JPS61257457A - Steel sheet for laser processing having superior fatigue characteristic - Google Patents

Steel sheet for laser processing having superior fatigue characteristic

Info

Publication number
JPS61257457A
JPS61257457A JP9738385A JP9738385A JPS61257457A JP S61257457 A JPS61257457 A JP S61257457A JP 9738385 A JP9738385 A JP 9738385A JP 9738385 A JP9738385 A JP 9738385A JP S61257457 A JPS61257457 A JP S61257457A
Authority
JP
Japan
Prior art keywords
less
laser processing
steel
present
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9738385A
Other languages
Japanese (ja)
Other versions
JPH0514782B2 (en
Inventor
Kazuhiko Gunda
郡田 和彦
Hidenori Shirasawa
白沢 秀則
Shunichi Hashimoto
俊一 橋本
Kazuhiro Mimura
和弘 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9738385A priority Critical patent/JPS61257457A/en
Publication of JPS61257457A publication Critical patent/JPS61257457A/en
Publication of JPH0514782B2 publication Critical patent/JPH0514782B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel sheet for laser processing having superior fatigue characteristics by providing a prescribed chemical composition and regulating value represented by a prescribed formula to a prescribed range. CONSTITUTION:The composition of a steel is composed of, by weight, 0.03-0.3% C, <2.5% Si, 0.1-2.5% Mn, <0.15% P, <0.1% Al, <1% Cu, <1% Ni, <2.5% Cr, <0.5% Mo, <0.1% Nb, <0.1% Ti, <0.1% V, <0.01% B and the balance Fe with inevitable impurities and value K represented by the formula is regulated to 0.12-0.6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、疲労特性にずくれたレーザ加工用鋼板に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a steel plate for laser processing with poor fatigue properties.

(従来の技術) 自動車や産業機械用部材、建築用部材等に冷間加工性の
すくれた各種鋼板のプレス成形品が実用に供されている
。従来、このようなプレス成形品を製造する場合は、通
常、熱延鋼板や冷延鋼板からプレス打抜きにてプレス成
形用の素材鋼板を得た後、更に所要のプレス成形を行な
うが、穴あけを要するときは、ポンチ打抜きによること
が多い。
(Prior Art) Press-formed products of various types of cold-workable steel sheets are in practical use for automobiles, industrial machinery parts, construction parts, and the like. Conventionally, when manufacturing such press-formed products, the material steel plate for press-forming is obtained by press punching from a hot-rolled steel plate or cold-rolled steel plate, and then the required press-forming is performed. When necessary, punching is often used.

特に、切欠き部の疲労強度を考慮する必要がある場合は
、プレス及びポンチ打抜きに代わって、機械切削が行な
われており、また、溶接継手においては溶接ビード形状
の改善等が行なわれている。
In particular, when it is necessary to consider the fatigue strength of the notch, mechanical cutting is used instead of press and punching, and improvements are being made to the weld bead shape for welded joints. .

他方、近年に至って、機械加工における数値制御技術及
びレーザ切断技術の発達によって、複雑な形状の鋼板を
レーザ切断してプレス成形用の累月鋼板を製作し、更に
、プレス成形後の穴あけをレーザ加工によって行なう方
法がJM Nされ、また、一部では実用化されている。
On the other hand, in recent years, with the development of numerical control technology and laser cutting technology in machining, steel plates with complex shapes can be cut by laser to produce monthly steel plates for press forming, and holes can be drilled after press forming by laser. A method that involves processing has been developed, and has also been put into practical use in some cases.

材料の疲労強度に及ぼず切欠き加工方法の影響について
は、一般に、機械切削法が剪断法に比べて高い疲労強度
を有することが知られているが、上記レーザ加工技術は
、従来の機械切削法や剪断法とは基本的に異なって、加
工部材の疲労特性にも大きい影響を与えるものと考えら
れるが、従来、冶金学的な研究は殆どなされていない。
Regarding the influence of notch processing methods on the fatigue strength of materials, it is generally known that mechanical cutting methods have higher fatigue strength than shearing methods. It is fundamentally different from the shearing method and the shearing method, and is thought to have a large effect on the fatigue properties of processed parts, but so far, little metallurgical research has been done.

(発明の目的) そこで、本発明者らは、従来の切欠き加工方法と比較し
て、レーザ切断鋼板の疲労特性を鋭意研究した結果、鋼
板に所定の化学組成を有せしめるとき、レーザ切断によ
って疲労強度が格段に改善されることを見出して、本発
明に至ったものである。
(Purpose of the Invention) Therefore, as a result of intensive research on the fatigue characteristics of laser-cut steel plates compared with conventional notch processing methods, the present inventors found that when a steel plate has a predetermined chemical composition, laser cutting The present invention was based on the discovery that fatigue strength was significantly improved.

従って、本発明は、疲労特性にずくれたレーザ加工用鋼
板を提供することを目的とする。
Therefore, an object of the present invention is to provide a steel plate for laser processing with poor fatigue properties.

(発明の構成) 本発明による疲労特性にすぐれたレーザ加工用鋼板は、
重量%で C0.03〜0.30%、 Si2.5%以下、 Mn  0.1〜2.5%、 P   0.15%以下、 ANo、1%以下、 Cu、1%以下、 Ni  1%以下、 Cr2.5%以下、 Mo0.5%以下、 Nb0.1%以下、 Ti0.1%以下、 ■  0.1%以下、 B   0.01%以下、 残部鉄及び不可避的不純物よりなり、且つ、■ +2Nb+1.47i +−→−5B とするとき、 0.12≦に≦0.60 を満たずことを特徴とする。
(Structure of the Invention) The steel plate for laser processing with excellent fatigue properties according to the present invention has the following features:
Weight%: C 0.03-0.30%, Si 2.5% or less, Mn 0.1-2.5%, P 0.15% or less, ANo, 1% or less, Cu, 1% or less, Ni 1% The following: Cr 2.5% or less, Mo 0.5% or less, Nb 0.1% or less, Ti 0.1% or less, ■ 0.1% or less, B 0.01% or less, the balance consisting of iron and inevitable impurities, and , ■ +2Nb+1.47i +-→-5B, it is characterized by satisfying 0.12≦≦0.60.

先ず、本発明鋼板における化学成分の限定理由について
説明する。
First, the reason for limiting the chemical components in the steel sheet of the present invention will be explained.

本発明鋼は、特に冷間加工用途に好適であり、この場合
には、Cは、その添加量が少ないほど好ましいが、反面
、本発明に従って、レーザ加工によって疲労強度を改善
するためには、少なくとも0.03%を添加することが
必要である。例えば、C量が0.01%程度の極低炭素
鋼の場合は、後述するように、所定の代価が本発明によ
る範囲内にあっても、疲労強度の改善効果を得ることが
できない。他方、Cは、これを過多に添加するときは、
後述する代価が石火して、レーザ加工による疲労強度改
善の効果が飽和すると共に、鋼板の冷間加工性や溶接性
を著しく劣化させるので、Cの添加量の上限は0.30
%とする。
The steel of the present invention is particularly suitable for cold working applications, and in this case, the smaller the amount of C added, the more preferable it is. On the other hand, in order to improve the fatigue strength by laser processing according to the present invention, It is necessary to add at least 0.03%. For example, in the case of ultra-low carbon steel with a C content of about 0.01%, the effect of improving fatigue strength cannot be obtained even if the predetermined cost is within the range according to the present invention, as will be described later. On the other hand, when adding too much C,
The upper limit of the amount of C to be added is 0.30, as the cost described below will increase and the effect of improving fatigue strength by laser processing will be saturated, and the cold workability and weldability of the steel plate will be significantly degraded.
%.

Mnは、鋼の熱間圧延時のFeS生成による熱間割れを
防止するために、少なくとも0.1%を添加することが
必要である。しかし、余りに多量に添加するときは、鋼
板の冷間加工性を損なうと共に、レーザ切断性をも低下
させる場合があるので、添加量の上限は2,5%とする
Mn needs to be added in an amount of at least 0.1% in order to prevent hot cracking due to FeS formation during hot rolling of steel. However, if added in too large a quantity, it may impair the cold workability of the steel plate and also reduce the laser cuttability, so the upper limit of the addition amount is set at 2.5%.

本発明による鋼板には、例えば、高強度化、冷間加工性
、その他の特性を改善するために、次のような合金元素
を必要に応じて添加することができる。
The following alloying elements can be added to the steel sheet according to the present invention as necessary, for example, in order to improve strength, cold workability, and other properties.

Siは、多量に添加することによって、レーザ加工によ
る疲労強度の改善に役立つが、過多に添加すれば、鋼板
における表面疵の発生や製造費用の上昇を招くので、添
加量の上限を2.5%とする。
Adding a large amount of Si helps improve fatigue strength during laser processing, but adding too much Si causes surface flaws in the steel plate and increases production costs, so the upper limit of the amount added is set at 2.5. %.

Pは、その含有量が少ないほど、鋼板の冷間加工性の観
点から好ましいが、本発明においては、鋼の強化元素と
して必要に応じて添加してもよい。
The smaller the content of P, the more preferable it is from the viewpoint of cold workability of the steel sheet, but in the present invention, it may be added as a steel-strengthening element if necessary.

しかし、0.15%を越えて多量に添加するときは、鋼
の脆化が著しくなるので、添加量は0.15%以下とす
る。
However, when added in a large amount exceeding 0.15%, the steel becomes significantly brittle, so the amount added should be 0.15% or less.

リムド鋼についても、本発明は適用し得るが、キルト鋼
の場合、表面疵を防止するために、八Nの添加量は0.
1%以下とする。
The present invention can also be applied to rimmed steel; however, in the case of quilted steel, the amount of 8N added is 0.00% to prevent surface flaws.
1% or less.

Cuは、レーザ加工による疲労強度の改善に有効である
が、多量に添加するときは、鋼板に表面疵を生じさせる
ので、Niとの複合添加によって、その改善を図ること
が必要となる。従って、本発明鋼においては、Cu及び
Niを複合添加すると共に、その添加量はそれぞれ1%
以下とするのが好ましい。
Cu is effective in improving fatigue strength by laser processing, but when added in a large amount, it causes surface flaws on the steel plate, so it is necessary to improve this by adding it in combination with Ni. Therefore, in the steel of the present invention, Cu and Ni are added in combination, and the amount of each addition is 1%.
The following is preferable.

Cr及びMoは、鋼の強化、i4食性の改善、靭性の向
」二等を目的として、必要に応じて添加される。しかし
、多量の添加は経済性を損なうので、添加量は、Crに
ついては2.5%以下、Moについては0.5%以下と
する。
Cr and Mo are added as necessary for the purpose of strengthening the steel, improving its corrosion resistance, improving its toughness, etc. However, since adding a large amount impairs economic efficiency, the amount of addition is limited to 2.5% or less for Cr and 0.5% or less for Mo.

Nb、Ti及びVば、いずれもレーザ加工による疲労特
性の改善に有効であるが、材料の強度設計上、0.1%
を越えるときは、強度」二昇効果が飽和するので、添加
量の上限は、それぞれ0.1%とする。
Nb, Ti, and V are all effective in improving fatigue properties by laser processing, but due to material strength design, 0.1%
If the amount exceeds 0.1%, the effect of increasing the strength becomes saturated, so the upper limit of the amount added is set at 0.1%.

Bは、C及びMnとの複合添加によって、レーザ加工に
よる疲労強度の向」−に有効である。しかし、0.01
%を越えて多量に添加しても、その効果が飽和するので
、0.01%を添加量の上限とする。
By adding B in combination with C and Mn, B is effective in improving fatigue strength due to laser processing. However, 0.01
Even if it is added in a large amount exceeding 0.01%, the effect will be saturated, so the upper limit of the amount added is set at 0.01%.

尚、Sについては、レーザ加工部材においては、ポンチ
打抜き部材に比べて、疲労特性に及ぼず影響が小さいの
で、特に限定されないが、その含有量は少ないほどよい
。また、本発明網においては、非金属介在物の形状を制
御する技術を適用してもよい。
Regarding S, in a laser-processed member, it does not affect the fatigue properties and has a smaller effect than in a punch-punched member, so there is no particular limitation, but the smaller the content, the better. Further, in the network of the present invention, a technique for controlling the shape of nonmetallic inclusions may be applied.

次に、本発明による鋼板は、上記した化学組成を有する
と共に、 ■ +2Nb+1.4Ti + −+513とするとき、 0.12≦に≦0.60 を満たすことが必要である。その理由を以下に説明する
Next, the steel plate according to the present invention needs to have the chemical composition described above, and satisfy the following conditions: (1) +2Nb+1.4Ti + -+513, 0.12≦≦0.60. The reason for this will be explained below.

種々の化学組成及び強度を有する鋼板についての疲労試
験を行なった結果を図面に示す。即ち、種々の化学組成
を有し、従って、種々の上記代価Kをもつ鋼板を10+
+m径切欠き付き試験片に加工し、上記穴をレーザ加工
した場合とドリル切削加工した場合とについて比較する
とき、疲労強度比は、上記代価Kが大きくなるにつれて
増大する。
The drawings show the results of fatigue tests conducted on steel plates with various chemical compositions and strengths. That is, 10+ steel plates having various chemical compositions and therefore various prices K are used.
When processing a test piece with a +m-diameter notch and comparing the case where the hole was laser-machined and the case where the hole was machined with a drill, the fatigue strength ratio increases as the cost K increases.

即ち、レーザ加工によって疲労強度が改善される。That is, fatigue strength is improved by laser processing.

しかし、前記したように、極低炭素鋼については、代価
が所定の範囲内にあっても、疲労強度改善効果は得られ
ず、また、代価が0.12よりも小さいときは、疲労強
度の改善効果が得られない。他方、代価が0.60を越
えるときは、実用上、冷間加工性及び溶接性が著しく劣
化し、実用に適さなくなる。従って、本発明においては
、上記代価の範囲を0.12以上、0.50以下とし、
好ましくは、0゜20以上、0.50以下とする。
However, as mentioned above, for ultra-low carbon steel, even if the cost is within a certain range, the fatigue strength improvement effect cannot be obtained, and when the cost is less than 0.12, the fatigue strength No improvement effect can be obtained. On the other hand, when the cost exceeds 0.60, the cold workability and weldability are significantly deteriorated, making it unsuitable for practical use. Therefore, in the present invention, the range of the above price is 0.12 or more and 0.50 or less,
Preferably, it is 0°20 or more and 0.50 or less.

従って、本発明によれば、強度が同じであっても、化学
組成を本発明に従って所定の範囲とし、且つ、これら合
金元素量によって規定される上記代価を所定の範囲に規
制することによって、従来の機械切削加工に比べて、鋼
板の疲労強度を格段に改善することができる。
Therefore, according to the present invention, even if the strength is the same, the chemical composition is set within a predetermined range according to the present invention, and the above-mentioned cost defined by the amount of these alloying elements is regulated within a predetermined range. The fatigue strength of steel plates can be significantly improved compared to mechanical cutting.

尚、本発明による鋼板は、厚板ミル、熱延ミル、冷延ミ
ルのいずれの方法によって製造することができる。
The steel plate according to the present invention can be manufactured by any method including a plate mill, a hot rolling mill, and a cold rolling mill.

(発明の効果) 以上のように、本発明による鋼板は、所定の化学組成を
有すると共に、前記した代価を所定の範囲に調整してな
り、レーザ加工によって疲労強度が格段に改善される。
(Effects of the Invention) As described above, the steel plate according to the present invention has a predetermined chemical composition, the above-mentioned cost is adjusted within a predetermined range, and the fatigue strength is significantly improved by laser processing.

(実施例) 以下に実施例を挙げて本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例 厚板ミル、熱延ミル、冷延ミルのいずれかによって、表
に示す化学組成と代価にとを有する鋼板を製造した。こ
れら鋼板からレーザ加工又はドリル切削によってIom
s径の切欠き穴を有する疲労試験片を作製した。ドリル
切削による疲労強度に対するレーザ加工による疲労強度
の比と前記代価にとの関係を図面に示す。本発明鋼板に
よれば、レーザ加工によって疲労強度が改善されること
が明らかである。
EXAMPLES Steel plates having the chemical compositions and prices shown in the table were manufactured using either a plate mill, a hot rolling mill, or a cold rolling mill. Iom by laser processing or drill cutting from these steel plates.
A fatigue test piece having a notch hole with a diameter of s was prepared. The relationship between the ratio of the fatigue strength due to laser machining to the fatigue strength due to drill cutting and the above cost is shown in the drawing. According to the steel plate of the present invention, it is clear that the fatigue strength is improved by laser processing.

尚、疲労試験は、ドリル切削試験片とレーザ加工性試験
片とについて、応力として引張り荷重を加える片振り試
験によるS−N曲線からそれぞれの疲れ限度σ1.+(
ドリル切削)及び6M(レーザ加工)を求め6M(レー
ザ加工)/σ1(ドリル切削)を疲労強度比とした。
In the fatigue test, fatigue limits σ1. +(
Drill cutting) and 6M (laser processing) were determined, and 6M (laser processing)/σ1 (drill cutting) was used as the fatigue strength ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明鋼板及び比較鋼板について、ドリル切削
による疲労強度に対するレーザ加工による疲労強度の比
と、代価にとの関係を示すグラフである。
The drawing is a graph showing the relationship between the ratio of the fatigue strength due to laser processing to the fatigue strength due to drill cutting and the price for the steel plate of the present invention and the comparative steel plate.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で (a)C0.03〜0.30%、 Si2.5%以下、 Mn0.1〜2.5%、 P0.15%以下、 Al0.1%以下、 Cu1%以下、 Ni1%以下、 Cr2.5%以下、 Mo0.5%以下、 Nb0.1%以下、 Ti0.1%以下、 V0.1%以下、 B0.01%以下、 残部鉄及び不可避的不純物よりなり、且つ、式値K=C
+(Si/25)+(Mn/10)+(P/10)+(
Cu/15)+(Ni/50)+(Cr/20)+(M
o/20)+2Nb+1.4Ti+(V/10)+5B
とするとき、 0.12≦K≦0.60 を満たすことを特徴とする疲労特性にすぐれたレーザ加
工用鋼板。
(1) In weight% (a) C0.03-0.30%, Si2.5% or less, Mn0.1-2.5%, P0.15% or less, Al0.1% or less, Cu1% or less, Ni1 % or less, Cr 2.5% or less, Mo 0.5% or less, Nb 0.1% or less, Ti 0.1% or less, V 0.1% or less, B 0.01% or less, the balance consisting of iron and inevitable impurities, and Formula value K=C
+(Si/25)+(Mn/10)+(P/10)+(
Cu/15)+(Ni/50)+(Cr/20)+(M
o/20)+2Nb+1.4Ti+(V/10)+5B
A steel plate for laser processing with excellent fatigue properties, which satisfies the following: 0.12≦K≦0.60.
JP9738385A 1985-05-07 1985-05-07 Steel sheet for laser processing having superior fatigue characteristic Granted JPS61257457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9738385A JPS61257457A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior fatigue characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9738385A JPS61257457A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior fatigue characteristic

Publications (2)

Publication Number Publication Date
JPS61257457A true JPS61257457A (en) 1986-11-14
JPH0514782B2 JPH0514782B2 (en) 1993-02-25

Family

ID=14190984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9738385A Granted JPS61257457A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior fatigue characteristic

Country Status (1)

Country Link
JP (1) JPS61257457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261462A (en) * 1985-05-13 1986-11-19 Kobe Steel Ltd Steel sheet for laser beam machining excelling in stretch flanging workability
JPH01176056A (en) * 1987-12-29 1989-07-12 Aichi Steel Works Ltd High strength steel having excellent fatigue strength

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538980A (en) * 1978-09-12 1980-03-18 Kawasaki Steel Corp Manufacture of low yield point, high tensile seel plate with superior workability
JPS5544590A (en) * 1978-09-26 1980-03-28 Kawasaki Steel Corp Production of high tensile thin steel plate of superior cold workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538980A (en) * 1978-09-12 1980-03-18 Kawasaki Steel Corp Manufacture of low yield point, high tensile seel plate with superior workability
JPS5544590A (en) * 1978-09-26 1980-03-28 Kawasaki Steel Corp Production of high tensile thin steel plate of superior cold workability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261462A (en) * 1985-05-13 1986-11-19 Kobe Steel Ltd Steel sheet for laser beam machining excelling in stretch flanging workability
JPH0510418B2 (en) * 1985-05-13 1993-02-09 Kobe Steel Ltd
JPH01176056A (en) * 1987-12-29 1989-07-12 Aichi Steel Works Ltd High strength steel having excellent fatigue strength

Also Published As

Publication number Publication date
JPH0514782B2 (en) 1993-02-25

Similar Documents

Publication Publication Date Title
EP2236639B1 (en) Hot work tool steel with outstanding toughness and thermal conductivity
JP3288497B2 (en) Austenitic stainless steel
EP1918399A1 (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
KR20020062202A (en) Ferritic stainless steel sheet with excellent workability and method for making the same
US5662864A (en) Fe-Cr alloy exhibiting excellent ridging resistance and surface characteristics
JP4317499B2 (en) High tensile strength steel sheet having a low acoustic anisotropy and excellent weldability and having a tensile strength of 570 MPa or higher, and a method for producing the same
JPS61257457A (en) Steel sheet for laser processing having superior fatigue characteristic
GB2168999A (en) High toughness steel
JP4083391B2 (en) Ferritic stainless steel for structural members
JPS61261462A (en) Steel sheet for laser beam machining excelling in stretch flanging workability
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JPH03248783A (en) Electron beam welding method for steel plate
JP2005029882A (en) Method for manufacturing structural high-strength electric welded steel tube of excellent welding softening resistance
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP2002001577A (en) Weld metal and weld steel pipe excellent in carbon dioxide-corrosion resistance and toughness
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP2001158945A (en) High chromium welded steel pipe excellent in weld zone toughness and corrosion resistance
JPH0676615B2 (en) Method for producing high-strength steel excellent in weld COD characteristics
JPS59215461A (en) Steel for machine structural purpose
JP2687037B2 (en) Gas shielded arc welding method
JPH0510417B2 (en)
JPS621823A (en) Manufacture of nonmagnetic high-mn steel having superior machinability
JPH06145791A (en) Production of plate of low alloy high tensile strength steel excellent in characteritic in resistance weld zone
JPH02107744A (en) Ferritic stainless steel excellent in weldability and corrosion resistance
JPH08158012A (en) High damping alloy with high strength and high corrosion resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees