JPS6125633A - Nylon capsule responding to ph - Google Patents

Nylon capsule responding to ph

Info

Publication number
JPS6125633A
JPS6125633A JP59144321A JP14432184A JPS6125633A JP S6125633 A JPS6125633 A JP S6125633A JP 59144321 A JP59144321 A JP 59144321A JP 14432184 A JP14432184 A JP 14432184A JP S6125633 A JPS6125633 A JP S6125633A
Authority
JP
Japan
Prior art keywords
membrane
capsule
nylon
outside
bimolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59144321A
Other languages
Japanese (ja)
Other versions
JPH0453582B2 (en
Inventor
Shigeo Okahata
恵雄 岡畑
Takahiro Seki
隆広 関
Kazuyuki Yonemori
米森 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP59144321A priority Critical patent/JPS6125633A/en
Publication of JPS6125633A publication Critical patent/JPS6125633A/en
Publication of JPH0453582B2 publication Critical patent/JPH0453582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/203Exchange of core-forming material by diffusion through the capsule wall

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To change membrane permeability reversibly according to a delicate change of pH by forming a nylon capsule that responds the pH by filling dedodecyl sodium phsphate in fine pores of a nylon capsule membrane. CONSTITUTION:The nylon capsule 1 is forme from a nylon capsule membrane 2. This membrane 2 is porous and the inside thereof is communicated with the outside through fine pores 3. This fine pore part 3 is filled with a bimolecular membrane forming compound 4 comprised of dodecyl phosphate. This bimolecular membrane forming compound 4 forms a bimolecular membrane, and a fluorescence probe 5 trapped in inner water phase is confined in the capsule and hardly scattered to the outside. However, when pH of the outside of the capsule changes to 2.5-2, the compound 4 forms and maintains hardly the bimolecular membrane, and the fluorescence probes 5 are scattered to the outer water phase as shown by the arrow A.

Description

【発明の詳細な説明】 本発明は、ナイロンカプセルに関し、更に詳細にはpl
+の微妙な変化に応じて膜透過性を可逆的に変化させる
全く新規な構造を有するナイロンカプセルに関するわ 外部pHの変化に応答して膜透過性を可逆的に変化せし
め得る膜を備えたカプセルの開発が、pl+インディケ
ータ、薬剤のキャリアー、生体内の反応モデル体等に利
用する目的で、理−]二学、生物学、医学等の技術分野
において強く望まれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nylon capsules, and more particularly to nylon capsules.
Concerning a nylon capsule with a completely new structure that reversibly changes membrane permeability in response to a subtle change in pH.A capsule equipped with a membrane that can reversibly change membrane permeability in response to changes in external pH. The development of this is strongly desired in technical fields such as science, biology, medicine, etc., for the purpose of using it as a pl+ indicator, a drug carrier, an in-vivo reaction model, etc.

本発明はこのような業界での要望に応えるへくなされた
ものであって、各方面から鋭意研究をした結果、ナイロ
ンが多孔質物質であること、ナイロン膜を有するカプセ
ルが簡単に製造できることに着目するに到り、更に検討
を続けた結果、このナイロンカプセル内には蛍光プロー
ブを収容できるのみでなく、予期せざることに、ジドデ
シルリン酸がナイロン膜の細孔部内に充当されるだけで
なく二分子膜を形成するという新しい現象を発見した。
The present invention was made in response to these demands in the industry, and as a result of intensive research from various fields, it was discovered that nylon is a porous material and that capsules with a nylon membrane can be easily manufactured. After further investigation, we discovered that not only could a fluorescent probe be housed within this nylon capsule, but unexpectedly, didodecyl phosphate was not only appropriated within the pores of the nylon membrane. We have discovered a new phenomenon of bilayer membrane formation.

そして更に全く驚くへきことに、この二分子膜構造は、
外部pHの変化に応じて可逆的に変化して、膜透過性に
変化が生して、内部に収容していた蛍光プローブが外部
へ透過するという新規にして極めて有用な知見を得た。
What is even more surprising is that this bilayer membrane structure is
We have obtained a novel and extremely useful finding that the membrane changes reversibly in response to changes in external pH, resulting in a change in membrane permeability and allowing the fluorescent probe housed inside to permeate to the outside.

本発明はこの新知見を基礎としてなされたものであって
The present invention was made based on this new knowledge.

で示される二分膜形成化合物をナイロンカプセルにコー
トしてなるp)Iに応答するナイロンカプセルに関する
ものである。。
This invention relates to a nylon capsule that responds to p)I, which is prepared by coating the nylon capsule with a bipartite membrane-forming compound represented by: .

本発明のベースとなるナイロンカプセルは、界面重合等
常法にしたがって容易に製造できるものである。例えば
、二塩基酸の酸塩化物を水と混ざらない有機溶媒に溶か
しておき、これにジアミンのアルカリ水溶液を加えて、
両液相の界面にナイロンカプセルを瞬間的に生成せしめ
ればよいし、カプセルの大きさを調整するにも、常法に
したがって、ジアミンのアルカリ液の液滴の大きさを変
するのであるが、それには該蛍光プローブを含有したリ
ン酸バッファー中で該カプセルを透析するという常法に
よればよいのである。これをそのまま、ドデカンといっ
た有機溶媒に上記二分子膜化合物をとかした溶液中に入
れて放置すれば、ナイロンカプセルの細孔部内に該二分
子嘆化合物ツ)′充当された目的とするナイロンカプセ
ルが容易に得られる。
The nylon capsule, which is the basis of the present invention, can be easily produced according to conventional methods such as interfacial polymerization. For example, an acid chloride of a dibasic acid is dissolved in an organic solvent that does not mix with water, and an alkaline aqueous solution of a diamine is added to this.
Nylon capsules can be instantaneously formed at the interface between both liquid phases, and the size of the capsules can be adjusted by changing the size of the droplets of the diamine alkaline solution using conventional methods. This can be accomplished by a conventional method of dialyzing the capsule in a phosphate buffer containing the fluorescent probe. If this is placed in a solution of the bilayer membrane compound dissolved in an organic solvent such as dodecane and left to stand, the desired nylon capsule filled with the bilayer membrane compound will be present in the pores of the nylon capsule. easily obtained.

このようにして得られる本発明に係るナイロンカプセル
を模式的に且つ一部を誇張拡大して図示したものが第1
図である。
The nylon capsule according to the present invention obtained in this manner is schematically and partially enlarged.
It is a diagram.

ナイロンカプセル1は、ナイロンカプセル膜2から成る
が、この膜は多孔質であって、細孔部3を通して内外部
が連通している。この細孔部3にはジドデシルリン酸ナ
トリウムからなる二分子膜形成化合物4が充当されてい
る。これを一部拡大したものを円内に示したが、該化合
物は1分子膜を形成しており、内水相にトラップされて
いる蛍光プローブ5はカプセル内に閉じ込められていて
、外へ出ることはない。しかしカプセル外部のpHが2
.5〜2に変化すると該化合物4は二分子膜を形成維持
することができなくなり、蛍光プローブ5が矢印Aのよ
うに外水相へ出ていくのである。
The nylon capsule 1 consists of a nylon capsule membrane 2, which is porous and communicates between the inside and outside through pores 3. The pores 3 are filled with a bilayer membrane-forming compound 4 made of sodium didodecyl phosphate. A partially enlarged view of this is shown in the circle, and the compound forms a monomolecular membrane, and the fluorescent probe 5 trapped in the internal aqueous phase is confined within the capsule and comes out. Never. However, the pH outside the capsule is 2.
.. When the compound 4 changes from 5 to 2, it is no longer able to form and maintain a bilayer membrane, and the fluorescent probe 5 exits into the external aqueous phase as shown by arrow A.

二分子膜のゲル−液晶相転移温度Tc(50’C)より
も高温である60℃において、本発明に係るナイロンカ
プセルを石英セル中に入れ、O,IN)ICIII及び
0.lNNaOHを用いて外部pHを交互に7#2に変
化させ 340nm(励起290nm)の発光強度の経
時変化によって透過係数P (cm/5ec)を測定し
、第2図の結果を得ん。
At 60°C, which is higher than the gel-liquid crystal phase transition temperature Tc (50'C) of the bilayer membrane, the nylon capsule according to the present invention was placed in a quartz cell, and O, IN) ICIII and 0. The external pH was alternately changed to 7#2 using 1NNaOH, and the transmission coefficient P (cm/5ec) was measured by the time course of the emission intensity at 340 nm (excitation 290 nm), and the results shown in FIG. 2 were obtained.

Tc60℃の場合は、o−oで示したように、外部p+
+の変化によって可逆的に透過係数が10倍以上変化す
ることが明らかに判る。これに対して、Tc以下の温度
(30℃)では・−・で示したように本カプセルはpH
応答は示さない。
When Tc is 60℃, external p+
It is clearly seen that the transmission coefficient changes reversibly by a factor of 10 or more due to a change in +. On the other hand, at temperatures below Tc (30°C), this capsule has a pH of
No response indicated.

その作用機作の詳細は今後の研究にまたねばならないが
、次のように推定される。第3図を参照されたい。カプ
セル膜2の細孔部3をコートしている二分子膜形成物質
4は、Tc以下では二分子膜を形成して、蛍光プローブ
5を透過させない(I)。
The details of its mechanism of action will have to be studied in the future, but it is estimated as follows. Please refer to Figure 3. The bilayer membrane-forming substance 4 coating the pores 3 of the capsule membrane 2 forms a bilayer membrane below Tc and does not allow the fluorescent probe 5 to pass through (I).

Tc以上の温度に上昇した場合であっても、外水相のp
)Iが7の場合には、リン酸はアニオンの形になってい
るので、バリアー能の高い二分子膜となっていて、やは
り蛍光プローブ5を透過させない(II)、 Lかしな
がら、pHか低下すると、極性基が一部中和され、そう
すると化合物4はもはや二分子膜を形成し得なくなり、
乱れた部分ができて、蛍光プローブ5の透過が速くなる
ものと考えられる(Ill)。そして、このような作用
機作はpHの変化にともない可逆的に変化するものであ
る。
Even when the temperature rises above Tc, the p of the external aqueous phase
) When I is 7, the phosphoric acid is in the form of an anion, so it forms a bilayer membrane with high barrier ability and does not allow the fluorescent probe 5 to pass through (II). When the temperature decreases, the polar groups are partially neutralized, and then compound 4 is no longer able to form a bilayer membrane.
It is thought that a disordered area is formed, and the passage of the fluorescent probe 5 becomes faster (Ill). Such a mechanism of action changes reversibly with changes in pH.

このように二分子膜形成化合物でコートしたナイロンカ
プセルは、蛍光プローブをカプセル内水相にトラップす
るだけでなく、他の物質もトラップすることが可能であ
り、各種の用途に使用することが期待される。例えば、
上記したようにで示されるように蛍光プローブによる膜
透過性の測定;制癌剤その他各種薬剤によるミサイル療
法ないし徐放性マイクロカプセル:酵素または微生物に
よる発酵生産;抗原を用いる抗体その他免疫物質の生産
;組織を用いる生理学的各種モデルその他、工業的、生
物学的、医学的、農芸化学的、薬学的な用途に対して使
用することが期待できる、以下、本発明を実施例につい
て更に詳しく説明する。
Nylon capsules coated with bilayer-forming compounds in this way not only trap fluorescent probes in the aqueous phase within the capsule, but also other substances, and are expected to be used for a variety of applications. be done. for example,
As shown above, measurement of membrane permeability using fluorescent probes; missile therapy or sustained release microcapsules using anticancer drugs and other various drugs; fermentation production using enzymes or microorganisms; production of antibodies and other immune substances using antigens; tissue The present invention is expected to be used for various physiological models using the present invention, as well as for industrial, biological, medical, agricultural chemical, and pharmaceutical applications.

実施例 常法により、次のようにしてナイロンカプセルを製造し
た。すなわち、lIllmolの1,10−ビス(クロ
ルカルボニル)デカン及び架橋剤とじて0.03−0.
]m molのtrymesoil chloride
を100IIIQの混合溶媒に溶解し、その80IIQ
を直径15cmのペトリ皿嘔入れた。エチレンジアミン
(0,38M)及びNa0)1(0、8M )を含む水
溶液2mQを、1号ステンレス針のついたガラスシリン
ジで前出の酸クロリド溶液に滴下した。この工程期間中
、ペトリ皿は常に細かく振動せしめておいた。
EXAMPLE A nylon capsule was manufactured in the following manner using a conventional method. That is, 1Illmol of 1,10-bis(chlorocarbonyl)decane and 0.03-0.0.
]m mol of trymesoil chloride
is dissolved in a mixed solvent of 100IIIQ, and the 80IIQ
was placed in a Petri dish with a diameter of 15 cm. 2 mQ of an aqueous solution containing ethylenediamine (0.38M) and Na0)1 (0.8M) was dropped into the acid chloride solution mentioned above using a glass syringe equipped with a No. 1 stainless steel needle. During this process, the Petri dish was kept in constant vibration.

滴下後、残りの酸クロリド溶液(20wQ)を加え、1
0分間ペトリ皿をゆらしながら反応させた。反応後、溶
液をデカンテーションしてカプセルを混合有機溶媒で3
回洗滌した。この方法で、直径2−2.5mm、膜厚1
−10μmの粒径のそろったナイロンカプセルを得た。
After dropping, add the remaining acid chloride solution (20wQ) and
The reaction was allowed to occur while shaking the Petri dish for 0 minutes. After the reaction, the solution was decanted and the capsules were washed with a mixed organic solvent.
Washed twice. With this method, the diameter is 2-2.5 mm, the film thickness is 1
-Nylon capsules with a uniform particle size of 10 μm were obtained.

直径2mm、膜厚1μmのナイロンカプセルを集め、こ
れを常法にしたがって、lXl0−3Mの蛍光プローブ 03Na を含む0.01Mリン酸バッファー中で透析し、蛍光プ
ローブを内空部に封入せしめた。
Nylon capsules with a diameter of 2 mm and a film thickness of 1 μm were collected and dialyzed in a 0.01 M phosphate buffer containing 1X10-3 M of fluorescent probe 03Na according to a conventional method to encapsulate the fluorescent probe in the inner space.

これを、常法にしたがって、次式で示されるジドデシル
リン酸ナトリウム塩からなる二分子膜形成能を有する両
親媒性化合物 10mgをドデカンIIIQに60℃に加熱しながら溶
メ1した溶液に加えた。そして室温になるまで放冷し、
その後1時間放置して目的とするナイロンカプセルを得
た。
This was added to a solution in which 10 mg of an amphipathic compound having the ability to form a bilayer membrane consisting of didodecyl phosphate sodium salt represented by the following formula was dissolved in dodecane IIIQ while heating at 60° C. according to a conventional method. Then let it cool to room temperature,
Thereafter, it was left to stand for 1 hour to obtain the desired nylon capsule.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るナイロンカプセルを模式的に且
つ一部を誇張拡大した断面図である。第2図は、外部p
Hの変化に伴う透過係数の変化を図示したものである。 第3図は、ナイロンカプセルの膜透過性のメカニズムを
図解した模式図である。 1・・・ナイロンカプセル 4 ・二分子膜 5・・・蛍光プローブ 代理人 弁理士 戸 1)親 男  O H
FIG. 1 is a schematic cross-sectional view of a nylon capsule according to the present invention, with a portion thereof being exaggerated and enlarged. Figure 2 shows the external p
It is a diagram illustrating a change in transmission coefficient due to a change in H. FIG. 3 is a schematic diagram illustrating the membrane permeability mechanism of a nylon capsule. 1... Nylon capsule 4 ・Bilayer membrane 5... Fluorescent probe representative Patent attorney Door 1) Parent Male O H

Claims (1)

【特許請求の範囲】[Claims] ナイロンカプセル膜の細孔部にジドデシルリン酸ナトリ
ウムを充当してなることを特徴とするpHに応答するナ
イロンカプセル。
A nylon capsule responsive to pH, characterized in that the pores of a nylon capsule membrane are filled with sodium didodecyl phosphate.
JP59144321A 1984-07-13 1984-07-13 Nylon capsule responding to ph Granted JPS6125633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144321A JPS6125633A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144321A JPS6125633A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Publications (2)

Publication Number Publication Date
JPS6125633A true JPS6125633A (en) 1986-02-04
JPH0453582B2 JPH0453582B2 (en) 1992-08-27

Family

ID=15359373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144321A Granted JPS6125633A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Country Status (1)

Country Link
JP (1) JPS6125633A (en)

Also Published As

Publication number Publication date
JPH0453582B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
US4548955A (en) Nylon capsule responding to pH
Peyratout et al. Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers
He et al. Molecular assembly and application of biomimetic microcapsules
Sukhorukov et al. Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications
JP6234371B2 (en) Multisome: Encapsulated microdroplet network
JPH0453580B2 (en)
WO2008095007A1 (en) Hollow microspheres particles
Ma et al. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications
CN105749288B (en) The mesoporous silicon dioxide micro-sphere and its synthetic method of a kind of monitoring of near infrared light, controlled drug release
CN109172587A (en) A kind of metal organic frame-that pH responds double drug releases goes up the preparation method and application of conversion nano system
US5739020A (en) Encapsulation of animal and microbial cells in an inorganic gel prepared from an organosilicon
TW200946143A (en) Method for forming a drug container having the magnetic nano single-crystalline capsule
Malviya et al. Self-healable lanthanoid-based metallogels: dye removal and crystallization in the confined gel state
KR101723166B1 (en) Fluorescence nanoporous Silica Nanopaticle Coated with Lipid Bilayer and Method of Preparing the Same
Shukla et al. A review on tunable multi-functional Prussian blue nanoparticles; their promising biological applications & future directions
JPS6125633A (en) Nylon capsule responding to ph
US11304903B2 (en) Compartmentalised gel matrix and method of production
JP2013166100A (en) Microcapsule
CN110522726A (en) A kind of preparation method and benzhexol hydrochloride liposome of benzhexol hydrochloride liposome
JPH0459930B2 (en)
JPH0453581B2 (en)
CN105688219A (en) Thermo-sensitive hybrid particulate drug carrier and preparation method and application thereof
JP7157999B2 (en) Method for culturing microorganisms using vesicles encapsulating microorganisms
Ulatowska-Jarza et al. Advantages of sol-gel technologies for biomedical applications
Schmidt Calcium Phosphate Based Nanoshell for use in Biomedical Applications