JPH0459930B2 - - Google Patents

Info

Publication number
JPH0459930B2
JPH0459930B2 JP59144322A JP14432284A JPH0459930B2 JP H0459930 B2 JPH0459930 B2 JP H0459930B2 JP 59144322 A JP59144322 A JP 59144322A JP 14432284 A JP14432284 A JP 14432284A JP H0459930 B2 JPH0459930 B2 JP H0459930B2
Authority
JP
Japan
Prior art keywords
nylon
capsule
membrane
bilayer membrane
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59144322A
Other languages
Japanese (ja)
Other versions
JPS6125634A (en
Inventor
Shigeo Okahata
Takahiro Seki
Kazuyuki Yonemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP59144322A priority Critical patent/JPS6125634A/en
Publication of JPS6125634A publication Critical patent/JPS6125634A/en
Publication of JPH0459930B2 publication Critical patent/JPH0459930B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/203Exchange of core-forming material by diffusion through the capsule wall

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ナイロンカプセルに関し、更に詳細
にはPHの微妙な変化に応じて膜透過性を可逆的に
変化させる全く新規な構造を有するナイロンカプ
セルに関する。 外部PHの変化といつた外部刺激に応答して膜透
過性を可逆的に変化せしめる膜を有する小胞体
は、生体内の反応モデル、薬物のキヤリアーとし
て治療、診断、生理代謝といつた非常に広い分野
において、研究用、実地用に有用な物質であり、
一種の人工細胞ともいうことができる。またPHの
変化に応じて膜が開閉して小胞体内に収容してお
いた着色液体等が流出するようにしてとけばPHイ
ンデイケーターとしても有効に利用することがで
き、理工学、生物学、医学の分野において測定、
分析用ツールとしても有効に使用することができ
る。したがつて、このような物質の新規開発が当
業界において強く望まれていた。 本発明は、このように技術の現状に鑑みてなさ
れたものであつて、従来知られていないきわめて
すぐれたPH応答性を有する小胞体、カプセルを人
工的に且つ生体物質を使用することなく、大量生
産するためになされたものである。 そこでベースとなる物質としては、工業的に大
量生産するには合成高分子物質が、価格的にもま
た品質安定性の面からも、また処理の容易性とい
つた面からも好適であると考え、数多く存在する
合成高分子物質のなかから、各方面からの検討を
加えた結果、ナイロンを選択するに到つた。通常
のポラスチツク技術という面からすると、ナイロ
ンは多孔度が高くて吸湿性の高いものは歓迎され
ないのが現状であるが、本発明においてはこのよ
うな多孔質のナイロンがベースとして好適である
ので、いわゆる低品質ナイロンにも新しい用途を
拓いたものといい得よう。 そしてこのナイロンカプセルを作つた後、蛍光
プローブとして1,5−ナフタレンジスルホン酸
ジナトリウム塩を含有せしめたリン酸バツフアー
中でナイロンカプセルを透析してカプセル中空部
内に蛍光プローブをトラツプした。次いでこれ
を、ジトリデシルリン酸ナトリウムのドデカン溶
液中に入れたところ、このジアルキル化合物は、
ナイロンカプセルの細孔部内に充当されたのみで
なく、二分子膜構造となることを発見した。続い
てこのナイロンカプセルをPH2の水に入れたとこ
ろ、全く予期せざることに、カプセル内に収容し
ておいた蛍光プローブが外部に透過し、次いでPH
を7にしたところ蛍光プロープの透過がとまり、
しかもこの反応が可逆的なものであるという全く
新規な知見を得た。 即ち、上記ジアルキル化合物の二分子膜(形
成)化合物となり、その結果、これを細孔部内に
充当してなるナイロン膜は一種の生体細胞膜とな
り、このようなナイロン膜を有するカプセルは、
PHの変化に応じて開閉するイオンゲートを備えた
一種の人工細胞ともいうことができるという新知
見を得たのである。 そこで本発明者等は、この新知見を基礎にし
て、ベースとなるナイロンの検討、上記ジアルキ
ル化合物以外の二分子膜化合物のスクリーニング
その他の研究を巾広く且つ深く行つた結果、遂に
本発明を完成するに到つたものである。 すなわち、本発明は、ナイロンをベースとし、
この細孔部内に特定の二分子膜化合物を充当して
なるナイロン膜で囲まれたナイロンカプセルであ
る。 ナイロンカプセルは、ジアミンと二塩基酸と反
応させたり、またはアミノ酸もしくはラクタムを
重合または重縮合させたりして常法により製造
し、6,6−ナイロン、6,10−ナイロン、2,
12−ナイロンの他の適宜使用される。例えば、二
塩基酸の酸塩化物を水と混ざらない有機溶媒に溶
かしておき、これにジアミンのアルカリ水溶液を
加えて、両液相の界面にナイロンカプセルを瞬間
的に生成せしめるといつた界面重合といつた方法
その他適宜な方法でナイロンカプセルを製造す
る。ジアミンのアルカリ液滴の大きさを変える等
といつた方法でカプセルの大きさも自由に調節で
きる。 本発明によれば、このナイロンカプセルは、そ
の中に収容すべき物質の緩衝溶液といつた溶液類
内で透析して、該物質をカプセルの中空部内に収
容せしめる。これをそのまま、ドデカンといつた
有機溶媒に二分子膜化合物をとかした溶液中に入
れて放置すれば、ナイロンカプセル細孔部内に二
分子膜化合物が充当された目的とするナイロンカ
プセルが得られるのである。 このようにして得られた本発明に係るナイロン
カプセルを模式的に且つ一部を誇張拡大して図示
したものが第1図である。 ナイロンカプセル1は、ナイロンカプセル膜2
から成るが、この膜は多孔質であつて、細孔部3
を通して内外部が連通している。この細孔部3に
はジトリデシルリン酸ナトリウムといつた
The present invention relates to a nylon capsule, and more particularly to a nylon capsule having a completely novel structure that reversibly changes membrane permeability in response to subtle changes in pH. The endoplasmic reticulum, which has a membrane that reversibly changes its membrane permeability in response to external stimuli such as changes in external pH, is extremely useful in treatment, diagnosis, and physiological metabolism as an in-vivo reaction model and drug carrier. It is a useful substance for research and practical use in a wide range of fields.
They can also be called a type of artificial cell. In addition, if the membrane opens and closes in response to changes in pH, allowing colored liquid stored in the endoplasmic reticulum to flow out, it can be effectively used as a pH indicator. , measurements in the field of medicine,
It can also be effectively used as an analysis tool. Therefore, there has been a strong desire in the art to develop new such substances. The present invention has been made in view of the current state of the technology, and it is possible to create endoplasmic reticulum and capsules that have extremely excellent PH responsiveness, which has not been known in the past, artificially and without using biological materials. This was done for mass production. Therefore, as a base substance, synthetic polymer substances are suitable for industrial mass production in terms of price, quality stability, and ease of processing. After considering many synthetic polymer materials and considering various aspects, we decided on nylon. From the perspective of normal plastic technology, nylon with high porosity and high moisture absorption is not welcomed, but in the present invention, such porous nylon is suitable as a base. It can be said that this product has opened up new uses for so-called low-quality nylon. After making this nylon capsule, the nylon capsule was dialyzed in a phosphate buffer containing 1,5-naphthalenedisulfonic acid disodium salt as a fluorescent probe to trap the fluorescent probe inside the capsule cavity. When this was then placed in a solution of sodium ditridecyl phosphate in dodecane, the dialkyl compound was
They discovered that the nylon capsule not only filled the pores of the capsule, but also formed a bilayer membrane structure. Next, when this nylon capsule was placed in water with a pH of 2, it was completely unexpected that the fluorescent probe housed inside the capsule permeated to the outside, and then the pH increased.
When I set it to 7, the fluorescent probe stopped passing through.
Furthermore, we obtained a completely new finding that this reaction is reversible. That is, the above-mentioned dialkyl compound becomes a bilayer membrane (forming) compound, and as a result, the nylon membrane formed by filling the pores with this bilayer membrane becomes a kind of biological cell membrane, and a capsule having such a nylon membrane is
They obtained new knowledge that they can be called a type of artificial cell equipped with an ion gate that opens and closes in response to changes in pH. Based on this new knowledge, the present inventors conducted extensive and deep research on nylon as a base, screening for bilayer membrane compounds other than the above-mentioned dialkyl compounds, and finally completed the present invention. This is what I have come to do. That is, the present invention is based on nylon,
It is a nylon capsule surrounded by a nylon membrane made by filling the pores with a specific bilayer membrane compound. Nylon capsules are manufactured by a conventional method by reacting diamines with dibasic acids, or by polymerizing or polycondensing amino acids or lactams, and are produced using 6,6-nylon, 6,10-nylon, 2,
12 - Other suitable uses of nylon. For example, interfacial polymerization involves dissolving the acid chloride of a dibasic acid in an organic solvent that does not mix with water, and adding an alkaline aqueous solution of diamine to this solution to instantaneously form nylon capsules at the interface of both liquid phases. Nylon capsules are manufactured by the method described above or any other suitable method. The size of the capsule can be adjusted freely by changing the size of the diamine alkaline droplets. According to the present invention, the nylon capsule is dialyzed in solutions, such as buffered solutions, of the substance to be contained therein to cause the substance to be contained within the cavity of the capsule. If this is placed in a solution of a bilayer membrane compound dissolved in an organic solvent such as dodecane and left to stand, the desired nylon capsule in which the bilayer membrane compound is filled in the pores of the nylon capsule can be obtained. be. FIG. 1 is a schematic illustration of a nylon capsule according to the present invention obtained in this manner, with a portion thereof being exaggerated and enlarged. The nylon capsule 1 has a nylon capsule membrane 2.
This membrane is porous, with pores 3
The inside and outside are connected through it. This pore 3 contains sodium ditridecyl phosphate.

【式】で示される二分子膜形 成化合物4が充当されている。これを一部拡大し
たものを円内に示したが、該化合物は二分子膜を
形成しており、内水相にトラツプされれいる蛍光
プローブ5はカプセル内に閉じ込められていて、
外へ出ることはない。しかしカプセル外部のPHが
2.5〜2に変化すると該化合物4は二分子膜を形
成維持することができなくなり、蛍光プローブ5
が矢印Aのように外水相へ出ていくのである。 そして、本発明に係るこのナイロンカプセルを
石英セル中に入れ、0.1N HCL及び0.1N NaOH
を用いて外部PHを交互に72に変化させ、
340nm(励起290nm)の発光強度の経時変化によ
つて透過係数を測定し、第2図の結果を得た。 二分子膜のゲルー液晶相転移温度Tcよりも高
温とした場合には、bで示すように、外部PHが7
の時にはプローブはほとんど透過しないが、外部
PHを2に変化させると膜透過性は9〜10倍の増加
し、再び外部PHを中性に戻すと膜透過性は元の遅
い状態に戻つた。外部PHの変化によるこのような
10倍の膜透過性の変化は二分子膜やカプセル膜に
ダメージを与えることなく数回繰り返し可能であ
つた。 一方、aで示すように、二分子膜でコートして
いないカプセルでは透過も速く、しかも外部PHの
変化によつてもプローブの膜透過性は変化しな
い。また、Tcよりも低温とした場合には、二分
子膜でコートしたカプセルであつても、cで示し
たように、透過も遅く、外部PHの変化によつても
膜透過性にはほとんど差異がみられない。 すなわち、二分子膜でコートしたナイロンカプ
セルは、所定温度のもと、外部PHが変化すること
によつて、その細孔部内に充当した二分子膜化合
物の構造が可逆的に破壊されて、カプセルの内包
部に収容されていた物質が外部へと透過するので
ある。そして、外部PHを更に変化させると二分子
膜化合物の構造がまた元に戻り、物質の透過が停
止ないし低下するのである。つまり、本発明にか
かるナイロンカプセルは、PHに応答して開閉する
イオンゲートを多数有するナイロン膜で取り囲ま
れたカプセル、一種の小胞体ということができ、
この構造は生体細胞に極めて類似したものといえ
る。 このイオンゲート開閉のメカニズムの詳細は今
後の研究にまたねばならないが、次のように推定
される。第3図を参照されたい。カプセル膜2の
細孔部3をコートしている二分子膜形成物質4
は、Tc以下では二分子膜を形成して、蛍光プロ
ーブ5を透過させない()。Tc以上の温度に上
昇した場合であつても、外水相のPHが7の場合に
は、リン酸はアニオンの形になつているので、バ
リアー能の高い二分子膜となつていて、やはり蛍
光プローブ5を透過させない()。しかしなが
ら、PHが低下すると、極性基が一部中和され、そ
うすると化合物4はもはや二分子膜を形成し得な
くなり、乱れた部分ができて、蛍光ピローブ5の
透過が速くなるものと考えられる()。そして、
このような作用機作はPHの変化にともない可逆的
に変化するものである。 このように二分子膜形成化合物でコートしたナ
イロンカプセルは、蛍光プローブをカプセル内水
相にトラツプするだけでなく、他の物質もトラツ
プすることが可能であり、各種の用途に使用する
ことができる。例えば、上記したように で示される蛍光プローブまたは食塩水による膜透
過性の測定;制癌剤その他各種薬剤によるミサイ
ル療法ないし徐放性マイクロカプセル;酵素また
は微生物による発酵生産;抗原を用いる抗体その
他免疫物質の生産;組織を用いる生理学的各種モ
デルその他、工業的、生物学的、医学的、農芸化
学的、薬学的な用途に対して使用することができ
る。 本発明における二分子膜形成化合物は、炭素数
7〜20のジ高級アルキルリン酸のナトリウム、カ
リウム等の金属塩であるが、炭素数12以外のジア
ルカリ化合物が有利に使用することができる。例
えばジヘプチルリン酸、ジノニルリン酸、ジウン
ドデシルリン酸、ジトリデシルリン酸、ジノナデ
シルリン酸、ジエイコサニルリン酸等のナトリウ
ム塩又はカリウム塩等が好適であるが、C8〜17
のジアルキル化合物も勿論有利に使用することが
できる。 以上詳述したように、本発明に係るナイロンカ
プセルはナイロンカプセルの製造、カプセル内へ
の物質の封入、及びナイロン膜細孔部への二分子
膜形成化合物の充当という各工程によつて製造す
るのであるが、これらの工程自体は熟練性をさほ
ど必要とするものではないので、工業化して大量
生産するのに極めてすぐれている。 そのうえ、PHの変化による膜透過性の変化は敏
感且つ可逆的であるうえに、ナイロンカプセルの
寿命が長いので、各種の用途にきわめて長時間使
用することができる。 以下、本発明を実施例について更に詳しく説明
する。 実施例 1 1m molの1,10−ビス(クロルカルボニル)
デカン及び架橋剤として0.03−0.1m molの
trymesoil chlorideを100mlの混合溶媒に溶解し、
その80mlを直径15cmのペトリ皿に入れた。エチレ
ンジアミン(0.38M)及びNaOH(0.8M)を含む
水溶液2mlを1号ステンレス針のついたガラスシ
リンダで前出の酸クロリド溶液に滴下した。この
工程期間中、ペトリ皿は常に細かく振動せしめて
おいた。滴下後、残りの酸クロリド溶液(20ml)
を加え、10分間ペシリ皿をゆらしながら反応させ
た。反応後、溶液をデカンテーシヨンしてカプセ
ルを混合有機溶媒で3回洗浄した。この方法で、
直径2〜2.5mm、膜厚5〜10μmの粒径のそろつた
ナイロンカプセルを得た。 実施例 2 実施例1で製造したナイロンカプセルを0.1M
の食塩水溶液中で3日間充分に透析して、カプセ
ル内空部に食塩水をトラツプした。 このようにして食塩水を内部空間部に封入した
ナイロンカプセルを10ケ取り出し、これを、ジア
ルキル化合物 10mgをドデカン1mlに60℃に加熱しながら溶かし
た溶液に加えた。そして室温になるまで放冷し、
その後1時間放置して目的とするナイロンカプセ
ルを得た。 実施例 3 実施例1で製造したナイロンカプセルを用い
(直径2mm、膜厚1μm)、これを1×10-3Mの蛍光
プローブ を含む0.01Mリン酸バツフアー中で透析し、蛍光
プローブを内空部に封入せしめた。これを、二分
子膜形成化合物 のドデカン溶液に加えて、目的とするナイロンカ
プセルを得た。 実施例 4 二分子膜化合物としてジトリデシルリン酸ナト
リウムを用いたほかは実施例3と同様の処理をく
り返して、蛍光プローブを内包したPH応答性ナイ
ロンカプセルを得た。 実施例 5 実施例2において、ジアルキル化合物の代りに
以下の化合物を用いたほかは実施例2と同様の操
作をくり返して、食塩水を内部に包含し且つ二分
子膜でコートされたナイロンカプセルをそれぞれ
得た。 これらのナイロンカプセルは食塩の透過による
電気伝導度の変化を測定することによつて、可逆
的PH応答性にきわめてすぐれていることが確認さ
れた。
A bilayer membrane-forming compound 4 represented by the formula is appropriate. A partially enlarged view of this is shown in the circle, and the compound forms a bilayer membrane, and the fluorescent probe 5 trapped in the internal aqueous phase is confined within the capsule.
I never go outside. However, the PH outside the capsule
2.5 to 2, the compound 4 is no longer able to form and maintain a bilayer membrane, and the fluorescent probe 5
flows out to the external aqueous phase as shown by arrow A. Then, this nylon capsule according to the present invention was placed in a quartz cell, and 0.1N HCL and 0.1N NaOH were added.
Alternately change the external PH to 72 using
The transmission coefficient was measured based on the change in emission intensity at 340 nm (excitation at 290 nm) over time, and the results shown in FIG. 2 were obtained. When the temperature is higher than the gel-liquid crystal phase transition temperature Tc of the bilayer membrane, the external PH is 7 as shown in b.
When , the probe hardly passes through, but the external
When the pH was changed to 2, the membrane permeability increased 9-10 times, and when the external pH was returned to neutral, the membrane permeability returned to its original slow state. Such as this due to external PH change
The 10-fold change in membrane permeability could be repeated several times without damaging the bilayer membrane or capsule membrane. On the other hand, as shown in a, capsules not coated with a bilayer membrane allow rapid permeation, and the membrane permeability of the probe does not change even when the external pH changes. In addition, when the temperature is lower than Tc, even if the capsule is coated with a bilayer membrane, the permeation is slow, as shown in c, and there is little difference in membrane permeability even with changes in external pH. I can't see it. In other words, when a nylon capsule coated with a bilayer membrane is exposed to a certain temperature and the external PH changes, the structure of the bilayer membrane compound applied to the pores is reversibly destroyed, and the capsule is The substance contained in the inner envelope permeates to the outside. When the external pH is further changed, the structure of the bilayer membrane compound returns to its original state, and the permeation of substances stops or decreases. In other words, the nylon capsule according to the present invention can be said to be a kind of endoplasmic reticulum, a capsule surrounded by a nylon membrane having a large number of ion gates that open and close in response to pH.
This structure can be said to be extremely similar to living cells. Although the details of this ion gate opening/closing mechanism will require further research, it is estimated as follows. Please refer to Figure 3. Bilayer membrane-forming substance 4 coating the pores 3 of the capsule membrane 2
forms a bilayer membrane below Tc and does not allow the fluorescent probe 5 to pass through (). Even when the temperature rises to above Tc, if the pH of the external aqueous phase is 7, phosphoric acid is in the anion form, so it forms a bilayer film with high barrier ability. Does not allow fluorescent probe 5 to pass through (). However, when the pH decreases, some of the polar groups are neutralized, so that compound 4 is no longer able to form a bilayer membrane, creating a disordered region, which increases the rate of permeation of fluorescent pilobes 5 ( ). and,
This mechanism of action changes reversibly with changes in pH. Nylon capsules coated with bilayer-forming compounds in this way can not only trap fluorescent probes in the aqueous phase within the capsule, but can also trap other substances, and can be used for a variety of purposes. . For example, as mentioned above Measurement of membrane permeability using fluorescent probes or saline; Missile therapy or sustained release microcapsules using anticancer drugs and other various drugs; Fermentation production using enzymes or microorganisms; Production of antibodies and other immune substances using antigens; Physiology using tissues It can be used for various industrial, biological, medical, agricultural, chemical, and pharmaceutical applications. The bilayer membrane-forming compound in the present invention is a metal salt such as sodium or potassium of di-higher alkyl phosphoric acid having 7 to 20 carbon atoms, but dialkali compounds having other than 12 carbon atoms can be advantageously used. For example, sodium salts or potassium salts of diheptyl phosphate, dinonyl phosphate, dioundodecyl phosphate, ditridecyl phosphate, dinonadecyl phosphate, dieicosanyl phosphate, etc. are preferred, but C8-17
Of course, dialkyl compounds can also be used advantageously. As detailed above, the nylon capsule according to the present invention is manufactured through the steps of manufacturing the nylon capsule, encapsulating a substance in the capsule, and applying a bilayer membrane-forming compound to the pores of the nylon membrane. However, since these processes themselves do not require much skill, they are extremely suitable for industrialization and mass production. Furthermore, changes in membrane permeability due to changes in PH are sensitive and reversible, and the long life of nylon capsules allows them to be used for a very long time in various applications. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 1 mmol of 1,10-bis(chlorocarbonyl)
0.03−0.1m mol as decane and crosslinker
Dissolve trymesoil chloride in 100ml of mixed solvent,
The 80 ml was placed in a Petri dish with a diameter of 15 cm. 2 ml of an aqueous solution containing ethylenediamine (0.38M) and NaOH (0.8M) was dropped into the above acid chloride solution using a glass cylinder equipped with a No. 1 stainless steel needle. During this process, the Petri dish was kept in constant vibration. After dropping, remaining acid chloride solution (20ml)
was added and allowed to react for 10 minutes while shaking the Pesilli dish. After the reaction, the solution was decanted and the capsules were washed three times with mixed organic solvent. using this method,
Nylon capsules with a uniform particle size of 2 to 2.5 mm in diameter and 5 to 10 μm in film thickness were obtained. Example 2 The nylon capsule produced in Example 1 was 0.1M
The capsule was thoroughly dialyzed in a saline solution for 3 days to trap the saline inside the capsule. In this way, 10 nylon capsules with saline sealed in the internal space were taken out, and these were added to the dialkyl compound. 10 mg was added to a solution of 1 ml of dodecane while heating to 60°C. Then let it cool to room temperature,
Thereafter, it was left to stand for 1 hour to obtain the desired nylon capsule. Example 3 Using the nylon capsule manufactured in Example 1 (diameter 2 mm, film thickness 1 μm), a fluorescent probe of 1×10 -3 M was used. The tube was dialyzed in a 0.01M phosphate buffer containing 0.01M phosphoric acid to encapsulate the fluorescent probe in the inner cavity. This is converted into a bilayer membrane-forming compound. In addition to the dodecane solution, the desired nylon capsules were obtained. Example 4 A PH-responsive nylon capsule containing a fluorescent probe was obtained by repeating the same process as in Example 3 except that sodium ditridecyl phosphate was used as the bilayer membrane compound. Example 5 A nylon capsule containing saline and coated with a bilayer membrane was prepared by repeating the same procedure as in Example 2 except that the following compound was used instead of the dialkyl compound. I got each. By measuring the change in electrical conductivity due to permeation of common salt, it was confirmed that these nylon capsules have excellent reversible PH response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るナイロンカプセルを模
式的に且つ一部を誇張拡大した断面図である。第
2図は、外部PHの変化に伴う透過性の変化を図示
したものである。第3図は、ナイロンカプセルの
膜透過性のメカニズムを図解した模式図である。 1……ナイロンカプセル、4……二分子膜、5
……蛍光プローブ。
FIG. 1 is a schematic cross-sectional view of a nylon capsule according to the present invention, with a portion thereof being exaggerated and enlarged. FIG. 2 illustrates changes in permeability with changes in external PH. FIG. 3 is a schematic diagram illustrating the membrane permeability mechanism of a nylon capsule. 1... Nylon capsule, 4... Bilayer membrane, 5
...Fluorescent probe.

Claims (1)

【特許請求の範囲】 1 ナイロンカプセル膜の細孔部に次式で示され
る化合物 (式中nは12を除く7〜20の整数を表わし、
Mは金属原子を表わす。) を充当してなることを特徴とするPHに応答するナ
イロンカプセル。
[Claims] 1. A compound represented by the following formula in the pores of the nylon capsule membrane. (In the formula, n represents an integer from 7 to 20 excluding 12,
M represents a metal atom. ) A nylon capsule that responds to pH.
JP59144322A 1984-07-13 1984-07-13 Nylon capsule responding to ph Granted JPS6125634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144322A JPS6125634A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144322A JPS6125634A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Publications (2)

Publication Number Publication Date
JPS6125634A JPS6125634A (en) 1986-02-04
JPH0459930B2 true JPH0459930B2 (en) 1992-09-24

Family

ID=15359398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144322A Granted JPS6125634A (en) 1984-07-13 1984-07-13 Nylon capsule responding to ph

Country Status (1)

Country Link
JP (1) JPS6125634A (en)

Also Published As

Publication number Publication date
JPS6125634A (en) 1986-02-04

Similar Documents

Publication Publication Date Title
US4548955A (en) Nylon capsule responding to pH
JPS60227826A (en) Graft capsule responding to ph
Sukhorukov et al. Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications
Peyratout et al. Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers
He et al. Molecular assembly and application of biomimetic microcapsules
Park et al. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells
JP6234371B2 (en) Multisome: Encapsulated microdroplet network
EP1242131A1 (en) Reactive polymeric valve, dispensing devices and methods using same
JPH0341948A (en) Artificial blood vessel accommodating micro capsule containing hormone producing cell in its wall
Yang et al. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment
Borbora et al. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules
Dergunov et al. Building functional nanodevices with vesicle-templated porous polymer nanocapsules
KR101723166B1 (en) Fluorescence nanoporous Silica Nanopaticle Coated with Lipid Bilayer and Method of Preparing the Same
Raee et al. Strong enantiomeric preference on the macroion–counterion interaction induced by weakly associated chiral counterions
KR102246224B1 (en) A preparation method of cellular spheroid and cellular spheroid made thereby
Nozawa et al. Preparation of thermo‐responsive polymer membranes. I
JPH0459930B2 (en)
Li et al. Metal–organic macrocycles with tunable pore microenvironments for selective anion transmembrane transport
JP2013166100A (en) Microcapsule
Singh et al. Highly ordered anodic porous alumina membrane and its surface modification approaches for biomedical application
JPH0453581B2 (en)
EP3600252A1 (en) Compartmentalised gel matrix and method of production
JPH0453582B2 (en)
WO2019008868A1 (en) Method for forming lipid membrane vesicle, and microreactor chip
JP2005083765A (en) Lipid substitution method in artificial lipid double film, artificial lipid double film obtained thereby, manufacturing apparatus of artificial lipid double film and ion permeation measuring instrument