JPH0453581B2 - - Google Patents

Info

Publication number
JPH0453581B2
JPH0453581B2 JP8406884A JP8406884A JPH0453581B2 JP H0453581 B2 JPH0453581 B2 JP H0453581B2 JP 8406884 A JP8406884 A JP 8406884A JP 8406884 A JP8406884 A JP 8406884A JP H0453581 B2 JPH0453581 B2 JP H0453581B2
Authority
JP
Japan
Prior art keywords
nylon
capsule
membrane
compound
bilayer membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8406884A
Other languages
Japanese (ja)
Other versions
JPS60227827A (en
Inventor
Shigeo Okahata
Takahiro Seki
Kazuyuki Yonemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP8406884A priority Critical patent/JPS60227827A/en
Publication of JPS60227827A publication Critical patent/JPS60227827A/en
Publication of JPH0453581B2 publication Critical patent/JPH0453581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Pyridine Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ナイロンカプセルに関し、更に詳細
にはPHの微妙な変化に応じて可逆的に膜透過性を
変化させる全く新規な構造を有するナイロンカプ
セルに関する。 外部刺激に応答して膜透過性を可逆的に変化せ
しめる膜を有する小胞体は、生体内の反応モデ
ル、薬物のキヤリアーとして治療、診断、生理、
代謝といつた非常に広い分野において、研究用、
実地用に有用な物質であり、一種の人工細胞とも
いうことができる。また、PHの変化に応じて膜が
開閉して小胞体内に収容しておいた着色液体等が
流出するようにしておけばPHインデイケーターと
しても有効に利用することができ、理工学、生物
学、医学の分野において測定、分析用ツールとし
ても有効に使用することができる。したがつて、
このような物質の新規開発が当業界において強く
望まれていた。 本発明は、このような技術の現状に鑑みてなさ
れたものであつて、従来知られていないきわめて
すぐれたPH応答性を有する小胞体、カプセルを人
工的に且つ生体物質を使用することなく、大量生
産するためになされたものである。 そこでベースとなる物質としては、工業的に大
量生産するには合成高分子物質が、価格的にもま
た品質安定性の面からも、また処理の容易性とい
つた面からも好適であると考え、数多く存在する
合成高分子物質のなかから、各方面からの検討を
加えた結果、ナイロンを選択するに到つた。通常
のプラスチツク技術という面からすると、ナイロ
ンは多孔度が高くて吸湿性の高いものは歓迎され
ないのが現状であるが、本発明においてはこのよ
うな多孔質のナイロンがベースとして好適である
ので、いわゆる低品質ナイロンにも新しい用途を
拓いたものといい得よう。 そしてこのナイロンでカプセルを作つた後、食
塩水を内部に包含せしめた。これを、 で示されるジアルキル化合物(2C12−suc−
COO)のドデカン溶液中に入れたところ、こ
のジアルキル化合物がナイロンカプセルの細孔部
内に充当されたのみでなく、二分子膜構造となる
ことを発見した。次いでこのナイロンカプセルを
PH2の水に入れたところ、全く予期せざること
に、カプセル内に収容しておいた食塩が外部に透
過し、PHを7にしたところ食塩の透過がとまり、
しもこの反応が可逆的なものであるという全く新
規な知見を得た。 即ち、上記ジアルキル化合物が二分子膜(形
成)化合物となり、その結果、これを細孔部内に
充当してなるナイロン膜は一種の生体細胞膜とな
り、このようなナイロン膜を有するカプセルは、
PHの変化に応じて開閉するイオンゲートを備えた
一種の人工細胞ともいうことできるという新知見
を得たのである。 そこで本発明者等は、この新知見を基礎にし
て、ベースとなるナイロンの検討、上記ジアルキ
ル化合物以外の二分子膜化合物のスクリーニング
その他の研究を広く且つ深く行つた結果、遂に本
発明を完成するに到つたのである。 すなわち、本発明は、ナイロンをベースとし、
この細孔部内に特定の二分子膜化合物を充当して
なるナイロン膜で囲まれたナイロンカプセルであ
る。 ナイロンカプセルは、ジアミンと二塩基酸と反
応させたり、またはアミノ酸もしくはラクタムを
重合または重縮合させたりして常法により製造
し、6,6−ナイロン、6,10−ナイロン、2,
12−ナイロンその他が適宜使用される。例えば、
二塩基酸の酸塩化物を水と混ざらない有機溶媒に
溶かしておき、これにジアミンのアルカリ水溶液
を加えて、両液相の界面にナイロンカプセルを瞬
間的に生成せしめるといつた界面重合といつた方
法その他適宜な方法でナイロンカプセルを製造す
る。ジアミンのアルカリ液の液滴の大きさを変え
る等といつた方法でカプセルの大きさも自由に調
節できる。 本発明によれば、このナイロンカプセルは、そ
の中に収容すべき物質の緩衝液といつた溶液類内
で透析して、該物質をカプセルの中空部内に収容
せしめる。これをそのまま、ドデカンといつた有
機溶媒に二分子膜化合物をとかした溶液中に入れ
て放置すれば、ナイロンカプセルの細孔部内に二
分子膜化合物が充当された目的とするナイロンカ
プセルが得られる。 得られたナイロンカプセルは、所定温度のも
と、外部PHが変化することによつてその細孔部内
に充当した二分子膜化合物の構造が可逆的に破壊
されて、カプセルの内包部に収容されていた物質
が外部へと透過するのである。そして外部PHを更
に変化させると二分子膜化合物の構造がまた元に
戻り、物質の透過が停止ないし低下するのであ
る。つまり、本発明にかかるナイロンカプセル
は、PHに応答して開閉するイオンゲートを多数有
するナイロン膜で取り囲まれたカプセル、一種の
小胞体ということができ、この構造は、生体細胞
に極めて類似したものである。イオンゲート開閉
のメカニズムの詳細は今後の研究にまたねばなら
ないが、二分子膜がゲル状態のときには外部PHが
変化しても二分子膜化合物の荷電は変化しないた
めに膜のバリヤー能は高いけれども、液晶相転移
温度(Tc)以上になると、外水相PHが2の場合
には膜化合物は容易にプロトン化して二分子膜構
造が破壊されて膜透過性が急激に増加して、カプ
セル内空部に収容された物質が外水相内へ出て行
き、それぞれ所定の作用を示すものと思料され
る。そして例えば外水相PHが7になると二分子膜
構造へ可逆的に戻つて、バリヤー能の高い膜にな
り、ナイロンカプセルからの物質の透過は停止す
る。この関係を前記した2C12−suc−COOで示
されるアニオン性二分子膜化合物を例にとつて示
せば次のとおりになるものと推定される。 二分子膜(形式)化合物としては次のものが挙
げられる。例えば、 但し式中、n及びmは9〜19の整数を示し、R
は、(−CH2−)lCOOH、 (−CH2−)lSO3H、 から選択されるものである(但し、lは1〜5の
整数を示し、R′及びR″はH又はCH3を示す。) このような二分子膜化合物を備えたナイロン膜
で囲まれたナイロンカプセルにおいて、このカプ
セル内には目的に応じて各種の物質を極めて容易
に収容させることができ、それぞれの用途に本発
明カプセルを使用することができる。例えば、食
塩水、
The present invention relates to a nylon capsule, and more particularly to a nylon capsule having a completely novel structure that reversibly changes membrane permeability in response to subtle changes in pH. The endoplasmic reticulum, which has a membrane that reversibly changes membrane permeability in response to external stimuli, is used as an in-vivo reaction model and a drug carrier for treatment, diagnosis, physiology, and treatment.
In a very wide field such as metabolism, for research purposes,
It is a substance that is useful for practical purposes, and can also be called a type of artificial cell. In addition, if the membrane opens and closes in response to changes in pH, allowing colored liquid stored in the endoplasmic reticulum to flow out, it can be effectively used as a pH indicator. It can also be effectively used as a measurement and analysis tool in the fields of science and medicine. Therefore,
New development of such substances has been strongly desired in this industry. The present invention has been made in view of the current state of the technology, and it is possible to create endoplasmic reticulum and capsules that have previously unknown and extremely excellent PH responsiveness, without using any artificial biological materials. This was done for mass production. Therefore, as a base substance, synthetic polymer substances are suitable for industrial mass production in terms of price, quality stability, and ease of processing. After considering many synthetic polymer materials and considering various aspects, we decided on nylon. From the perspective of ordinary plastic technology, nylon with high porosity and high moisture absorption is not welcomed, but in the present invention, such porous nylon is suitable as a base. It can be said that this product has opened up new uses for so-called low-quality nylon. After making capsules out of this nylon, they filled them with saline. this, Dialkyl compound (2C 12 -suc-
When the nylon capsule (COO) was placed in a dodecane solution, the researchers discovered that this dialkyl compound not only filled the pores of the nylon capsule, but also formed a bilayer membrane structure. Next, this nylon capsule
When the capsule was placed in water with a pH of 2, the salt contained in the capsule permeated to the outside, and when the pH was set to 7, the salt permeation stopped.
We obtained a completely new finding that this reaction is reversible. That is, the above-mentioned dialkyl compound becomes a bilayer membrane (forming) compound, and as a result, the nylon membrane formed by filling the pores with this dialkyl compound becomes a kind of biological cell membrane, and a capsule having such a nylon membrane is
They obtained new knowledge that they can be called a type of artificial cell equipped with an ion gate that opens and closes in response to changes in pH. Based on this new knowledge, the inventors of the present invention have conducted extensive and deep research on nylon as a base, screening of bilayer membrane compounds other than the above-mentioned dialkyl compounds, and have finally completed the present invention. It was reached. That is, the present invention is based on nylon,
It is a nylon capsule surrounded by a nylon membrane made by filling the pores with a specific bilayer membrane compound. Nylon capsules are manufactured by a conventional method by reacting diamines with dibasic acids, or by polymerizing or polycondensing amino acids or lactams, and are produced using 6,6-nylon, 6,10-nylon, 2,
12-Nylon and others are used as appropriate. for example,
Interfacial polymerization is a process in which an acid chloride of a dibasic acid is dissolved in an organic solvent that does not mix with water, and an alkaline aqueous solution of a diamine is added to the solution to instantly form a nylon capsule at the interface of both liquid phases. The nylon capsules are manufactured by a suitable method. The size of the capsule can be freely adjusted by changing the size of the droplets of diamine alkaline solution. According to the present invention, the nylon capsule is dialyzed in buffered solutions of the substance to be contained therein to cause the substance to be contained within the cavity of the capsule. If this is placed in a solution of a bilayer membrane compound dissolved in an organic solvent such as dodecane and left to stand, the desired nylon capsule with the bilayer membrane compound filled in the pores of the nylon capsule can be obtained. . The structure of the bilayer membrane compound filled in the pores of the obtained nylon capsule is reversibly destroyed by changing the external pH at a predetermined temperature, and the resulting nylon capsule is housed in the inner capsule of the capsule. The substances that had been in the atmosphere permeate to the outside. When the external pH is further changed, the structure of the bilayer membrane compound returns to its original state, and the permeation of substances stops or decreases. In other words, the nylon capsule according to the present invention can be said to be a type of endoplasmic reticulum, a capsule surrounded by a nylon membrane that has many ion gates that open and close in response to pH, and this structure is extremely similar to that of living cells. It is. The details of the mechanism of opening and closing of the ion gate will have to be studied in the future, but when the bilayer membrane is in a gel state, the charge of the bilayer compound does not change even if the external pH changes, so the barrier ability of the membrane is high. When the temperature exceeds the liquid crystal phase transition temperature (T c ), when the external water phase pH is 2, membrane compounds are easily protonated, the bilayer membrane structure is destroyed, membrane permeability increases rapidly, and the capsule It is thought that the substances accommodated in the inner space go out into the external aqueous phase and exhibit their respective predetermined effects. For example, when the pH of the external aqueous phase reaches 7, it reversibly returns to the bilayer membrane structure, becomes a membrane with high barrier ability, and the permeation of substances from the nylon capsule stops. If this relationship is illustrated using the above-mentioned anionic bilayer membrane compound represented by 2C 12 -suc-COO as an example, it is estimated that it will be as follows. Examples of bilayer membrane (formal) compounds include the following. for example, However, in the formula, n and m represent integers of 9 to 19, and R
is (−CH 2 −) l COOH, (−CH 2 −) l SO 3 H, (However, l represents an integer from 1 to 5, and R' and R'' represent H or CH 3. ) Surrounded by a nylon membrane equipped with such a bilayer membrane compound In the nylon capsule, various substances can be very easily accommodated in the capsule depending on the purpose, and the capsule of the present invention can be used for each purpose.For example, saline solution,

【式】で示される蛍光プロー ブによる膜透過性の測定;制癌剤その他各種薬剤
によるミサイル療法ないし徐放性マイクロカプセ
ル;酵素または微生物による発酵生産;抗原を用
いる抗体その他免疫物質の生産;組織を用いる生
理学的各種モデルその他、工業的、生物学的、医
学的、農芸化学的、薬学的な用途に対して広範に
適用することができる。 以上詳述したように、本発明に係るナイロンカ
プセルは、ナイロンカプセルの製造、カプセル内
への物質の封入、及びナイロン膜細孔部への二分
子膜形成物質の充当という各工程によつて製造す
るのであるが、これらの工程自体は熟練性をさほ
ど必要とするものではないので、工業化して大量
生産するのに極めてすぐれている。 そのうえ、PHの変化による膜透過性の変化は敏
感且つ可逆的であるうえに、ナイロンカプセルの
寿命が長いので、各種の用途にきわめて長期間使
用することもできる。 以下、本発明を実施例及び測定例について更に
詳しく説明する。 実施例 1 1m molの1,10−ビス(クロルカルボニル)
デカン及び架橋剤として0.03−0.1m molの
trymesoil chlorideを100mlの混合溶媒に溶解し、
その80mlを直径15cmのペトリ皿に入れた。エチレ
ンジアミン(0.38M)及びNaOH(0.8M)を含む
水溶液2mlを、1号ステンレス針のついたガラス
シリンジで前出の酸クロリド溶液に滴下した。こ
の工程期間中、ペトリ皿は常に細かく振動せしめ
ておいた。滴下後、残りの酸クロリド溶液(20
ml)を加え、10分間ペトリ皿をゆらしながら反応
させた。反応後、溶液をデカンテーシヨンしてカ
プセルを混合有機溶媒で3回洗條した。この方法
で、直径2−2.5mm、膜厚5−10μmの粒径のそろ
つたナイロンカプセルを得た。 実施例 2 実施例1で製造したナイロンカプセルを0.1M
の食塩水溶液中で3日間充分に透析して、カプセ
ル内空部に食塩水をトラツプした。 このようにして食塩水を内部空間部に封入した
ナイロンカプセルを10ケ取り出し、これを、ジア
ルキル化合物 10mgをドデカン1mlに60℃に加熱しながら溶かし
た溶液に加えた。そして室温になるまで放冷し、
その後1時間放置して目的とするナイロンカプセ
ルを得た。 実施例 3 実施例1で製造したナイロンカプセルを用い
(直径2mm、膜厚1μm)、これを1×10-3Mの蛍光
プローブ を含む0.01Mリン酸バツフアー中で透析し、蛍光
プローブを内空部に封入せしめた。これを、二分
子膜化合物 のドデカン溶液に加えて、目的とするナイロンカ
プセルを得た。 実施例 4 二分子膜化合物として実施例2で用いたジアル
キル化合物(2C12−suc−COO)を用いたほか
は実施例3と同様の処理をくり返して、蛍光プロ
ーブを内包したPH応答性ナイロンカプセルを得
た。 実施例 5 実施例2において、ジアルキル化合物の代りに
以下の化合物を用いたほかは実施例2と同様の操
作をくり返して、食塩水を内部に包含し且つ二分
子膜でコートされたナイロンカプセルをそれぞれ
得た。 これらのナイロンカプセルは、後記する測定例
にしたがつて測定した結果、可逆的PH応答性にき
わめてすぐれていることが確認された。 測定例 1 実施例4で製造したナイロンカプセルを石英セ
ル中に入れ、0.1N HCl及び0.1N NaOHを用い
て外水相のPHを2及び7にかえて、蛍光分析によ
り蛍光強度の経時変化を測定し、図面の結果を得
た。 図面は、ナイロンカプセルからの蛍光プローブ
の透過性の可逆的変化を図示したものであり、外
部PHを2と7に変化させた時のカプセル外水相の
けい光強度の経時変化を示したものである。二分
子膜でコートしていないカプセルでは透過も速
く、外部PHの変化によりプローブの膜透過性は変
化しなかつた。2C12−suc−COO二分子膜でコ
ートしたカプセルでは、低温(25℃)、すなわち
Tc以下では透過も遅く、外部PHを2と7と変化
させてもほとんど膜透過性に差がみられなかつ
た。しかし、高温(56℃)では、外部PHが7の時
にはプローブはほとんど透過しないが、外部PHを
2に変化させると膜透過性は9〜10倍も増加し、
再び外部PHを中性に戻すと膜透過性は元の遅い状
態に戻つた。外部PHの変化によるこのような10倍
の膜透過性の変化は二分子膜やカプセル膜にダメ
ージを与えることなく数回繰り返し可能であつ
た。 測定例 2 実施例2で製造したナイロンカプセルをセル中
に入れ、外水層に0.1M HCl水溶液を極微量加
え、外水層のPHを2に変化させ、その時のカプセ
ル内水層から外水層への膜透過性を、電気伝導度
を測定することによつて追跡した。 その結果、外水層のPHが2になると、NaClが
カプセル外に透過して出ていくことが確認され
た。
Measurement of membrane permeability using a fluorescent probe represented by the formula; Missile therapy or sustained release microcapsules using anticancer drugs and other various drugs; Fermentative production using enzymes or microorganisms; Production of antibodies and other immune substances using antigens; Physiology using tissues It can be widely applied to various industrial models, as well as industrial, biological, medical, agricultural chemical, and pharmaceutical applications. As detailed above, the nylon capsule according to the present invention is manufactured through the steps of manufacturing a nylon capsule, encapsulating a substance in the capsule, and applying a bilayer membrane-forming substance to the pores of the nylon membrane. However, since these processes themselves do not require much skill, they are extremely suitable for industrialization and mass production. Furthermore, changes in membrane permeability due to changes in PH are sensitive and reversible, and the nylon capsule has a long lifespan, so it can be used for a very long time in various applications. Hereinafter, the present invention will be explained in more detail with reference to Examples and Measurement Examples. Example 1 1 mmol of 1,10-bis(chlorocarbonyl)
0.03−0.1m mol as decane and crosslinker
Dissolve trymesoil chloride in 100ml of mixed solvent,
The 80 ml was placed in a Petri dish with a diameter of 15 cm. 2 ml of an aqueous solution containing ethylenediamine (0.38M) and NaOH (0.8M) was added dropwise to the above acid chloride solution using a glass syringe equipped with a No. 1 stainless steel needle. During this process, the Petri dish was kept in constant vibration. After dropping, add remaining acid chloride solution (20
ml) and allowed to react for 10 minutes while shaking the Petri dish. After the reaction, the solution was decanted and the capsules were washed three times with mixed organic solvent. By this method, nylon capsules with a uniform particle size of 2-2.5 mm in diameter and 5-10 μm in film thickness were obtained. Example 2 The nylon capsule produced in Example 1 was 0.1M
The capsule was thoroughly dialyzed in a saline solution for 3 days to trap the saline inside the capsule. In this way, 10 nylon capsules with saline sealed in the internal space were taken out, and these were added to the dialkyl compound. 10 mg was added to a solution of 1 ml of dodecane while heating to 60°C. Then let it cool to room temperature,
Thereafter, it was left to stand for 1 hour to obtain the desired nylon capsule. Example 3 Using the nylon capsule manufactured in Example 1 (diameter 2 mm, film thickness 1 μm), it was used as a fluorescent probe of 1×10 -3 M. The tube was dialyzed in a 0.01M phosphate buffer containing 0.01M phosphoric acid to encapsulate the fluorescent probe in the inner cavity. This is a bilayer membrane compound. In addition to the dodecane solution, the desired nylon capsules were obtained. Example 4 The same process as in Example 3 was repeated except that the dialkyl compound (2C 12 -suc-COO) used in Example 2 was used as the bilayer membrane compound to produce a PH-responsive nylon capsule containing a fluorescent probe. I got it. Example 5 A nylon capsule containing saline and coated with a bilayer membrane was prepared by repeating the same procedure as in Example 2 except that the following compound was used instead of the dialkyl compound. I got each. These nylon capsules were measured in accordance with the measurement examples described later, and as a result, it was confirmed that these nylon capsules had extremely excellent reversible PH response. Measurement example 1 The nylon capsule produced in Example 4 was placed in a quartz cell, the pH of the external aqueous phase was changed to 2 and 7 using 0.1N HCl and 0.1N NaOH, and the change in fluorescence intensity over time was measured by fluorescence analysis. Measured and got the results in the drawing. The figure illustrates the reversible change in the permeability of the fluorescent probe from the nylon capsule, and shows the change over time in the fluorescence intensity of the aqueous phase outside the capsule when the external pH was changed from 2 to 7. It is. Permeation was rapid in capsules not coated with a bilayer membrane, and membrane permeability of the probe did not change with changes in external pH. In capsules coated with 2C 12 −suc−COO bilayer, low temperature (25°C), i.e.
Below T c , permeation was slow, and even when the external pH was varied between 2 and 7, there was almost no difference in membrane permeability. However, at high temperatures (56°C), when the external pH is 7, the probe hardly passes through the membrane, but when the external pH is changed to 2, the membrane permeability increases by 9 to 10 times.
When the external pH was returned to neutral again, the membrane permeability returned to its original slow state. Such a 10-fold change in membrane permeability due to a change in external pH could be repeated several times without damaging the bilayer membrane or capsule membrane. Measurement Example 2 The nylon capsule manufactured in Example 2 was placed in a cell, and a very small amount of 0.1M HCl aqueous solution was added to the outer water layer to change the pH of the outer water layer to 2, and the outer water was removed from the capsule inner water layer at that time. Membrane permeability through the layers was followed by measuring electrical conductivity. As a result, it was confirmed that when the pH of the outer water layer reached 2, NaCl permeated out of the capsule.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、ナイロンカプセルからの蛍光プローブ
の透過性の変化を図示したものである。 a……二分子膜でコートしないカプセル(56
℃)、b……二分子膜でコートしたカプセル(56
℃、Tc以上)、c……二分子膜でコートしたカプ
セル(25℃、Tc以下)。
The figure illustrates the change in permeability of a fluorescent probe from a nylon capsule. a...Capsule not coated with bilayer membrane (56
°C), b... Capsule coated with bilayer membrane (56
℃, Tc or higher), c... Capsule coated with bilayer membrane (25℃, Tc or lower).

Claims (1)

【特許請求の範囲】 1 ナイロンカプセルの細孔部に式(1)〜(4)で示さ
れる化合物の1種以上を充当してなるPHに応答す
るナイロンカプセル。 〔式中、n及びmは9〜19の整数を示し、R
は、−(CH2l−COOH、 −(CH2l−SO3H、 から選ばれるものである。 (但し、lは1〜5の整数を示し、R′及び
R″はH又はCH3を示す)〕
[Scope of Claims] 1. A nylon capsule responsive to pH, which is formed by filling the pores of the nylon capsule with one or more of the compounds represented by formulas (1) to (4). [In the formula, n and m represent integers of 9 to 19, and R
is −(CH 2 ) l −COOH, −(CH 2 ) l −SO 3 H, It is selected from. (However, l represents an integer from 1 to 5, R' and
R″ indicates H or CH 3 )]
JP8406884A 1984-04-27 1984-04-27 Nylon capsule responding to ph Granted JPS60227827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8406884A JPS60227827A (en) 1984-04-27 1984-04-27 Nylon capsule responding to ph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8406884A JPS60227827A (en) 1984-04-27 1984-04-27 Nylon capsule responding to ph

Publications (2)

Publication Number Publication Date
JPS60227827A JPS60227827A (en) 1985-11-13
JPH0453581B2 true JPH0453581B2 (en) 1992-08-27

Family

ID=13820173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8406884A Granted JPS60227827A (en) 1984-04-27 1984-04-27 Nylon capsule responding to ph

Country Status (1)

Country Link
JP (1) JPS60227827A (en)

Also Published As

Publication number Publication date
JPS60227827A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
US4548955A (en) Nylon capsule responding to pH
JPH0453580B2 (en)
Peyratout et al. Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers
Sun et al. Self-assembly of metallacages into multidimensional suprastructures with tunable emissions
Koo et al. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules
WO2001026708A1 (en) Reactive polymeric valve, dispensing devices and methods using same
CN101389374A (en) Molecular sieve and zeolite microneedles and preparation thereof
Lee et al. Bioinspired dual stimuli-responsive membranous system with multiple on–off gates
JPH03140868A (en) Artificial carrier
CN109288860A (en) A kind of application of the gold nano grain of Aminylferrocene class molecular compound modification in pharmacy
KR101723166B1 (en) Fluorescence nanoporous Silica Nanopaticle Coated with Lipid Bilayer and Method of Preparing the Same
Dergunov et al. Building functional nanodevices with vesicle-templated porous polymer nanocapsules
Borbora et al. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules
JPH0453581B2 (en)
Singh et al. Highly ordered anodic porous alumina membrane and its surface modification approaches for biomedical application
JPH0459930B2 (en)
KR100964507B1 (en) Ionic or molecular channel, sensor and antibacterial agent comprising metal-organic polyhedra
Li et al. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells
EP3600252A1 (en) Compartmentalised gel matrix and method of production
JPH0453582B2 (en)
Yang et al. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment
Hu et al. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate
CN103768607B (en) Self-assembled multi-pulse drug-release device, and preparation method and application thereof
CN115887677B (en) Preparation method and application of protein bionic capsules
Bhosale et al. The development of yoctowells as a basis for modeling biological systems