JPS61257232A - Method for generating gaseous liquid material - Google Patents

Method for generating gaseous liquid material

Info

Publication number
JPS61257232A
JPS61257232A JP9609585A JP9609585A JPS61257232A JP S61257232 A JPS61257232 A JP S61257232A JP 9609585 A JP9609585 A JP 9609585A JP 9609585 A JP9609585 A JP 9609585A JP S61257232 A JPS61257232 A JP S61257232A
Authority
JP
Japan
Prior art keywords
liquid material
vapor pressure
saturated vapor
bubbling
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9609585A
Other languages
Japanese (ja)
Other versions
JPH0536097B2 (en
Inventor
Yoshitaka Ina
伊奈 義高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP9609585A priority Critical patent/JPS61257232A/en
Publication of JPS61257232A publication Critical patent/JPS61257232A/en
Publication of JPH0536097B2 publication Critical patent/JPH0536097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/81Constructional details of the feed line, e.g. heating, insulation, material, manifolds, filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/87Controlling the temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To always obtain a stable amount of evaporation by cooling the gaseous liquid material generated by bubbling upto the temp. approaching nearly the saturated vapor pressure on the way of the conveyance. CONSTITUTION:The carrier gas controlled in a prescribed flow rate is flowed into a liquid material such as silicon tetrachloride which is stored in a bubbler tank 1 maintained at the prescribed temp. T1 and used for the production of a semiconductor or the like to perform the bubbling. The generated gaseous liquid material is introduced into a buffer tank preset at the temp. T2 wherein the gaseous material obtained on the basis of the bubbled amount of the carrier gas reaches the saturated vapor pressure and the temp. T1 and it is cooled nearly upto the saturated vapor pressure. The gas liquefied by the cooling is returned to the bubbler tank and the gaseous liquid material being preset in the saturated vapor pressure is conveyed to a semiconductor production apparatus side together with the carrier gas. Thereby the gaseous material of the required amount can be obtained with the less amount of the carrier gas to be bubbled by presetting the temp. of the liquid material close to b.p. and a stable amount to be evaporated can be obtained even when the various errors and fluctuations are caused.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は光ファイバー、半導体等の製造に用いる四塩化
シリコン、四塩化ゲルマニウムその他の液体(液化)材
料をバブリングし、所定の蒸気圧で前記液体材料ガスを
発生する方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention involves bubbling silicon tetrachloride, germanium tetrachloride, and other liquid (liquefied) materials used in the production of optical fibers, semiconductors, etc. This invention relates to a method of generating material gas.

「従来の技術」 従来より、制御装置により流量制御されたキャリアガス
のバブリングにより、所定の蒸気圧に制御された液体材
料ガス(蒸気)を発生させる液体材料ガス発生装置は既
に公知である。
"Prior Art" Conventionally, a liquid material gas generation device is already known that generates liquid material gas (steam) whose vapor pressure is controlled to a predetermined vapor pressure by bubbling carrier gas whose flow rate is controlled by a control device.

この種の構成を第2図に基づいて説明するに、1は石英
ガラス、ステンレスその他の耐食性材料で形成されたバ
ブラータンクで、その周囲にラバーヒータ2を囲設し、
タンク1内の液体材料を所定温度に加温維持している。
This type of configuration will be explained based on FIG. 2. Reference numeral 1 denotes a bubbler tank made of quartz glass, stainless steel, or other corrosion-resistant material, around which a rubber heater 2 is placed.
The liquid material in the tank 1 is heated and maintained at a predetermined temperature.

3は窒素その他の不活性ガスからなるキャリアガスの導
入管で、その先端開口をバブラータンクl内の液体材料
中に位置させると共に、該導入管3の途中にキャリアガ
ス流量制御弁4を介在させ、前記タンクl内の液体材料
の設定温度に基づいてキャリアガスの流量制御により液
体材料ガスの流量制御を行う。
Reference numeral 3 denotes an inlet tube for a carrier gas made of nitrogen or other inert gas, the opening of which is positioned in the liquid material in the bubbler tank l, and a carrier gas flow rate control valve 4 is interposed in the middle of the inlet tube 3. , the flow rate of the liquid material gas is controlled by controlling the flow rate of the carrier gas based on the set temperature of the liquid material in the tank l.

即ち前記バブリングにより生じる材料ガスの蒸発量の安
定化を図る為には、発生した材料ガスの蒸気圧を飽和蒸
気圧に近ずける必要があり、この為、前記装置において
は夫々の液体材料の設定温度時における飽和蒸気圧(既
知)におけるキャリアガスの流量を設定し、液体材料の
蒸発量を飽和蒸気圧に近づけている。
That is, in order to stabilize the amount of evaporation of the material gas generated by the bubbling, it is necessary to bring the vapor pressure of the generated material gas close to the saturated vapor pressure. The flow rate of the carrier gas at the saturated vapor pressure (known) at the set temperature is set, and the amount of evaporation of the liquid material approaches the saturated vapor pressure.

「発明が解決しようとする問題点」 しかしながら、この種の装置においては、前記液体材料
内に挿入した温度検知管の見かけ上の検知温度が、バブ
リングにより生ずる気化潜熱の奪取その他の理由により
低下し易く、必ずしも正しい液体材料の温度を検知し得
す、又前記バブリングにより圧力変動も生じ易く、従っ
て、これらの変動要因を全て考慮した演算回路を設定す
るのは不可能であり、前記装置においては安定した蒸発
量の材料ガスを得ることが出来得なかった。
"Problems to be Solved by the Invention" However, in this type of device, the apparent detected temperature of the temperature detection tube inserted into the liquid material decreases due to absorption of latent heat of vaporization caused by bubbling and other reasons. It is difficult to detect the correct temperature of the liquid material, and pressure fluctuations are also likely to occur due to the bubbling. Therefore, it is impossible to set up an arithmetic circuit that takes all of these fluctuation factors into consideration. It was not possible to obtain a material gas with a stable evaporation amount.

又、この種の液体材料は一般に沸点付近で飽和蒸気圧が
急速に立上がり、僅かな温度変動で飽和蒸気圧の変化量
が大になる為に、安定した蒸発量を得る為には、前記沸
点よりかなり低い所に液体材料温度を設定(温度変動に
よる飽和蒸気圧の変化量が少ない温度領域)する必要が
あるが、このように構成すると逆にバブリングを行うキ
ャリアガスの量を多くしなければならず、この結果、バ
ブリングによる液面の波打ちが極めて大になり、その分
率安定要素が増大するという問題が派生する。
In addition, in general, the saturated vapor pressure of this type of liquid material rises rapidly near the boiling point, and the amount of change in saturated vapor pressure becomes large with a slight temperature change. Therefore, in order to obtain a stable evaporation amount, it is necessary to It is necessary to set the liquid material temperature at a much lower temperature than that (temperature range where the amount of change in saturated vapor pressure due to temperature fluctuation is small), but with this configuration, conversely, it is necessary to increase the amount of carrier gas for bubbling. As a result, the undulation of the liquid surface due to bubbling becomes extremely large, leading to the problem that the fractional stability factor increases.

更に、バブリングと蒸発量の時間経過を示す第3図より
明らかな如く、本装置においてはバブリング初期におい
て気化潜熱の奪取により、ラバーヒータ2との間の熱平
衡が取れず、定常状態に達するまで蒸発量の急激な立ち
下がりが生じる問題も併せ有す。
Furthermore, as is clear from Figure 3, which shows the time course of bubbling and evaporation, in this device, thermal equilibrium with the rubber heater 2 cannot be achieved due to the absorption of latent heat of vaporization in the early stage of bubbling, and evaporation continues until a steady state is reached. It also has the problem of a sudden drop in the amount.

「問題点を解決しようとする手段」 本発明は、所定温度に維持された液体材料中に所定流量
に制御されたキャリアガスを流し、そのバブリングによ
り液体材料ガスを発生する方法において、バブリング後
キャリアガスと共に所定製造装置側に搬送する途中で前
記液体材料ガスを冷却し、該材料ガスの蒸気圧が飽和蒸
気圧又は該飽和蒸気圧に近接させたることにより安定し
た蒸発量が得られる技術手段を提案する。
"Means for Solving the Problems" The present invention provides a method for flowing a carrier gas controlled at a predetermined flow rate into a liquid material maintained at a predetermined temperature and generating a liquid material gas by bubbling the carrier gas after bubbling. A technical means is provided in which a stable evaporation amount can be obtained by cooling the liquid material gas on the way to a predetermined manufacturing equipment side together with the gas, and bringing the vapor pressure of the material gas to the saturated vapor pressure or close to the saturated vapor pressure. suggest.

この場合、前記冷却をバブリング個所の直上位置、具体
的には冷却手段をバブラータンク1の上方に配置し、前
記液体材料ガスの冷却により生じた液化部分を再度バブ
ラータンクl内に戻入させるよう構成するのが好ましい
In this case, the cooling means is placed directly above the bubbling location, specifically, the cooling means is placed above the bubbler tank 1, and the liquefied portion generated by cooling the liquid material gas is configured to return to the bubbler tank 1. It is preferable to do so.

「作用」 かかる技術手段によれば、バブリングにより発生された
液体材料ガスを、飽和蒸気圧又は該飽和蒸気圧に近接す
る温度まで冷却される為に、例えバブラータンク1内で
液体材料の設定温度の計測誤差、気化潜熱による液面温
度低下及び圧力変動が生じてもこれらの誤差と無関係に
前記液体材料ガスを飽和蒸気圧付近に設定することが可
能である為に、常に安定した蒸発量を得ることが出来る
"Operation" According to this technical means, in order to cool the liquid material gas generated by bubbling to the saturated vapor pressure or a temperature close to the saturated vapor pressure, even if the set temperature of the liquid material in the bubbler tank 1 is Even if measurement errors, liquid surface temperature drop due to latent heat of vaporization, and pressure fluctuations occur, the liquid material gas can be set to around the saturated vapor pressure regardless of these errors, so a stable evaporation amount can always be maintained. You can get it.

従って本技術手段によれば、前記液体材料の設定温度が
沸点付近でバブリングを行ってもその後の冷却により安
定した蒸発量が得られ、この結果、少ないキャリアガス
のバブリング量で安定且つ所望量の材料ガスを得ること
が出来る。
Therefore, according to the present technical means, even if bubbling is performed when the set temperature of the liquid material is near the boiling point, a stable amount of evaporation can be obtained by subsequent cooling, and as a result, a stable and desired amount of carrier gas can be obtained with a small amount of bubbling of the carrier gas. Material gas can be obtained.

更に本技術手段によれば、バブリング後における前記液
体材料ガスの冷却によりバブリング初期における熱平衡
の取れない間であっても、第3図点線で示す位置(飽和
蒸気圧以上)まで材料ガス温度T2に落すことにより、
常に飽和蒸気圧に対応する安定した蒸発量を得ることの
出来る。
Furthermore, according to the present technical means, by cooling the liquid material gas after bubbling, even during the period when thermal equilibrium cannot be achieved at the initial stage of bubbling, the material gas temperature T2 can be increased to the position shown by the dotted line in FIG. 3 (above the saturated vapor pressure). By dropping the
A stable evaporation amount corresponding to the saturated vapor pressure can always be obtained.

更に又本技術手段によれば、前記液体材料ガスの冷却に
より生じた液化部分を再度バブラータンク内に戻入させ
るよう構成することにより、前記バブリングの際に生じ
る不安定要因を排除することが可能となる。
Furthermore, according to the present technical means, the liquefied portion generated by cooling the liquid material gas is returned into the bubbler tank, thereby making it possible to eliminate unstable factors that occur during the bubbling. Become.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第1図は本発明の実施例に係る液体材料ガス発生装置を
示し、前記実施例との差異を中心に説明するに、6はロ
ードセル22上に戴置された恒温槽で、該恒温槽B内に
ラバーヒータ2を介してバブラータンクlが収納されて
いる。
FIG. 1 shows a liquid material gas generation device according to an embodiment of the present invention, and the differences from the previous embodiment will be mainly explained. Reference numeral 6 denotes a constant temperature chamber placed on a load cell 22, and the constant temperature chamber B A bubbler tank 1 is housed inside via a rubber heater 2.

バブラータンク1には、上方よりバブル管7、温度検知
管5.及び液補充管8を夫々挿設し、その先端開口が液
体材料中に位置するよう構成し、又バブル管7はバブリ
ング効果を高める為に、前端円周部に複数の小孔7aを
穿設させている。
The bubbler tank 1 includes, from above, a bubble tube 7, a temperature detection tube 5. and a liquid replenishment tube 8 are inserted, respectively, so that their tip openings are located in the liquid material, and the bubble tube 7 has a plurality of small holes 7a in its front end circumference in order to enhance the bubbling effect. I'm letting you do it.

又前記バブラータンクlの液体材料上限位置の上方タン
クl内には混合ガス導出管8が位置し。
A mixed gas outlet pipe 8 is located in the tank 1 above the upper limit position of the liquid material in the bubbler tank 1.

該導出管9はタンク1外垂直上方に延設され、その途中
に流量制御弁10とバッファタンク11を・介在させ、
その出口側に取り付けた開閉弁12を介して、例えば半
導体製造装置内に導かれるよう構成している。バッファ
タンク11外周には温度制御部14により制御可能なヒ
ータ13が巻回されており、タンク10内部温度T2が
バブラータンク1の液体材料の設定温度T1以下、具体
的には、バブラータンク1より導かれた材料ガスが飽和
蒸気圧又は該飽和蒸気圧に近接する温度以下(例えば液
体材料の設定温度T1が40℃の場合は35℃前後)に
設定されている。
The outlet pipe 9 extends vertically upward outside the tank 1, with a flow rate control valve 10 and a buffer tank 11 interposed therebetween,
It is configured to be led into, for example, semiconductor manufacturing equipment via an on-off valve 12 attached to the outlet side. A heater 13 that can be controlled by a temperature control unit 14 is wound around the outer circumference of the buffer tank 11, and the internal temperature T2 of the tank 10 is lower than or equal to the set temperature T1 of the liquid material in the bubbler tank 1, specifically, higher than the bubbler tank 1. The introduced material gas is set at a saturated vapor pressure or a temperature close to the saturated vapor pressure (for example, around 35° C. when the set temperature T1 of the liquid material is 40° C.).

バブル管7は開閉弁15を介してキャリアガス導入管I
Bに接続されており、該導入管1Bには流量制御弁17
、及び流量検知センサー(マスフローコントローラ)1
8を介してキャリアガス源と接続されている。又液補充
管8は開閉弁19、流量制御弁20を介して、液体材料
源と接続されている。
The bubble pipe 7 is connected to the carrier gas introduction pipe I via the on-off valve 15.
B, and the introduction pipe 1B has a flow control valve 17.
, and flow rate detection sensor (mass flow controller) 1
8 to a carrier gas source. Further, the liquid replenishment pipe 8 is connected to a liquid material source via an on-off valve 19 and a flow rate control valve 20.

2!は演算回路シーケンサ−で、前記ロードセル22、
温度検知管5、流量検知センサー18、ヒータ13の温
度制御部14よりの各種入力信号に基づいて各種ガス及
び液体材料の流量制御、及び各種ヒータ13の温度制御
を行っている。
2! is an arithmetic circuit sequencer, and the load cell 22,
The flow rates of various gases and liquid materials and the temperatures of various heaters 13 are controlled based on various input signals from the temperature detection tube 5, the flow rate detection sensor 18, and the temperature control section 14 of the heater 13.

かかる構成によれば、先ず、流量検知センサー18と温
度検知管5よりバブラータンクl内温度T1とキャリア
ガスのバブリング量に基づいて、材料ガスが飽和蒸気圧
に達する温度T2を求め、ヒータ13によりバッファタ
ンク11を該温度T2にまで加温する、この温度T2は
当然にバブラ−タンク1内温度〒1より低い。
According to this configuration, first, the temperature T2 at which the material gas reaches the saturated vapor pressure is determined by the flow rate detection sensor 18 and the temperature detection tube 5 based on the temperature T1 inside the bubbler tank l and the bubbling amount of the carrier gas, and then the temperature T2 is determined by the heater 13. The buffer tank 11 is heated to the temperature T2, which is naturally lower than the bubbler tank 1 internal temperature 〒1.

そして前記バッファタンク11内温度が所定温度に達し
た後、キャリアガスをバブラータンク1内に流し、バブ
リングを開始する。
After the internal temperature of the buffer tank 11 reaches a predetermined temperature, the carrier gas is flowed into the bubbler tank 1 to start bubbling.

該バブリングにより液体材料ガスとキャリアガスが混合
した混合ガスが導出管9内に導かれ、バッファタンク1
1で、液体材料がスが飽和蒸気圧以下に達するまで冷却
され、該冷却により液化した材料ガスは不安定分子と共
にバブラータンク1内に戻された後、飽和蒸気下にある
液体材料ガスがキャリアガスと共に半導体製造装置側に
搬送されることとなる。
Due to the bubbling, a mixed gas of liquid material gas and carrier gas is guided into the outlet pipe 9, and the buffer tank 1
In Step 1, the liquid material gas is cooled until the gas reaches the saturated vapor pressure or less, and the material gas liquefied by the cooling is returned to the bubbler tank 1 together with unstable molecules, and then the liquid material gas under saturated vapor becomes the carrier gas. It will be transported to the semiconductor manufacturing equipment side together with the gas.

そしてバブラータンクl内の液体材料が減少してきた場
合は前記ロードセル22より演算回路シーケンサ−21
に所定信号を入力し、液補充管8より所定量の液体材料
源を供給する。
When the liquid material in the bubbler tank l decreases, the arithmetic circuit sequencer 21
A predetermined signal is input to the refill tube 8, and a predetermined amount of liquid material source is supplied from the liquid replenishment pipe 8.

かかる実施例によれば前述した本発明の作用が円滑に達
成し得る。
According to such an embodiment, the above-described effects of the present invention can be smoothly achieved.

「発明の効果」 以上記載の如く本発明によれば、前記液体材料の温度検
知による誤差やバブラータンクl内の圧力変動を吸収し
、安定した蒸発量を得ることの出来る。
"Effects of the Invention" As described above, according to the present invention, it is possible to absorb errors caused by temperature detection of the liquid material and pressure fluctuations in the bubbler tank 1, and obtain a stable amount of evaporation.

又本発明によれば、前記液体材料の設定温度を沸点付近
に設定してもその後の冷却により安定した蒸発量を得る
ことが出来、この結果、少ないキャリアガスのバブリン
グ量で安定且つ所望量の材料ガスを得ることの出来る。
Further, according to the present invention, even if the set temperature of the liquid material is set near the boiling point, a stable amount of evaporation can be obtained by subsequent cooling, and as a result, a stable and desired amount of carrier gas can be obtained with a small amount of bubbling of the carrier gas. Material gas can be obtained.

更に本発明によれば、バブリング初期における前記熱平
衡の取れない間であっても蒸発量の急激な立ち下がりそ
の他の変動が生じた分を第3図に示す如く温度T2にま
で材料ガスを冷却することにより、バブリング初期にお
いても安定した蒸発量を得ることの出来る0等の基本的
な効果に加えて、冷却後の材料ガスの搬送量はほぼ飽和
蒸気圧にある為、あらかじめその搬送量を演算回路シー
ケンサ−で演算することが出来、半導体発生装置その他
の自動制御を図る上で極めて有利である、蒸気圧の既知
な全ての液体材料にも適用可能である為、その汎用性は
極めて高い、又沸点が常温から高温(約200℃)まで
幅広い範囲の液体材料に使用可能である等の種々の実用
的効果を有する。
Furthermore, according to the present invention, even during the period when the thermal equilibrium cannot be achieved at the initial stage of bubbling, the material gas is cooled down to the temperature T2 as shown in FIG. In addition to the basic effect of zero, which allows you to obtain a stable evaporation amount even in the early stage of bubbling, the amount of material gas transported after cooling is almost at the saturated vapor pressure, so the amount of material gas transported is calculated in advance. It can be calculated with a circuit sequencer and is extremely useful for automatic control of semiconductor generators and other devices.It is extremely versatile as it can be applied to all liquid materials with known vapor pressures. It also has various practical effects, such as being usable for liquid materials with boiling points ranging from room temperature to high temperatures (approximately 200°C).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る液体材料ガス発生装置を
示す概略説明図、第2図は従来技術に係る液体材料ガス
発生装置を示す概略説明図、第3図は本発明の詳細な説
明するグラフ図である。 第1図
FIG. 1 is a schematic explanatory diagram showing a liquid material gas generating device according to an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram showing a liquid material gas generating device according to the prior art, and FIG. 3 is a detailed diagram of the liquid material gas generating device according to the present invention. It is a graph diagram for explanation. Figure 1

Claims (1)

【特許請求の範囲】 1)所定温度に維持された液体材料中に所定流量に制御
されたキャリアガスを流し、そのバブリングにより液体
材料ガスを発生する方法において、バブリング後キャリ
アガスと共に搬送される途中で前記液体材料ガスを冷却
し、該材料ガスの蒸気圧を略飽和蒸気圧又は飽和蒸気圧
付近にまで接近させた事を特徴とする液体材料ガス発生
方法 2)前記冷却がバブラータンクの直上位置で行われる事
を特徴とする特許請求の範囲第1項記載の液体材料ガス
発生方法
[Claims] 1) In a method of flowing a carrier gas controlled at a predetermined flow rate into a liquid material maintained at a predetermined temperature and generating a liquid material gas by bubbling, the liquid material is transported with the carrier gas after bubbling. 2) A method for generating a liquid material gas, characterized in that the liquid material gas is cooled at a position directly above the bubbler tank, and the vapor pressure of the material gas is brought close to approximately saturated vapor pressure or near the saturated vapor pressure. A method for generating a liquid material gas according to claim 1, characterized in that the method is performed by:
JP9609585A 1985-05-08 1985-05-08 Method for generating gaseous liquid material Granted JPS61257232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9609585A JPS61257232A (en) 1985-05-08 1985-05-08 Method for generating gaseous liquid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9609585A JPS61257232A (en) 1985-05-08 1985-05-08 Method for generating gaseous liquid material

Publications (2)

Publication Number Publication Date
JPS61257232A true JPS61257232A (en) 1986-11-14
JPH0536097B2 JPH0536097B2 (en) 1993-05-28

Family

ID=14155832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9609585A Granted JPS61257232A (en) 1985-05-08 1985-05-08 Method for generating gaseous liquid material

Country Status (1)

Country Link
JP (1) JPS61257232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696472A1 (en) 1994-08-05 1996-02-14 Shin-Etsu Handotai Company Limited Method and apparatus for supply of liquid raw material gas
JP2000319095A (en) * 1999-04-30 2000-11-21 Komatsu Electronic Metals Co Ltd Apparatus and method for vaporizing and supplying trichlorosilane
KR20030005648A (en) * 2001-07-09 2003-01-23 주식회사 세미텔 Bubbler having auto refill function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278458A (en) * 1979-02-07 1981-07-14 Bell Telephone Laboratories, Incorporated Optical fiber fabrication method and apparatus
JPS60248228A (en) * 1984-05-24 1985-12-07 Sumitomo Electric Ind Ltd Bubbling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278458A (en) * 1979-02-07 1981-07-14 Bell Telephone Laboratories, Incorporated Optical fiber fabrication method and apparatus
JPS60248228A (en) * 1984-05-24 1985-12-07 Sumitomo Electric Ind Ltd Bubbling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696472A1 (en) 1994-08-05 1996-02-14 Shin-Etsu Handotai Company Limited Method and apparatus for supply of liquid raw material gas
JP2000319095A (en) * 1999-04-30 2000-11-21 Komatsu Electronic Metals Co Ltd Apparatus and method for vaporizing and supplying trichlorosilane
KR20030005648A (en) * 2001-07-09 2003-01-23 주식회사 세미텔 Bubbler having auto refill function

Also Published As

Publication number Publication date
JPH0536097B2 (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP3181591B2 (en) Liquid vaporizer
US4276243A (en) Vapor delivery control system and method
US4861524A (en) Apparatus for producing a gas mixture by the saturation method
US8800589B2 (en) Material gas concentration control system
EP0191054A1 (en) Methods of and apparatus for vapor delivery control in optical preform manufacture.
JPH03183779A (en) Method and device for chemical vapor growth
KR19990029782A (en) Semiconductor wafer temperature measurement and control device using gas temperature measurement and its method
JP3331636B2 (en) Water generation method
US3583685A (en) Method and apparatus for controlling quantity of a vapor in a gas
JP3828821B2 (en) Liquid material vaporizer
JPH0795527B2 (en) Vaporizer for liquid raw materials
JPH0610144A (en) Low vapor pressure material supply device
JPH05228361A (en) Device for vaporizing and supplying liquid material
JPS61257232A (en) Method for generating gaseous liquid material
US4075293A (en) Control system for an absorption column
JPH0653926B2 (en) Chemical vapor deposition equipment
US7003215B2 (en) Vapor flow controller
JP5511108B2 (en) Material gas concentration controller
JPH0499279A (en) Method for gasifying and supplying liquid material and device for supplying this material
US2334926A (en) Measuring apparatus
JPH02268826A (en) Flow rate control device for evaporated gas
JPH034929A (en) Gas generator due to evaporation system
JPH0594953A (en) Semiconductor manufacturing device
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
JP6979914B2 (en) Vaporizer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term