JPS60121278A - Surface treatment of thick steel member - Google Patents

Surface treatment of thick steel member

Info

Publication number
JPS60121278A
JPS60121278A JP22797983A JP22797983A JPS60121278A JP S60121278 A JPS60121278 A JP S60121278A JP 22797983 A JP22797983 A JP 22797983A JP 22797983 A JP22797983 A JP 22797983A JP S60121278 A JPS60121278 A JP S60121278A
Authority
JP
Japan
Prior art keywords
laser beam
thick
surface treatment
metal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22797983A
Other languages
Japanese (ja)
Inventor
Tsuneo Nakanishi
仲西 恒雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP22797983A priority Critical patent/JPS60121278A/en
Publication of JPS60121278A publication Critical patent/JPS60121278A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a surface layer having excellent resistance to corrosion and erosion by placing an amorphous alloy foil on the surface of the runner of a water turbine, a guide vane, etc., irradiating a laser beam, and then quenching. CONSTITUTION:The runner of a water turbine or a guide vane 1 is manufactured with ferritic or austenitic stainless steel. A film of an amorphous alloy 2 having 10-50mum thickness and contg. 8-11atom% Cr, 10-15atom% P, 5- 11atom% C, and the remaining part of Fe is formed on the surface. A laser beam 5 from a laser beam oscillator 3 is converted with an amplifier 4 into a beam 7 having 0.1-10cm width which is reflected by a prism 6 and irradiated on the whole surface of the amorphous metallic coil 2 all over at 30-300/sec velocity or by scanning with spotting. The amorphous alloy is deposited 8, and then quenched with cooling water to increase the resistance of the surface layer to corrosion and erosion.

Description

【発明の詳細な説明】 〔発明の薦する技術分野〕 本発明は、l重両鉄鋼部材たとえば水力49械の水車ラ
ンナやガイドベーンの表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field Recommended by the Invention] The present invention relates to a surface treatment method for heavy-duty steel members such as water wheel runners and guide vanes of hydraulic machines.

〔従来技術とその問題点〕[Prior art and its problems]

一般に水車ランチやガイドベーンは、河川水の中に含ま
れる腐食性物質によって腐食されたり、サンドエロージ
ョンで浸食したりする。このためにこれらの部伺の表面
は耐食性および耐エロージヨン性lこI憂ハ、ていなけ
れ1はならない。
Generally, water turbine launches and guide vanes are corroded by corrosive substances contained in river water or eroded by sand erosion. For this purpose, the surfaces of these parts must be corrosion and erosion resistant.

特にノ高食性の強い河川水に曝される水車ランチやガイ
ドベーンは一般に耐食性に優れたフェライト系ステンレ
ス胸鋼(たとえば130r鋼)やオーステナイト系ステ
ンレス鋼で作られている。しかしこれらの4J料はI[
lh格が;イしく高く、納造条件の選定が困難なことが
多い。特に水車う7すのようなi’Jj雑な形状のもの
は’+fiq iri欠陥が避けられず、補修俗接(l
こよる欠陥の補降を余儀なくされている。
In particular, water turbine launches and guide vanes that are exposed to highly corrosive river water are generally made of ferritic stainless steel (for example, 130R steel) or austenitic stainless steel, which have excellent corrosion resistance. However, these 4J fees are I[
The lh rating is extremely high, and it is often difficult to select delivery conditions. Particularly in the case of rough shapes such as waterwheels, defects are unavoidable and repairs are required.
The company is forced to compensate for the numerous deficiencies.

またこの溶接によって熱影響ケ受けた部分は、耐食性が
低下したり大きな残留応力が発生するので、熱処理を施
さねばならない。
In addition, the parts affected by heat due to this welding have to be heat treated because their corrosion resistance is reduced and large residual stress is generated.

土砂が混じった河川水に1暴される水車ランチやガイド
ベーンに対しては、サンドエロージョンを防止するため
に水が最も強く当る個所に表面硬化処理を施さねばなら
ない。この場合の表面硬化処理として硬い合金を溶接で
肉盛りしたり、ガスまたはプラズマ溶射法で硬い合金や
セラミックをコーティングする方法が採られている。し
かし前者の場合、溶接熱影響部の硬化、溶接割れ、残留
応力の発生といった問題を生じ、またこのための熱処理
や表面の書仕上などの作業を必要とし、材料の品質の信
頼性を確保することが難しく、多くの工数と高い着用が
かかる。また後者の場合、水車ランチとコーティング層
との密着性が必ずしも十分といえない場合があり、水車
の運転中にコーティング層が剥IrIIシて予想外のエ
ロージョンを受けることがある。更にまた浴接肉盛りお
よび溶射によるコーティングはいずれも作業環境が罎し
く悪く、労働衛生上問題があり、いずれの方法も手作業
か中心なために熟練作業者を必要とする。
For water turbine launches and guide vanes that are exposed to river water mixed with earth and sand, surface hardening must be applied to the areas that are most heavily hit by water to prevent sand erosion. In this case, the surface hardening treatment includes building up hard alloys by welding, or coating hard alloys or ceramics by gas or plasma spraying. However, in the former case, problems such as hardening of the weld heat-affected zone, weld cracking, and generation of residual stress occur, and work such as heat treatment and surface finishing is required to ensure reliability of material quality. It is difficult to do, takes a lot of man-hours and is expensive to wear. In the latter case, the adhesion between the water turbine launch and the coating layer may not always be sufficient, and the coating layer may peel off during operation of the water turbine, resulting in unexpected erosion. Furthermore, coating by bath welding and thermal spraying both create a harsh and inhospitable working environment, pose problems in terms of occupational hygiene, and both methods require skilled workers as they are mostly manual labor.

〔発明の目的」 本発明の1]的は、上述した従来の方法の欠点を除去し
、艮好なI/l:業環境のもとで、水車ランチャガイド
ベーンなどの1ツ肉鉄M部拐の表面″/(、耐食性およ
び耐エロージヨン性のいずれにも優れた表面層を、局部
的に過度の熱影響を与えることなしに確実に形成するこ
とにある。
[Objective of the Invention] The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, and to improve the production of single-walled iron M parts such as water turbine launcher guide vanes under a favorable I/L industry environment. The object of this invention is to reliably form a surface layer with excellent corrosion resistance and erosion resistance without locally exerting an excessive thermal influence.

[発明の要点J 不発明番でよればこの目的は、j卑肉鉄鋼部(オの表面
処理すべき表面に、非晶質化しやすい金属、+市ないし
非情質制司消を波せ、この金属浴にレーザービームを照
射して厚肉鉄鋼部側に溶着させることによって達成され
る。
[According to the point of invention This is achieved by irradiating the bath with a laser beam and welding it to the thick steel part side.

〔発明の実〃ルけ1]〕 次に図面(lc示ず実施例に基づいて本発明の詳細な説
明1゛る。
[Practice of the Invention 1] Next, a detailed explanation 1 of the present invention will be provided based on the drawings (not shown) and embodiments.

■[図(・こおいて1は水車う/すやカイトベーンのよ
うなJr4肉の麩坤一部材であり、以下これをワークと
呼ぶ。ワーク1の表面処理すべき表面に予め本発明に基
づいて非晶質化しやすい金属;′6ないし非晶質金属箔
2が被せられ、たとえば接着剤で貼り付けられる。この
金属箔2として鉄基、ニッケル基およびコバルト基の種
々の非晶質合金が考えられ、経済性およびワーク1との
整合性を考慮して決められる。
■ [Figure (Here, 1 is a part of Jr. 4, such as a water wheel/suya kite vane, which is hereinafter referred to as a workpiece. A metal that easily becomes amorphous due to the metal; It is determined in consideration of economic efficiency and consistency with Work 1.

この金@泪2は本発明に基づいてレーザービームを照射
してワークlK溶着される。図中3はこのためのレーザ
ー発振器、4はこのレーザー発振器3から発掘されるレ
ーザービーム5に幅をもたせる娠幅器、6はこの撮幅器
4からの幅ビーム7をワーク1に向けて照射する屈折プ
リズムである。
This gold@yam 2 is welded to the work lK by irradiating a laser beam based on the present invention. In the figure, 3 is a laser oscillator for this purpose, 4 is a widening device that gives a width to the laser beam 5 excavated from this laser oscillator 3, and 6 is a widening beam 7 from this widening device 4 to irradiate the workpiece 1. It is a refracting prism.

幅ビーム7をワーク1に照射する場合、ワーク1あるい
は屈折プリズム6を前後左右に動ずことによって、幅ビ
ーム7を金属ン62の全面に亘って走置する。
When the workpiece 1 is irradiated with the wide beam 7, the workpiece 1 or the refracting prism 6 is moved back and forth and left and right, so that the width beam 7 is spread over the entire surface of the metal beam 62.

このようにして金属箔2にレーザービームが照射される
と、金属箔2とワークlとのPA触而面瞬時に溶解J−
るが、ワーク1がノツ肉であり大きな熱谷血を竹してい
るので急冷され、密着性のよい非晶質表面層8が形成さ
れる。この非晶質表面層8は結晶化していないために、
結晶粒界や結晶4mの方向性がなく、全く均一であるた
めに耐食性に極めて陵れている。寸だ非晶質合金には一
般に原子の動きを抑7・する原子径の大きな半金属原子
が混入されているので、硬さも著しく高く耐エロージヨ
ン性に優れている。
When the metal foil 2 is irradiated with the laser beam in this way, the metal foil 2 and the workpiece 1 are instantly melted at the touch surface.
However, since the workpiece 1 is made of meat and has large hot spots, it is rapidly cooled and an amorphous surface layer 8 with good adhesion is formed. Since this amorphous surface layer 8 is not crystallized,
Since there are no grain boundaries or crystal orientation, and the crystals are completely uniform, the corrosion resistance is extremely high. Since amorphous alloys generally contain metalloid atoms with large atomic diameters that suppress the movement of atoms, they have extremely high hardness and excellent erosion resistance.

金+g ?Ii 2 id特にFe−(8−11原子%
) Cr−(10〜]5原子%)P−(5〜11原子%
)Cの組成の非晶質合金が好適である。これは耐食性お
よび耐エロージヨン性のいずれにも優れており、水車ラ
ンチやガイドベー二7などのランチ材との整合性が良く
、レーザービームの照射によってワークに確実に溶着で
きる。このことを更に詳しく説明すれば、Orの含有i
が約8原子チを超えると耐食性が者1−〈向」=シ、た
とえば空気開放した303°にで1規定のHat mc
fL中における腐食速度は50μm/年以下になり、約
9原子チになると腐食速度は測定できないほど小さくな
る。しかしOrの含有板が少なすぎると、耐食性が期待
できなくなり、多すぎると、非晶質化するに必要な冷却
速度が犬きくなり、ワーク1の持つ大きな熱容猷で急冷
しても非晶質にならなくなってしまう。PやCは半金属
元素で非晶質化を促進する効果を持っているが、耐食性
にほとんど影響を与えない。これらが多すぎると硬くな
りす°ぎて割れたシ、少なすぎると非晶質化しにくくな
る。またPやCが上記範囲より多いところでは、レーザ
ーで溶解した時に泡立ったり、凝固後に気泡が認められ
るこ):があり、またPが10原子%、Oが5原子係の
ところでは凝固後にX線回折を行なうと、僅かに結晶性
のピークが認められた。Crが8〜11原子俤。
Gold + g? Ii 2 id especially Fe-(8-11 at%
) Cr-(10~]5 at%) P-(5~11 at%
) Amorphous alloys of composition C are preferred. It has excellent corrosion resistance and erosion resistance, has good compatibility with launch materials such as water wheel launches and guide vanes 7, and can be reliably welded to workpieces by laser beam irradiation. To explain this in more detail, the content i of Or
If it exceeds about 8 atoms, the corrosion resistance will decrease.
The corrosion rate in fL is less than 50 μm/year, and when it reaches about 9 atoms, the corrosion rate becomes so small that it cannot be measured. However, if the Or content plate is too small, corrosion resistance cannot be expected, and if it is too large, the cooling rate required to make it amorphous becomes too slow, and even if it is rapidly cooled with the large heat capacity of the workpiece 1, it will become amorphous. It becomes a pawn. P and C are metalloid elements and have the effect of promoting amorphization, but have little effect on corrosion resistance. If there is too much of these, it becomes too hard and cracks, and if there is too little, it becomes difficult to become amorphous. In addition, where P and C are more than the above range, bubbles may appear when melted with a laser, or bubbles may be observed after solidification. When line diffraction was performed, a slight crystalline peak was observed. Cr is 8 to 11 atoms.

Pが10〜15原子チ、Cが5〜11原子係の範囲にお
いて、レーザー人熱量や金属箔の厚さを変えることによ
って非晶質表面層が得られる。
An amorphous surface layer can be obtained by changing the amount of laser heat and the thickness of the metal foil within the range of P in the range of 10 to 15 atoms and C in the range of 5 to 11 atoms.

なおOrの含有板はレーザー溶解後どの8度の冷却速度
が得られるかで決まる。この冷却速度は実際上測定でき
ないが、次式によっておおよその冷却速度R(0C/ 
S )を推定できる。
Note that the Or content plate is determined by which 8 degrees of cooling rate can be obtained after laser melting. Although this cooling rate cannot be measured in practice, the approximate cooling rate R (0C/
S) can be estimated.

R=2πλ(V)(θ−θ。)2 lおλは熱伝導率(Cal、ム・C・℃)、譬はレーザ
ー走査速度(cm、/ 8)、qは入熱it < (!
al/4 )、θは表面到達温度<℃>、θ。はワーク
の温度(℃)である。
R=2πλ(V)(θ−θ.)2 l and λ are thermal conductivity (Cal, μC・℃), e.g. is laser scanning speed (cm, /8), and q is heat input it < (!
al/4), θ is the surface temperature reached <°C>, θ. is the temperature of the workpiece (°C).

冷却速度は5×10 ℃/S以上あれば非晶質化がLT
J′能であるか、金PA箔2の厚さを15〜50μm1
 レーザービームの幅を0.1〜]、Om、走査速度を
30〜300 on、/ 5の範囲に選ぶとこの冷却速
度の値以上となり、非晶質化か得られる。例えば金属箔
の厚さを”lQttm、レーザービームの幅を0.5 
tyn 、走査床1辻をI U Ocm/ 6とすると
、冷却重度は約1.5 X 1.06℃15となり、非
晶質化が01能な速度である。冷却速度を更に大きくす
るためには、入熱fiqを少なくするか走査速度Vを上
げるしかないが、相対して金属箔を薄くするかレーザー
ビームの幅を小さくする必要がある。
If the cooling rate is 5 x 10 °C/S or more, amorphization will be LT.
The thickness of the gold PA foil 2 is 15 to 50 μm.
If the width of the laser beam is selected to be in the range of 0.1 to 0.0 m, and the scanning speed is selected to be in the range of 30 to 300 on, /5, the cooling rate will exceed this value and amorphous state will be obtained. For example, the thickness of the metal foil is "lQttm", the width of the laser beam is 0.5
tyn and one scanning bed intersection is I U Ocm/6, the cooling degree is approximately 1.5 x 1.06°C 15, which is a rate at which amorphization is possible. In order to further increase the cooling rate, there is no choice but to reduce the heat input fiq or increase the scanning speed V, but it is also necessary to make the metal foil thinner or to reduce the width of the laser beam.

金属箔を薄くすることは、耐食性、耐エロージヨン性の
点から好ましくない。
It is not preferable to make the metal foil thinner from the viewpoint of corrosion resistance and erosion resistance.

実際にFe−9原子%Or −13原子%P−7原子%
Cの組成の厚さ20μmの金属:省を用いて、レーザー
ビームの幅0.5筋、走査速度1 (J Ocrn/’
6ヘレーザーエネルギ1.51Wの条件で、厚さ30鵡
の炭素鋼のワークに本発萌の方法を施したところ非晶質
表面層が得られた。この非晶質表面層の硬さは800)
IV 〜1400HVと非常に硬く、著しく耐エロージ
ヨン性を向上できる。ちなみに従来の溶接肉盛り金属の
中で最も硬いとされるコバルト基合金(ステライト)で
も硬さは400〜700HVである。
Actually Fe-9 atomic% Or -13 atomic% P-7 atomic%
Using a metal with a thickness of 20 μm and a composition of C, the width of the laser beam is 0.5, and the scanning speed is 1 (J Ocrn/'
When the method of this invention was applied to a carbon steel workpiece with a thickness of 30 mm under the condition of a laser energy of 1.51 W, an amorphous surface layer was obtained. The hardness of this amorphous surface layer is 800)
It is very hard with IV to 1400HV and can significantly improve erosion resistance. Incidentally, even cobalt-based alloy (stellite), which is considered to be the hardest of conventional weld overlay metals, has a hardness of 400 to 700 HV.

金属箔としてはこの外に、Fe−(35原子襲lO原子
チ以上)Or−20原子%PC/)組成の金属が考えら
チ秀れらの金属でも耐食性および耐工C1−−ジョグ性
か十分期待できる非晶質合金になれる。しかし前述のF
e−9原子%Or −1,3原子%P−7原子%cよシ
も多くのOrを含むので、非晶質化する条注大定範囲か
狭い。
In addition to these metal foils, metals with the composition Fe-(more than 35 atoms, 10 atoms, or more) Or-20 atoms %PC/) can be considered, but even these metals have excellent corrosion resistance and mechanical resistance. It can be a highly promising amorphous alloy. However, the F
e-9 atomic % Or -1, 3 atomic % P-7 atomic % c also contains a large amount of Or, so the range in which it becomes amorphous is narrow.

本発明に基つく表面処理fd1、ワークの全周面に亘′
つて施すことも、また最も腐食セエロー ジョンを受け
やすい個所ンYけに局部的に施すこともできる。寸たエ
ロージョンが特に激しくて1枚の薄い非晶質、ぢ属箔だ
けでは十分な寿命が得られない場合、本発明による表面
処理を2〜3回繰り返して施すことによって袂数層の非
晶質表面層を形成することもできる。
Surface treatment fd1 based on the present invention, over the entire circumference of the workpiece'
It can be applied over the area or locally in areas most susceptible to corrosive erosion. If the erosion is so severe that a single thin layer of amorphous metal foil cannot provide sufficient service life, the surface treatment of the present invention can be repeated two to three times to achieve several layers of amorphous foil. A textured surface layer can also be formed.

まだレーザービームは金属箔の上を全面に〈1なく走査
することが望まれるが、耐食性が主な目的であって密着
性か多少弱くても良い場合には、第2図(lて走査線跡
9で示したように点状にレーザーを照射するだけでよい
。この場合は必ず非晶質化しだ金属箔を用いなければな
らない。
It is still desirable to scan the laser beam over the entire surface of the metal foil, but if corrosion resistance is the main objective and the adhesion may be slightly weaker, then the scanning line shown in Figure 2 (1) may be used. It is sufficient to irradiate the laser pointwise as shown by trace 9. In this case, an amorphous metal foil must be used.

レーサービームを照射して溶解した金1例は既に述べた
ように#l容蓋の大きなワークによ−って急冷されるが
、レーザービームの照射後に冷却水を吹き例けて冷却を
助けることもでき、そhによってより質の良い非晶質表
面層を得ることかできる。
As mentioned above, the gold melted by laser beam irradiation is rapidly cooled by a large workpiece with a #l container, but cooling water can be blown out after laser beam irradiation to aid cooling. It is also possible to obtain a better quality amorphous surface layer.

水車ランチやガイドベーンの表面処理シζついて4ボべ
たが、本発明の方法は弁類、シャフト類および一般構造
物で副食性や耐摩耗性を必要とする個所などにも適用で
きる。なおレーザービームの代りに電子ビームを使うこ
とも可能であるが、この場合真空中で行なわねばならず
、構造物の形状制限を受ける。
Although the surface treatment of water turbine launches and guide vanes has been described above, the method of the present invention can also be applied to valves, shafts, and general structures that require corrosion resistance and wear resistance. Note that it is also possible to use an electron beam instead of a laser beam, but in this case it must be carried out in a vacuum and is subject to limitations on the shape of the structure.

〔発明の効果〕〔Effect of the invention〕

(1)厚肉鉄賄部拐の表面に耐食性および耐エロージヨ
ン性のいずれにも優れた表面層を形成することができ、
たとえば腐食性の強い河川水や土砂の混じった河川水に
曝はれる水車ランナやガイドベーンに対して、安価で鋳
造条件の厳しくない炭素鋼、低合金鋼およびステンレス
鋼を採用することができる。
(1) A surface layer with excellent corrosion resistance and erosion resistance can be formed on the surface of thick-walled iron parts.
For example, for water turbine runners and guide vanes that are exposed to highly corrosive river water or river water mixed with sediment, carbon steel, low alloy steel, and stainless steel, which are inexpensive and do not require severe casting conditions, can be used.

(2) レーザービームの照射による入熱用が少なく、
ワークのイ巧質が硬化したり、残商応力を発生したりす
る恐れがない。このために本発明による表面処理はワー
クの機械加工後に実施でき、再処理や再力111id不
−決である。
(2) Less heat input from laser beam irradiation;
There is no risk of hardening of the workpiece or residual stress. For this reason, the surface treatment according to the invention can be carried out after machining the workpiece, without the need for reprocessing or reworking.

(3) し・−ザービームを照射するに必要な41!に
器は振動も騒音もなく、また場合によっては二環着剤を
使用して予め金属箔を貼りfτJけることにより作業が
各局となり、周囲に金属粉末か飛散せず、良好な作業環
境のもとて表面処理できる。また熟練を明せず、場合に
よっては自動化できる。
(3) 41 required to irradiate the laser beam! The machine has no vibration or noise, and in some cases, metal foil is pasted in advance using a two-ring adhesive, so work can be done at each station, and metal powder is not scattered around, creating a good working environment. Can be surface treated. It also requires no skill and can be automated in some cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基つく表面処理力γ石を実施するため
の装■適の概略構成図、第2図は金属箔へレーサービー
ムを点状に照射する走査方法塗示す説明図である。 11ノーク(水車ランチやガイドベーン)、2・・金属
箔、3 レー−り一発振器、4 撮幅器、5・・レーザ
ービーム、6・屈11テプリズム、7・・・幅ビーム、
8・・・非晶It表面層。 第1図 【
Fig. 1 is a schematic configuration diagram of the equipment for carrying out the surface treatment power gamma stone based on the present invention, and Fig. 2 is an explanatory diagram showing the scanning method of irradiating the metal foil with a laser beam in a dotted manner. . 11 Nork (waterwheel launch and guide vane), 2... Metal foil, 3 Ray-ray oscillator, 4 Width camera, 5... Laser beam, 6 Bend 11-teprism, 7... Width beam,
8...Amorphous It surface layer. Figure 1 [

Claims (1)

【特許請求の範囲】 1)厚肉鉄鋼部イ1の表面処理すべき表面に、非晶゛に
化しやすい金属26ないし非晶質金属1i!i?]l−
彼せ、この金属消にレーザービームを照射し、しかる醍
急冷させることにより、金禍誦を厚肉、咲鋼部拐に浴着
させることを特徴とするJ寧肉鉄11111部拐の表面
処理方法。 2、特許請求の範囲第1項に記載の方法において、金属
を山がFθ−(8〜J1原子%) Cr−(10〜j5
原子%)P−(5〜11原子%)Cの組成の合金である
ことを特fσとする厚肉鉄鋼部材の表1hj処理方法。 3)宜肝諸求の範囲第1項又は第2境に61躯の方法に
おいて、金属消の厚孕が15〜50μmであり、レーザ
ービームの幅が0.J〜I−、Ocrnでその走置速度
か30〜300 on / seaであ :ることを荷
敵とする厚肉鉄鋼部材の表面処理方法。 4)特許請求の範囲第1fAないしa3項のいずれかに
記載の方法において、レーザービームが全面にくまなく
走査して照射されることを特徴とする厚肉鉄鋼部材の表
面処理方法。 5)特許請求の範囲第1項ないし第3項のいずれかに記
載の方法において、レーザービームが全面に点状に走査
して照射されることを特徴とする厚肉鉄鋼部材の表面処
理方法。 6)特許請求の範囲第1項ないし第5項のいずれかに1
載の方法において、厚肉鉄鋼部材そのものの熱容檀を利
用して急冷させることを待機とする厚肉鉄鋼部材の表面
処理方法。 7)を特許請求の範囲第1項ないし第5頃のいずれかに
記載の方法において、レーザービームの照射後に冷却水
か吹き付けられることを特徴とする厚内鉄鋼部側の表面
処理方法。
[Claims] 1) A metal 26 that easily becomes amorphous or an amorphous metal 1i is added to the surface of the thick steel part 1 to be surface-treated! i? ]l-
By irradiating this metal with a laser beam and then rapidly cooling it, the surface treatment of the J-Ning Nikutetsu 11111 steel is characterized by making the metal coat thick and thick. Method. 2. In the method according to claim 1, the metal is Fθ-(8 to J1 atomic %) Cr-(10 to J5
Table 1hj treatment method for thick-walled steel members, characterized in that fσ is an alloy having a composition of (at.%) P-(5 to 11 at.%)C. 3) In the method of 61 cases in the first or second range of requirements, the thickness of the metal cutter is 15 to 50 μm, and the width of the laser beam is 0.5 μm. A surface treatment method for thick-walled steel members whose running speed is 30 to 300 on/sea. 4) A method for surface treatment of a thick-walled steel member according to any one of claims 1fA to a3, characterized in that the entire surface is scanned and irradiated with a laser beam. 5) A method for surface treatment of a thick steel member according to any one of claims 1 to 3, characterized in that the entire surface is irradiated with a laser beam in a dot-scanned manner. 6) Any one of claims 1 to 5
In the method described above, a method for surface treatment of a thick-walled steel member includes quenching using the heat capacity of the thick-walled steel member itself. 7) A method for surface treatment of the Atsunai steel part side, in the method according to any one of claims 1 to 5, characterized in that cooling water is sprayed after irradiation with a laser beam.
JP22797983A 1983-12-02 1983-12-02 Surface treatment of thick steel member Pending JPS60121278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22797983A JPS60121278A (en) 1983-12-02 1983-12-02 Surface treatment of thick steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22797983A JPS60121278A (en) 1983-12-02 1983-12-02 Surface treatment of thick steel member

Publications (1)

Publication Number Publication Date
JPS60121278A true JPS60121278A (en) 1985-06-28

Family

ID=16869254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22797983A Pending JPS60121278A (en) 1983-12-02 1983-12-02 Surface treatment of thick steel member

Country Status (1)

Country Link
JP (1) JPS60121278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282278A (en) * 1987-05-15 1988-11-18 Ishikawajima Harima Heavy Ind Co Ltd Surface treatment of steel material
WO1994007630A1 (en) * 1992-09-30 1994-04-14 Sumitomo Electric Industries, Ltd. Wheel speed measuring gear and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS5452629A (en) * 1977-10-04 1979-04-25 Toshiba Corp Bulb member
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS5452629A (en) * 1977-10-04 1979-04-25 Toshiba Corp Bulb member
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282278A (en) * 1987-05-15 1988-11-18 Ishikawajima Harima Heavy Ind Co Ltd Surface treatment of steel material
WO1994007630A1 (en) * 1992-09-30 1994-04-14 Sumitomo Electric Industries, Ltd. Wheel speed measuring gear and method of manufacturing the same
US5714016A (en) * 1992-09-30 1998-02-03 Sumitomo Electric Industries, Ltd. Gear for wheel speed detection and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Santa et al. Cavitation erosion of martensitic and austenitic stainless steel welded coatings
Zhang et al. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC
Romo et al. Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy
Yu et al. Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties
US6491208B2 (en) Cold spray repair process
Saha et al. A review on different cladding techniques employed to resist corrosion
CN103540928B (en) A kind of manufacture method of airduct top coat
CN100557082C (en) Carburization-like overloading tooth component tooth surface laser cladding powdered material and restorative procedure
JPH01315603A (en) Method of repairing turbine component frictional surface
Tang et al. Tribological and cavitation erosion behaviors of nickel-based and iron-based coatings deposited on AISI 304 stainless steel by cold metal transfer
Steen Surface engineering with lasers
CN108707894A (en) Powder and process used in a kind of laser melting coating self-lubricating abrasion-resistant cobalt-base alloys
CN104588963A (en) Break repair technology for universal connecting rod of universal coupling
CN105671545B (en) A kind of single-phase high-entropy alloy coating of high rigidity and its preparation method and application
Chandrasekar et al. Investigation on un-peened and laser shock peened weldment of Inconel 600 fabricated by ATIG welding process
CN108326287B (en) Corrosion-resistant laser cladding powder and cladding method and application thereof
Wang et al. Tempering effects on the microstructure and properties of submerged arc surfacing layers of H13 steel
RU2478028C2 (en) Method of depositing filler corrosion-erosion powder on part steel surface
Váz et al. Welding and thermal spray processes for maintenance of hydraulic turbine runners: case studies
JPS60121278A (en) Surface treatment of thick steel member
Bunaziv et al. Laser beam remelting of stainless steel plate for cladding and comparison with conventional CMT process
Boas et al. Low load abrasive wear behaviour of plasma spray and laser-melted plasma coatings
Yao et al. Laser applications in surface modification
Cui et al. Microstructure, Wear Resistance and Corrosion Resistance of a Fe-based Alloy Laser Clad onto 27SiMn Steel.
JP2004077408A (en) Valve for light-water reactor