得るポイントとなる。) 次に本発明の実施例を示す。
Furthermore, applying high frequency vibration to the cooling body 8 or the base material greatly reduces the number of bubbles in the remelted coating layer. (However, when applying high-frequency vibration, the adhesion of the coating material to the metal surface must be made strong by using plasma spraying, explosive thermal spraying, etc., or it is best to use thermal diffusion bonding to obtain a strong coating. (This is a key point.) Next, examples of the present invention will be shown.

実施例 1 第6図乃至第9図に示す装置を用い、予め表面
に粒度200〜300メツシユのNi75―Si8―B17(原子
%)粉末をプラズマ溶射により150μmの厚さに
付着させた薄肉パイプ(材質SS41、直径1イン
チ長さ300mm)を処理用材料とし、このパイプの
内部を水冷した状態で、スポツト状高エネルギー
加熱源として105Watt/cm2のアルゴンプラズマア
ークを用い、冷却媒体8および9とパイプ表面と
の接触圧を2Kg/cm2、パイプ表面とスポツト状高
エネルギー加熱源との距離3mm、パイプの移動
(回転)速度を1m/sec、重なり率を10%とし、
被覆処理を行つた。
Example 1 Using the apparatus shown in FIGS. 6 to 9, Ni 75 -Si 8 -B 17 (atomic %) powder with a particle size of 200 to 300 mesh was deposited on the surface in advance to a thickness of 150 μm by plasma spraying. A thin-walled pipe (Material: SS41, diameter: 1 inch, length: 300 mm) was used as the processing material, and while the inside of this pipe was water-cooled, a 10 5 Watt/cm 2 argon plasma arc was used as a spot-shaped high-energy heating source to cool the pipe. The contact pressure between media 8 and 9 and the pipe surface is 2 Kg/cm 2 , the distance between the pipe surface and the spot-shaped high-energy heating source is 3 mm, the pipe movement (rotation) speed is 1 m/sec, and the overlap rate is 10%.
Coating treatment was performed.

得られた被覆は溶射による被覆層の最表面30〜
40μmのみ溶融凝固しており他は溶射したままの
状態であつた。この急速溶融部分の硬度はHv900
と非常に硬く、またH2SO480℃6時間浸漬後の腐
食減量を測定したところ、減量2.3%であり、耐
食性材料としても使用できるという結果を得た。
この処理済み部(急速溶融凝固部分)の結晶構造
はX線回折写真によれば非晶質特有のハローがみ
られた。
The obtained coating is coated by thermal spraying on the outermost surface of the coating layer.
Only 40 μm was melted and solidified, and the rest remained as sprayed. The hardness of this rapid melting part is Hv900
The material was extremely hard, and when the corrosion loss was measured after being immersed in H 2 SO 4 at 80° C. for 6 hours, the loss was 2.3%, indicating that it can be used as a corrosion-resistant material.
According to an X-ray diffraction photograph, the crystal structure of this treated part (rapidly melted and solidified part) had a halo characteristic of an amorphous structure.

実施例 2 冷却媒体8に銅製ソリ、冷却媒体9にArガス
を使用し、他のすべての条件を実施例1と同様に
して被覆作業を行つた。得られた急速溶融・凝固
被膜の特性は実施例1より硬度値は10%上昇して
おり、耐食性は8%程度低下していた。またX線
回折写真は非晶質特有のハローパターンの他、結
晶特有のリングが観察された。
Example 2 Coating work was carried out under the same conditions as in Example 1 except that copper warp was used as the cooling medium 8 and Ar gas was used as the cooling medium 9. The properties of the rapidly melting and solidifying film obtained were that the hardness value was 10% higher than in Example 1, and the corrosion resistance was lower by about 8%. In addition, in the X-ray diffraction photograph, in addition to a halo pattern characteristic of amorphous materials, rings characteristic of crystals were observed.

実施例 3 パイプ表面への被覆材料をFe70―P13―C7
Cr10(原子%)を用いた他はすべて実施例1と同
一の条件で作業を行つた。実施例1と比較すると
溶融深さは25μmと少なかつたが、耐食性は5%
良好であり、またH2SO480℃6時間浸漬試験後の
腐食減量は1%以下と好結果を得た。またX線回
折写真にはハローパターンがみられた。
Example 3 The coating material on the pipe surface was Fe 70 ―P 13 ―C 7
The work was carried out under the same conditions as in Example 1 except that Cr 10 (atomic %) was used. Compared to Example 1, the melting depth was smaller at 25 μm, but the corrosion resistance was 5%.
The corrosion loss after the 6-hour immersion test in H 2 SO 4 at 80° C. was less than 1%, which was a good result. In addition, a halo pattern was observed in the X-ray diffraction photograph.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の工程図、第2図はスポツ
ト加熱源を用いて単に走査した場合の問題点を示
す説明図、第3図乃至第5図は溶融処理層の深さ
を変化させた状態を示す説明図、第6図は本発明
を実施する装置を示す説明図、第7図はその要部
を示す側面図、第8図は同じく正面図、第9図は
同じく斜視図である。 1……ビード部、2……被覆材料、3……基
材、4……ビード部、5……ビード重なり部、6
……熱影響部、7……合金拡散部、8,9……冷
却媒体、10……加熱源、11……冷却水通路、
12……パイプ、13……パイプ未処理部、14
……加熱源固定台、15……固定台移動ガイド、
16……ネジ、17……押圧用シリンダー、18
……回転継手、19……電源、20……リード
線、21……回転支承部、22……チヤツク。
Fig. 1 is a process diagram of the method of the present invention, Fig. 2 is an explanatory drawing showing problems when simply scanning using a spot heating source, and Figs. FIG. 6 is an explanatory diagram showing an apparatus for carrying out the present invention, FIG. 7 is a side view showing the main parts thereof, FIG. 8 is a front view, and FIG. 9 is a perspective view. be. DESCRIPTION OF SYMBOLS 1...Bead part, 2...Coating material, 3...Base material, 4...Bead part, 5...Bead overlap part, 6
... Heat affected zone, 7 ... Alloy diffusion zone, 8, 9 ... Cooling medium, 10 ... Heat source, 11 ... Cooling water passage,
12...Pipe, 13...Pipe unprocessed part, 14
...Heating source fixing table, 15...Fixing table moving guide,
16...screw, 17...pressing cylinder, 18
...Rotary joint, 19...Power source, 20...Lead wire, 21...Rotary support, 22...Chick.

Claims (1)

【特許請求の範囲】[Claims] 1 金属材料の表面に被覆材料を付着させ、該被
覆材料の溶融点以上の温度に急速加熱して溶融後
直ちに急速冷却する表面被覆方法において、B,
C,Si,Pの一種または二種以上5〜30(原子)
%、Cr,Mo,W,Mn,Ti,Aの一種または
二種以上0.2〜30(原子)%、残部がFe,Ni,Co
の一種または二種以上からなる被覆材料を金属基
材の表面に付着させ、その表面を104Watt/cm2
上のエネルギー密度を有するスポツト状加熱源に
より走査して急速溶融した後、スポツト状加熱源
の走査方向の後方およびピツチ方向の後方にL字
型に配置した冷却媒体により103℃/秒以上の冷
却速度で急速冷却し、金属基材の表面に任意の厚
さの非晶質の溶融凝固層を形成させることを特徴
とする金属の表面被覆形成方法。
1. A surface coating method in which a coating material is attached to the surface of a metal material, rapidly heated to a temperature equal to or higher than the melting point of the coating material, and then rapidly cooled immediately after melting, B.
One or more types of C, Si, P 5 to 30 (atoms)
%, 0.2 to 30 (atomic)% of one or more of Cr, Mo, W, Mn, Ti, A, the balance being Fe, Ni, Co
A coating material consisting of one or more of the following is adhered to the surface of a metal base material, and the surface is rapidly melted by scanning with a spot-shaped heating source having an energy density of 10 4 Watt/cm 2 or more. A cooling medium placed in an L-shape behind the heating source in the scanning direction and in the pitch direction performs rapid cooling at a cooling rate of 10 3 °C/sec or more, and forms an amorphous film of any thickness on the surface of the metal substrate. A method for forming a surface coating on a metal, the method comprising forming a molten solidified layer.
JP5778379A 1979-05-11 1979-05-11 Formation method of coating on metal surface Granted JPS55148752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5778379A JPS55148752A (en) 1979-05-11 1979-05-11 Formation method of coating on metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5778379A JPS55148752A (en) 1979-05-11 1979-05-11 Formation method of coating on metal surface

Publications (2)

Publication Number Publication Date
JPS55148752A JPS55148752A (en) 1980-11-19
JPS6125779B2 true JPS6125779B2 (en) 1986-06-17

Family

ID=13065466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5778379A Granted JPS55148752A (en) 1979-05-11 1979-05-11 Formation method of coating on metal surface

Country Status (1)

Country Link
JP (1) JPS55148752A (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155363A (en) * 1981-03-18 1982-09-25 Koji Hashimoto Method of forming surface covering metal layer
JPS57185927A (en) * 1981-05-08 1982-11-16 Sumitomo Metal Ind Ltd Formation of amorphous inside circumferential surface of steel pipe
JPS57200536A (en) * 1981-06-02 1982-12-08 Mitsubishi Heavy Ind Ltd Preparation of corrosion resistant structural member
JPS583979A (en) * 1981-07-01 1983-01-10 Mitsubishi Heavy Ind Ltd Production of corrosion- and erosion resistant member
JPS5810456U (en) * 1981-07-08 1983-01-22 株式会社リコー Separation device in copying machine
JPS5939364U (en) * 1982-09-07 1984-03-13 日本ピストンリング株式会社 floating seal
JPS5987144A (en) * 1982-11-11 1984-05-19 日本ピストンリング株式会社 High-strength abrasion-resisting member
JPS6023282U (en) * 1983-07-23 1985-02-18 帝国ピストンリング株式会社 Rotary fluid pump vane
JPS6036615A (en) * 1983-08-06 1985-02-25 Nippon Steel Corp Treatment of metallic surface layer by melting
JPS6070136A (en) * 1983-09-14 1985-04-20 Honda Motor Co Ltd Surface treatment of work
JPS6089531A (en) * 1983-10-19 1985-05-20 Keizo Nagano Surface treatment for making round bar amorphous
JPS6089532A (en) * 1983-10-19 1985-05-20 Keizo Nagano Surface treatment for making plate material amorphous
JPS60121278A (en) * 1983-12-02 1985-06-28 Fuji Electric Corp Res & Dev Ltd Surface treatment of thick steel member
JPS60187660A (en) * 1984-02-24 1985-09-25 Honda Motor Co Ltd Partially hardened cast iron member
JPS60238489A (en) * 1984-05-12 1985-11-27 Daiki Gomme Kogyo Kk Formatin of metallic coating layer on surface
US4725512A (en) * 1984-06-08 1988-02-16 Dresser Industries, Inc. Materials transformable from the nonamorphous to the amorphous state under frictional loadings
JPS61119615A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Melt-working method of metallic surface
JPH07116565B2 (en) * 1985-01-24 1995-12-13 日本電装株式会社 Magnetostrictive layer forming method and torque sensor using the magnetostrictive layer
JPS63286284A (en) * 1987-05-19 1988-11-22 Kobe Steel Ltd Manufacture of amorphous composite material
DE3813802A1 (en) * 1988-04-23 1989-11-09 Glyco Metall Werke LAYERING MATERIAL OR LAYERING MATERIAL WITH A FUNCTIONAL LAYER APPLIED ON A SUPPORT LAYER, IN PARTICULAR SLIDING LAYER WITH THE STRUCTURE OF A SOLID, BUT MELTABLE DISPERSION
US5093207A (en) * 1988-04-23 1992-03-03 Glyco Aktiengesellschaft Laminate material or laminate workpiece with a functional layer, especially a friction bearing layer, disposed on a backing layer
CH675260A5 (en) * 1988-07-19 1990-09-14 Sulzer Ag
US9085814B2 (en) 2011-08-22 2015-07-21 California Institute Of Technology Bulk nickel-based chromium and phosphorous bearing metallic glasses
WO2014043722A2 (en) 2012-09-17 2014-03-20 Glassimetal Technology Inc., Bulk nickel-silicon-boron glasses bearing chromium
WO2014070898A1 (en) 2012-10-30 2014-05-08 Glassimetal Technology, Inc. Bulk nickel-based chromium and phosphorus bearing metallic glasses with high toughness
US9365916B2 (en) 2012-11-12 2016-06-14 Glassimetal Technology, Inc. Bulk iron-nickel glasses bearing phosphorus-boron and germanium
WO2014078697A2 (en) 2012-11-15 2014-05-22 Glassimetal Technology, Inc. Bulk nickel-phosphorus-boron glasses bearing chromium and tantalum
JP2014132116A (en) 2013-01-07 2014-07-17 Glassimetal Technology Inc Bulk nickel-silicon-boron glasses bearing iron
JP6301681B2 (en) * 2013-02-26 2018-03-28 グラッシメタル テクノロジー インコーポレイテッド Bulk nickel-phosphorus-boron glass containing manganese
CN103302287B (en) * 2013-06-18 2015-12-09 华北电力大学 A kind of iron-based amorphous powder for wear-and corrosion-resistant coating and preparation method
US9863025B2 (en) 2013-08-16 2018-01-09 Glassimetal Technology, Inc. Bulk nickel-phosphorus-boron glasses bearing manganese, niobium and tantalum
US9920400B2 (en) 2013-12-09 2018-03-20 Glassimetal Technology, Inc. Bulk nickel-based glasses bearing chromium, niobium, phosphorus and silicon
US9957596B2 (en) 2013-12-23 2018-05-01 Glassimetal Technology, Inc. Bulk nickel-iron-based, nickel-cobalt-based and nickel-copper based glasses bearing chromium, niobium, phosphorus and boron
US10000834B2 (en) 2014-02-25 2018-06-19 Glassimetal Technology, Inc. Bulk nickel-chromium-phosphorus glasses bearing niobium and boron exhibiting high strength and/or high thermal stability of the supercooled liquid
US10287663B2 (en) 2014-08-12 2019-05-14 Glassimetal Technology, Inc. Bulk nickel-phosphorus-silicon glasses bearing manganese
US11905582B2 (en) 2017-03-09 2024-02-20 Glassimetal Technology, Inc. Bulk nickel-niobium-phosphorus-boron glasses bearing low fractions of chromium and exhibiting high toughness
US10458008B2 (en) 2017-04-27 2019-10-29 Glassimetal Technology, Inc. Zirconium-cobalt-nickel-aluminum glasses with high glass forming ability and high reflectivity
US11371108B2 (en) 2019-02-14 2022-06-28 Glassimetal Technology, Inc. Tough iron-based glasses with high glass forming ability and high thermal stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS5334618A (en) * 1976-09-13 1978-03-31 Ford Motor Co Alloying and heat treatment of surface
JPS5343028A (en) * 1976-09-30 1978-04-18 Tohoku Daigaku Kinzoku Zairyo Method of making amorphous alloy with high permeability
JPS53119732A (en) * 1977-03-28 1978-10-19 Avco Everett Res Lab Inc Preparation of surface layer alloy casing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS5334618A (en) * 1976-09-13 1978-03-31 Ford Motor Co Alloying and heat treatment of surface
JPS5343028A (en) * 1976-09-30 1978-04-18 Tohoku Daigaku Kinzoku Zairyo Method of making amorphous alloy with high permeability
JPS53119732A (en) * 1977-03-28 1978-10-19 Avco Everett Res Lab Inc Preparation of surface layer alloy casing

Also Published As

Publication number Publication date
JPS55148752A (en) 1980-11-19

Similar Documents

Publication Publication Date Title
JPS6125779B2 (en)
Gassmann Laser cladding with (WC+ W2C)/Co–Cr–C and (WC+ W2C)/Ni–B–Si composites for enhanced abrasive wear resistance
KR100388150B1 (en) Light metal cylinder block, method of producing the same and device for carrying out the method
EP2326443B1 (en) Method of producing objects containing nano metal or composite metal
Kim et al. Plunging method for Nd: YAG laser cladding with wire feeding
US4117302A (en) Method for fusibly bonding a coating material to a metal article
US4789022A (en) Process for continuous casting of metal ribbon
JPH0428789B2 (en)
Zhenda et al. Laser cladding of WC Ni composite
US10131969B2 (en) Method to form oxide dispersion strengthended (ODS) alloys
US5293026A (en) Hardsurfacing material for engine components and method for depositing same
US4337886A (en) Welding with a wire having rapidly quenched structure
JPS5942070B2 (en) What is the best way to do this?
JPH055586B2 (en)
JPH0229741B2 (en)
AU660240B2 (en) Process for recharging a part by means of a plasma transferred arc
US3679858A (en) Method forming clad plates from curved surfaces
KR870001442B1 (en) Homogeneous ductile hardfacing foils
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
US4913220A (en) Apparatus and method for spill chilling rapidly solidified material
KR100593680B1 (en) Manufacturing method of gold-tin eutectic strip for solder
JP3464841B2 (en) Method for forming molten layer of sprayed metal on copper base material
JPS5763679A (en) Highly corrosion resistant steel material
JPH0218665B2 (en)
Leunda et al. Two-step laser cladding of Inconel 625 on copper