JPS61257227A - Production of fine powder - Google Patents

Production of fine powder

Info

Publication number
JPS61257227A
JPS61257227A JP60099015A JP9901585A JPS61257227A JP S61257227 A JPS61257227 A JP S61257227A JP 60099015 A JP60099015 A JP 60099015A JP 9901585 A JP9901585 A JP 9901585A JP S61257227 A JPS61257227 A JP S61257227A
Authority
JP
Japan
Prior art keywords
fine powder
collected
powder
gas
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60099015A
Other languages
Japanese (ja)
Other versions
JPH0566171B2 (en
Inventor
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60099015A priority Critical patent/JPS61257227A/en
Publication of JPS61257227A publication Critical patent/JPS61257227A/en
Publication of JPH0566171B2 publication Critical patent/JPH0566171B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent change in qualities due to the oxidation or the like and to obtain fine powder for easy molding in case of producing the fine power of the raw material of a sintered body in a vapor phase process by suspending the collected fine powder in a solvent nonreactive with this fine powder, adding a binder, drying and granulating the mixture. CONSTITUTION:The fine powder of silicon nitride or the like produced by laser irradiation is collected in a dry type with a filter and an electrostatic separation method. The collected fine powder is sent to a slurrying process in such a state that the contact with the outside air is interrupted and mixed with the solvent nonreactive with the fine powder of normal paraffin of the like and dried with the hot air and granulated after adding a binder such as was. The area exposed to the atmosphere is decreased by the granulation and the deterioration in the purity and the change in qualities due to O2 and water content are decreased and the fluidity is enhanced because the bulk density is made large and the molding is made easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粉末の製造方法に関し、特に焼結体原料微粉
末を気相法により製造する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing fine powder, and particularly to a method for producing fine powder as a raw material for a sintered body by a vapor phase method.

〔従来の技術〕[Conventional technology]

近年、新素材分野では新しい機能の創造を目指し、超微
粒子の研究が盛んである。超微粒子とは一般に0.1μ
m(10001)以下の粒子を指すが、製法として液相
法と気相法がある0本発明に関連する気相法について説
明すると、次のよ5K (1)  固体にレーデやグラズマを当てて一旦気化さ
せた後冷却して微粉末を生成させる。
In recent years, in the field of new materials, research on ultrafine particles has been active with the aim of creating new functions. Ultrafine particles are generally 0.1μ
It refers to particles of 5K (10001) or less, and there are liquid phase methods and gas phase methods for manufacturing them.The gas phase method related to the present invention is explained as follows. Once vaporized, it is cooled to produce a fine powder.

(2)  ガス状物質にレーデ光を照射して化学反応を
生じさせ、冷却して微粉末を生成させる。
(2) A gaseous substance is irradiated with Rede light to cause a chemical reaction and then cooled to produce fine powder.

(3)ガス状物質をプラズマ化して主にラジカルを中心
とした化学反応を生じさせ、冷却して微粉末を生成させ
る。
(3) A gaseous substance is turned into plasma to cause a chemical reaction mainly centered on radicals, and then cooled to produce fine powder.

(4)  ガス状物質を加熱し、熱分解によって化学反
応を生じさせ冷却して微粉末を生成させる。
(4) Gaseous substances are heated to cause a chemical reaction through thermal decomposition, and then cooled to produce fine powder.

種々の方法が挙げられる。Various methods can be mentioned.

ところで、とのよ5な微粒子は気流中に浮遊しており、
フィルターや静電的分離方法等によって捕集され気相か
ら分離される。なお、焼結体原料粉末の超微粒子化は、
焼結速度の増加、緻密化速度の増加、低温焼結、低圧焼
結、短時間焼結、結晶粒成長抑制による焼結体の著しい
物性向上並びに省エネ化を狙って進められている。
By the way, 5-sized particles are suspended in the airflow,
It is collected and separated from the gas phase using filters, electrostatic separation methods, etc. In addition, the ultrafine particle size of the sintered body raw material powder is
Progress is being made with the aim of significantly improving the physical properties of sintered bodies and saving energy by increasing the sintering rate, increasing the densification rate, low-temperature sintering, low-pressure sintering, short-time sintering, and suppressing grain growth.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来技術によれば、捕集した微粒子の粒
径が小さいため、以下に示す欠点を有する。
However, according to the prior art, the particle size of the collected fine particles is small, so there are the following drawbacks.

■ 表面積が大で活性であるため、水分や酸素の吸着、
あるいは酸化によって純度−下、変質を生じ、極端な場
合は燃焼することもある・■ セラミック超微粉のよう
に焼結体原料とする場合、流動性が悪くカサ密度が小さ
い(フワフワしている)ため、成形し難い。
■ Because it has a large surface area and is active, it can absorb moisture and oxygen.
Or, due to oxidation, the purity may decrease, the quality may deteriorate, and in extreme cases, it may burn.■ When used as a raw material for sintered bodies, such as ultrafine ceramic powder, it has poor fluidity and low bulk density (fluffy). Therefore, it is difficult to mold.

本発明は上記事情Kfsみてなされたもので、表面を酸
素や水分による汚染から保護しえるとともに、成形が容
易な微粉末の製造方法を提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for producing fine powder that can protect the surface from contamination by oxygen and moisture and is easy to mold.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、焼結体原料微粉末を気相法により製造する方
法において、生成した微粉末を捕集した後、この微粉末
を該微粉末とは不活性な溶媒に懸濁させ、更に懸濁液に
バインダを添加し丈後、乾燥造粒することを特徴とする
。具体的には、本発明は下記に示す■〜■の工程からな
る。
The present invention is a method for producing fine powder as a raw material for a sintered body by a vapor phase method, in which the generated fine powder is collected, and then this fine powder is suspended in a solvent that is inert to the fine powder. It is characterized by adding a binder to the suspension, drying it and granulating it. Specifically, the present invention consists of steps (1) to (4) shown below.

■ まず、捕集した微粉末を、微粉末と反応しない溶媒
(例えばノルマル・ぐラフイン)に投入し懸濁液とする
(1) First, the collected fine powder is put into a solvent that does not react with the fine powder (for example, normal graphin) to form a suspension.

■ 次に1上記懸濁液に溶媒に可溶なパイン〆(例、t
 )−3’ワツクス類、?リピニルアルコールなど)を
添加する。
■ Next, add 1 the above suspension to a solvent-soluble pine paste (e.g., t
)-3' Waxes, ? (e.g. lipinyl alcohol).

■ 次いで、上記■の懸濁液をスプレードライヤに供給
し、造粒と乾燥を行い、製品とする。
(2) Next, the above suspension (2) is supplied to a spray dryer, where it is granulated and dried to form a product.

〔作用〕[Effect]

本発明によれば、 ■ 捕集した微粉末をこの微粉末と反応しない溶媒に投
入し懸濁液とすることにより、空気との接触が回避され
大気中に取り出せるので、輸送、取扱いが容易になる。
According to the present invention, (1) By putting the collected fine powder into a solvent that does not react with the fine powder to form a suspension, contact with air can be avoided and it can be taken out into the atmosphere, making it easy to transport and handle. Become.

■ 懸濁液にバインダを加えてスプレードライすること
により、造粒されカサ密度が大きくなゝると共に流動性
も向上し、成形上の難点が解消される。
(2) By adding a binder to the suspension and spray drying it, the granules are granulated, increasing the bulk density and improving fluidity, which solves problems in molding.

■ 造粒により大気にさらされる面積が減少し、酸化、
酸素や水分の吸着による純度低下や変質の程度が軽減さ
れる。
■ Granulation reduces the area exposed to the atmosphere, reducing oxidation and
The degree of purity deterioration and deterioration due to oxygen and moisture adsorption is reduced.

〔実施例〕〔Example〕

以下、本発明・の一実施例を図を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図中の1は、反応生成ガスラインを示す。この反応生成
ガスライン!中の反応生成ガスには、化学反応により生
じた微粉末が含まれている。
1 in the figure indicates a reaction product gas line. This reaction product gas line! The reaction product gas inside contains fine powder produced by a chemical reaction.

このガスはまず微粉末の分離工程2に導入され、例えば
フィルタや静電分離法によって乾式捕集される。微粉末
を除去されたガスは排出される。
This gas is first introduced into a fine powder separation step 2 and is dry-collected, for example, by a filter or electrostatic separation method. The gas from which fine powder has been removed is discharged.

上記分離工程2は、酸素や水分くよる微粉末の変質、純
度低下を防ぐため、空気のモレ込みを防止するための配
慮がされている。捕集された微粉末は、外気との接触を
遮断した状態で捕集微粉末取出しライン4を経てスラリ
化工程5へ送られ、溶媒供給ライン6から供給される溶
媒と混合される。
In the separation step 2, consideration is given to preventing leakage of air in order to prevent deterioration of the fine powder and deterioration of purity due to oxygen and moisture. The collected fine powder is sent to the slurry-forming step 5 via the collected fine powder take-out line 4 in a state where contact with the outside air is cut off, and is mixed with the solvent supplied from the solvent supply line 6.

微粉末のスラリはスラリ抜出しラインrから抜き出され
、パインメ供給ライン8から供給される・譬インダと混
合され乾燥造粒工程9へ送られる。乾燥造粒工程9では
、噴霧された溶媒液滴が熱風供給ライン10から供給さ
れる熱風により乾燥され、その中に含まれる微粉末がパ
イン〆により固結される。そして、造粒粉末として生成
し、製品抜出しライン11から抜出される。乾燥用熱風
は造粒粉末と分離後、乾燥排ガスライン12から排出さ
れる。
The fine powder slurry is extracted from the slurry extraction line r, mixed with powder supplied from the powder supply line 8, and sent to the drying and granulation step 9. In the dry granulation step 9, the sprayed solvent droplets are dried by hot air supplied from the hot air supply line 10, and the fine powder contained therein is solidified by pine paste. Then, it is produced as a granulated powder and extracted from the product extraction line 11. After the drying hot air is separated from the granulated powder, it is discharged from the dry exhaust gas line 12.

具体例1 アルゴン雰囲気の反応器内にシランガス、アンそニアガ
スおよびアルゴンの混合気体を供給し、この混合気体に
CO2レーデを照射し、窒化ケイ素の微粉末を生成させ
た。ここで、シランガスの供給速度は140”15)、
アンモニアガスは190”7%、アルがンは1330°
ν分とした。
Specific Example 1 A mixed gas of silane gas, anthonia gas, and argon was supplied into a reactor in an argon atmosphere, and the mixed gas was irradiated with CO2 radar to generate fine powder of silicon nitride. Here, the supply rate of silane gas is 140"15),
Ammonia gas is 190”7%, argon is 1330°
ν minutes.

つづいて、生成した微粉末はフィルタで捕集し、アルが
ンガスで置換したグローブ&、クス内でホルダーを解体
し、フィルタ上の微粉末なノルマルヘプタン中に懸濁さ
せた。その後懸濁液をグローfがツクスから大気中に取
り出した。なお、電子顕微鏡で観察の結果、微粉末の粒
子直径は約90Xであった。次いで、この懸濁液に市販
のワックス系バインダな微粉末に対し2重量%加え攪拌
して溶解させた。次に1この懸濁液をスプレードライヤ
に供給し、170℃で乾燥、造粒した。得られた造粒粉
末は゛、約50μmの球状粒子であった。なお、熱源は
250℃の加熱空気を用いた。また、造粒粉末を分離し
た後の排ガスは約1℃の冷媒と間接熱交し、ノルマルへ
ブタンをドラッグした。
Subsequently, the generated fine powder was collected with a filter, the holder was disassembled in a glove and gas exchanger replaced with argon gas, and the fine powder was suspended in the fine normal heptane on the filter. The suspension was then removed from the glow tube into the atmosphere. As a result of observation using an electron microscope, the particle diameter of the fine powder was approximately 90X. Next, 2% by weight of a commercially available wax-based binder fine powder was added to this suspension and stirred to dissolve it. Next, this suspension was supplied to a spray dryer, dried at 170°C, and granulated. The obtained granulated powder was spherical particles of about 50 μm. Note that heated air at 250° C. was used as the heat source. Further, the exhaust gas after separating the granulated powder was subjected to indirect heat exchange with a refrigerant at about 1° C., and normal hebutane was dragged therethrough.

しかして、本発明によれば、造粒粉末を分析して酸素含
有量を求めたところ、1.2”t’16で、市販の窒化
ケイ素粉末(平均粒径0.6μm程度)と同等であり、
約901(0,009μm)の超微粉末の表面が、本発
明により酸素や水分からよ(保護されていることが明ら
かである。従って、従来と比べ純度低下や変質の程度が
軽減される。
According to the present invention, when the granulated powder was analyzed to determine the oxygen content, it was found to be 1.2"t'16, which is equivalent to commercially available silicon nitride powder (average particle size of about 0.6 μm). can be,
It is clear that the surface of the ultrafine powder of about 901 (0,009 μm) is protected from oxygen and moisture by the present invention. Therefore, the degree of purity deterioration and deterioration is reduced compared to the conventional method.

また、捕集した窒化ケイ素の微粉末をこの微粉末と反応
しないノルマルヘゲタンに投入し懸濁液とすることによ
り、空気との接触が回避され大気中に取り出せるので、
輸送、取扱いが容易になる。更に1懸濁液にパイン/を
加えてスプレードライするととKより、造粒されカサ密
度が大きくなると共に流動性も向上し、成形上の難点が
解消される。
In addition, by putting the collected silicon nitride fine powder into normal hegetane that does not react with the fine powder and making it into a suspension, contact with air can be avoided and it can be taken out into the atmosphere.
Transportation and handling become easier. Furthermore, when pine/ is added to the 1 suspension and spray-dried, the granules are granulated and the bulk density is increased, and the fluidity is also improved, which solves the problems in molding.

具体例2 窒素ガス雰囲気の反応器内にシランガス、エチレンガス
ζ窒素ガスの混合気体を供給し、この混合気体K Co
2レーデを照射し、炭化ケイ素の微粉末を生成させた。
Specific Example 2 A mixed gas of silane gas, ethylene gas and ζnitrogen gas is supplied into a reactor in a nitrogen gas atmosphere, and this mixed gas K Co
2 lede was irradiated to produce fine powder of silicon carbide.

ここで、シランがスの供給速度は660ee/%、エチ
レンガスは3306ン分、窒素ガスは1010′!e/
+とした。つづいて、生成した微粉末を具体例1と同様
の操作によりスプレードライヤにて乾燥、造粒した。な
お、微粉末の粒子直径は約450Xで、造粒粉末は約5
0μmの球状を呈した。しかるに、造粒粉末中の酸素を
分析したところ、0.95 wt %で本発明の効果が
明らかである。
Here, the supply rate of silane gas is 660ee/%, ethylene gas is 3306 liters, and nitrogen gas is 1010'! e/
+ Subsequently, the resulting fine powder was dried and granulated using a spray dryer in the same manner as in Example 1. The particle diameter of the fine powder is approximately 450X, and the particle diameter of the granulated powder is approximately 5X.
It exhibited a spherical shape of 0 μm. However, when oxygen in the granulated powder was analyzed, the effect of the present invention was clear at 0.95 wt %.

なお、微粉末はバインダにより固結され、見掛は上鉤5
0μmとなっているが、焼結時の特性は損われない。ま
た、本発明の方法はレーデを使った気相合成に限らず、
前記各気相合成法によって作られる焼結体原料に対して
も適用できる。
Note that the fine powder is solidified with a binder, and the appearance is that of the upper hook 5.
Although the thickness is 0 μm, the properties during sintering are not impaired. Furthermore, the method of the present invention is not limited to vapor phase synthesis using Rede.
It can also be applied to sintered body raw materials produced by each of the above-mentioned vapor phase synthesis methods.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、表面を酸素や水素に
よる汚染から保護しえるとともに、成形が容易等種々の
効果を有した微粉末の製造方法を提供できる。
As described in detail above, according to the present invention, it is possible to provide a method for producing fine powder that can protect the surface from contamination by oxygen and hydrogen and has various effects such as ease of molding.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る微粉末の製造方法の説明図である。 1・・・反応生成ガスライ、ン、2・・・分離工程、3
・・・排ガスライン、4・・・捕集微粉末取出しライン
、5・・・スラリ化工程、6・・・溶媒供給ライン、7
・・・スラリ抜出しライン、8・・・バインダ供給ライ
ン、9・・・乾燥造粒工程、10・・・熱風供給ライン
、11・・・製品抜出しライン、12・・・乾燥排ブス
ライン。 手続補正書 昭ゎ へα7.i8a 特許庁長官 宇 賀 道 部   殿 1、事件の表示 特願昭60−99015号 2、発明の名称 微粉末の製造方法 3、補正をする者 事件との関係 特許出願人 (620) 、E菱重工業株式会社 4a代理人 5、自発補正 7、補正の内容 (1)  明細書筒7頁4〜5行目において、「市販の
ワックス系パイン〆を微粉末に対し2重量係船え攪拌し
て溶解させた。」とあるを、「市販のワックス系バイン
ダ(中京油脂■)製;商品名マクセロンA(40%含有
液)、商品名マクセロンM(40%含有液))を微粉末
に対し2重量係船え攪拌して溶解させた。 ここで、・1ワツクス系バインダを微粉末に対し2重量
係船え1とは、微粉末100gに対しマクセロン人を2
.511(溶媒を除いた固形分1g)及びマクセロンM
を2.5Ii(溶媒を除いた固形分II)を加えたこと
を意味する−と訂正する。 (2)  明咄書第7頁17行目の「・・・ことが明ら
かである。」という文章の後に、「ことで、前述した市
販の窒化ケイ素粉末の商品名は8N9B(電気化学工業
■製)で、si窒化化法によ〕製造される。」という文
章を付加する。
The figure is an explanatory diagram of the method for producing fine powder according to the present invention. 1... Reaction product gas line, 2... Separation process, 3
... Exhaust gas line, 4... Collection fine powder extraction line, 5... Slurrying process, 6... Solvent supply line, 7
. . . Slurry extraction line, 8. Binder supply line, 9. Drying granulation process, 10. Hot air supply line, 11. Product extraction line, 12. Drying exhaust bus line. To procedural amendment book α7. i8a Michibe Uga, Commissioner of the Patent Office1, Indication of the case, Patent Application No. 1988-990152, Name of the invention, Process for producing fine powder3, Person making the amendment, Relationship with the case, Patent applicant (620), E. Heavy Industries Co., Ltd. 4a Agent 5, Voluntary Amendment 7, Contents of Amendment (1) On page 7 of the specification, lines 4-5, it is stated that ``Commercially available wax-based pine paste was dissolved in fine powder by mooring 2 weights of powder and stirring. 2 weight of commercially available wax-based binder (made by Chukyo Yushi ■; trade name Maxelon A (40% liquid), trade name Maxelon M (40% liquid)) for fine powder. The mooring was stirred and dissolved. Here, 1 wax-based binder to 2 weights of fine powder.
.. 511 (solid content 1g excluding solvent) and Maxelon M
is corrected to mean that 2.5Ii (solid content II excluding solvent) was added. (2) After the sentence "It is clear..." on page 7, line 17 of the Meijusho, there is a statement that says, "The trade name of the commercially available silicon nitride powder mentioned above is 8N9B (Denki Kagaku Kogyo ■). The following text is added: "Manufactured by Si nitriding method."

Claims (1)

【特許請求の範囲】[Claims]  焼結体原料微粉末を気相法により製造する方法におい
て、生成した微粉末を捕集した後、この微粉末を該微粉
末とは不活性な溶媒に懸濁させ、更に懸濁液にバインダ
を添加した後、乾燥造粒することを特徴とする微粉末の
製造方法。
In a method for producing fine powder as a raw material for a sintered body by a vapor phase method, the fine powder produced is collected, suspended in a solvent that is inert to the fine powder, and then a binder is added to the suspension. A method for producing a fine powder, which comprises adding and then drying and granulating the powder.
JP60099015A 1985-05-10 1985-05-10 Production of fine powder Granted JPS61257227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099015A JPS61257227A (en) 1985-05-10 1985-05-10 Production of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099015A JPS61257227A (en) 1985-05-10 1985-05-10 Production of fine powder

Publications (2)

Publication Number Publication Date
JPS61257227A true JPS61257227A (en) 1986-11-14
JPH0566171B2 JPH0566171B2 (en) 1993-09-21

Family

ID=14235311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099015A Granted JPS61257227A (en) 1985-05-10 1985-05-10 Production of fine powder

Country Status (1)

Country Link
JP (1) JPS61257227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108294A (en) * 1987-10-19 1989-04-25 Nichia Chem Ind Ltd Production of phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108294A (en) * 1987-10-19 1989-04-25 Nichia Chem Ind Ltd Production of phosphor

Also Published As

Publication number Publication date
JPH0566171B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
EP0283933B1 (en) Process for producing unsintered cristobalite silica
JPH02500972A (en) Improvements in and related to vitreous silica
JPH01264961A (en) Stabilized zirconia, its production and utilization thereof in ceramic composition
ATE115527T1 (en) PROCESS FOR THE PRODUCTION OF FINE GRAIN, SINTERACTIVE NITRIDE AND CARBONITRIDE POWDER OF TITANIUM.
DK169993B1 (en) Ceramic foam and method for making ceramic articles
US6939389B2 (en) Method and apparatus for manufacturing fine powders
JP2001017857A (en) Spray pyrolytic apparatus
Zhang et al. Synthesis of nanocrystalline aluminum nitride by nitridation of δ‐Al2O3 nanoparticles in flowing ammonia
JPS60235716A (en) Manufacture of porous boron or boride products
JPS61257227A (en) Production of fine powder
JPS5857368B2 (en) Manufacturing method of boron trichloride
JPH03275527A (en) Porous silica glass powder
Hojo et al. Preparation of composite particles of SiC Si3N4 system by vapor reaction method
JP2820865B2 (en) Method for producing quartz glass foam
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH01179724A (en) Production of oxide superconducting powder
Moh Sol-Gel derived ceramic bubbles
Kubo et al. Synthesis of ultrafine Si3N4 powder by plasma process and powder characterization
JPS6168310A (en) Production of silicon nitride having high purity using silicon chip as raw material
Gopienko Methods of reducing explosion hazards for aluminum powders, dusts, and pastes
JP2605847B2 (en) Manufacturing method of zinc oxide whiskers
JPH01141809A (en) Production of high purity aluminum nitride powder
JPS60131810A (en) Manufacture of yttrium nitride
JP2004217471A (en) Method of manufacturing gaseous carbon dioxide absorption material
JPH0375202A (en) Purification of gas of hydrogenated substance