JPS61255978A - Working medium - Google Patents

Working medium

Info

Publication number
JPS61255978A
JPS61255978A JP60097985A JP9798585A JPS61255978A JP S61255978 A JPS61255978 A JP S61255978A JP 60097985 A JP60097985 A JP 60097985A JP 9798585 A JP9798585 A JP 9798585A JP S61255978 A JPS61255978 A JP S61255978A
Authority
JP
Japan
Prior art keywords
perfluoro
working medium
ether
compd
perfluoro ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097985A
Other languages
Japanese (ja)
Inventor
Makoto Segami
瀬上 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60097985A priority Critical patent/JPS61255978A/en
Publication of JPS61255978A publication Critical patent/JPS61255978A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a working medium having an improved efficiency, which comprises a specific perfluoro ether. CONSTITUTION:A working medium comprising a perfluoro ether of the formula (wherein n is an integer of 0-3). A mixture of the perfluoro ether with a halogenated hydrocarbon has further improved characteristics in respect of coefficient of performance on a heat pump etc. as compared with the perfluoro ether alone. The perfluoro ether of the formula can be obtd., e.g., by fluorinating the terminal of a hexafluoropropylene oxide in a polar solvent such as acetonitrile. In the formula, when n=0 the compd. is a perfluoro ether or perfluoro polyether having a b.p. of 29.4 deg.C, when n=1 the compd. is a perfluoro ether or perfluoro polyether having a b.p. of 96.4 deg.C, when n=2 the compd. is a perfluoro ether or perfluoro polyether having a b.p. of 146 deg.C, and when n=3 the compd. is a perfluoro ether or perfluoro polyether having a b.p. of 185.5 deg.C. A perfluoro ether to be used is selected from these perfluoro ethers having different b.p. taking into consideration the service temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ヒートポンプ等に使用し得る新規な作動用媒
体(以下作動媒体と言うことがある。)に関するもので
ある。 [従来の技術] 重油や石油等の燃料を燃焼して得られる温度よりも低い
中低温域の熱源からエネルギーを回収する研究が進み、
海洋温度差発電、地熱バイナリ−発電、廃熱回収発電、
太陽熱発電、あるいはヒートポンプによる昇温、ヒート
パイプによる熱交換技術等が実用化ないしは試験されて
いる。これらの熱回収技術に用いる作動媒体には、水を
はじめプロパンやブタン等の炭化水素類、トリクロロモ
ノフルオロメタン(R−11)や、1.2−ジクロロテ
トラフルオロエタン(R−114)等のフロン類、又は
アンモニア等が知られている。
[Industrial Field of Application] The present invention relates to a novel working medium (hereinafter sometimes referred to as working medium) that can be used in heat pumps and the like. [Conventional technology] Research is progressing to recover energy from heat sources in the medium and low temperature range, which is lower than the temperature obtained by burning fuels such as heavy oil and petroleum.
Ocean temperature difference power generation, geothermal binary power generation, waste heat recovery power generation,
Solar thermal power generation, temperature raising using heat pumps, heat exchange technology using heat pipes, etc. are being put into practical use or being tested. The working media used in these heat recovery technologies include water, hydrocarbons such as propane and butane, and trichloromonofluoromethane (R-11) and 1,2-dichlorotetrafluoroethane (R-114). Fluorocarbons, ammonia, etc. are known.

【発明の解決しようとする問題点】[Problems to be solved by the invention]

作動用媒体として従来から用いられているフロン類は特
に潤滑油の存在下で不安定となり。 圧縮機において高い吐出温度で作動するヒートポンプに
対しては不適当である。これに対し、水は安定性の点で
は問題がないが、低温で使用する場合、蒸気の比容積が
大きく、設備が大きくなると共に効率も低下する。更に
、凝固点が高い為、低温で作動するときは凝結するため
、使用温度には限界がある。また、省エネルギーの立場
から新しい作動用媒体の開発による効率の改善が期待さ
れている0例えば、ヒートポンプシステムにおいてその
加熱、冷却能力とその運転に必要な電気エネルギーとの
比である成績係数を向上せしめかつ作動媒体の圧縮機吸
入容積当りの能力(加熱、冷却能力)を向上させ。 従来、用いられている作動用媒体の欠点を改善する新作
動用媒体の開発が望まれている。 [問題点を解決するための手段] 本発明者らはそのような要望に応えるべく種々研究を重
ねた結果下記一般式(りで表わされるパーフルオロエー
テル類 C3F7O− [CF CCF3 )CFzol n−
C2F5     (1)n厘θ〜3 が作動用媒体として優れた特性をもつことを見出した。 更E、パーフルオロエーテル類とハロゲン化炭化水素を
混合した混合系はパーフルオロエーテル類に比べさらに
優れた特性をもつことを見出した。すなわち、本発明は
、前記一般式(1)で表わされるパーフルオロエーテル
類を必須成分とする作動用媒体及びパーフルオロエーテ
ル類とハロゲン化炭化水素とを必須成分とする作動用媒
体に関するものである。 本発明におけるパーフルオロエーテル類は・。 例えばBフッ化プロピレンオキサイド(以下θFPOと
略す)をアセトニトリル等の極性溶剤中、硝酸銀の存在
下、θ〜IQ”Oの低温で重合させ、さらに末端をフッ
素化処理することにより得られる。前記一般式(1)に
おいてn=0は沸点28.4℃、nJは、沸点88.4
℃、nm2は沸点14B’O,nm3は沸点185.5
℃のパーフルオロエーテル又はパーフルオロポリエーテ
ルである0作動用媒体の使用温度に従って、これらの沸
点の違うパーフルオロエーテル類を使いわければよい、
nが4以上の化合物は、沸点が高すぎるため通常の作動
用媒体としての使用には不適当である。パーフルオロエ
ーテル類は、不燃性で熱的、化学的に安定であり、使用
温度や共存物質の影響を受けにくいため、長期間運転可
能な作動用媒体として適している。 パーフルオロエーテル類とハロゲン化炭化水素とを併用
することにより、例えばヒートポンプの成績係数等が向
上する。ハロゲン化炭化水素としては、パーフルオロエ
ーテル類と沸点が近いものが好ましく、炭素数1〜4の
脂肪族又は環状炭化水素化合物の水素を、塩素、フッ素
、又は臭素等のハロゲン原子で置換した化合物である。 好適な例は、メタン、又は、エタン中の水素の一部又は
全部を塩素、フッ素、又は臭素原子から選ばれる少なく
とも1種で置換した化合物あるいは、炭素93〜4の環
状飽和炭化水素化合物中の水素の一部又は全部を塩素及
び/又はフッ素原子で置換した化合物である。 具体的には、Cに 14 e CG Is F e C
C12F 2 @ CHCIs *CHCItF、 C
HClh、CH2C1teCHsO1,CBr2Fz、
CBrh。 CChF−CG12F、 CC1zF−CCIFr、 
CCIFr−CCIFr。 CBrF2−CBrF2. CCIFz−CFs、 C
;HClz−CCIFz、 CHCh−CFs、 CH
CIF−CClF2. CHCIF−CFs、 CCI
Ft−CjHh。 CHF2−CFs、 CH2Cl−CF3. CCh−
CHs、 CC1h−CH3*CHh−にHs、Ch−
Ch−Ch−Ch、CCIzhとCHh −C1hトノ
共沸混合物、CHCIFzとCC1h −CF3 との
共沸混合物等を挙げることができる。パーフルオロエー
テル類とハロゲン化炭化水素との好ましい混合モル比は
、添付第3〜9表のdLm係数を基準に考えた場合で理
解されるように、併用するハロゲン化炭化水素の種類に
より、変化するものであり、−律に決定されない。 以下本発明の作動用媒体をヒートポンプシステムに適用
する場合について説明する。 第1図、第2図は本発明の作動媒体を用いたヒートポン
プのフローシートを示しており、lは圧縮機、2は凝縮
器、3,3′は負荷流体用起用配管、4は減圧装置、5
は蒸発器、e、e’は熱源流体用配管、7は中間熱交換
器を示す。 第1図に示すヒートポンプサイクルにおいて作動媒体は
圧縮機lで圧縮された後、凝縮器2に導かれ、該凝縮器
z中で管3より導入される高熱源流体により冷却されて
凝縮する。一方。 負荷流体は凝縮器2中で逆に加熱され管3′を経て負荷
加熱に供される。つぎに凝縮した作動媒体は減圧装置4
により減圧された後蒸発器5に導かれ、該蒸発器中で管
6より導入された管Bから排出される熱源流体により加
熱蒸発された後再び圧縮機lに吸引され上記のサイクル
を繰り返す。 第2図に示すヒートポンプサイクルにおいて作動媒体は
圧縮411で圧縮された後中間熱交換器7に導かれ、該
熱交換器7中で凝縮器2で凝縮された作動媒体により過
熱された後、凝縮器2に導かれる。一方、W1縮器2よ
り導入された作動媒体は該熱交換器7により過冷却され
た後、減圧装置4により減圧される。以下は第1図の場
合と同様にサイクルを繰り返す。 第3図は第1図に、又第4図は第2図に示すヒートポン
プシステムにおける作動媒体のサイクルを圧力−エンタ
ルピー線図上に表わしたものである0作動媒体の飽和蒸
気を断熱圧縮した場合、乾き状態になるものが第1図、
及び第3図に、湿り状態になるものが第2図、及び第4
図に相当する。 第1図及び第2図の圧縮機による作動媒体の変化は第3
図及び第4図の8から9あるいは14から15の変化に
、凝縮器による作動媒体の変化は9から11あるいは1
5から18の変化に、減圧装置による作動媒体の変化は
11から12あるいは17から18の変化に、蒸発器に
よる作動媒体の変化は12から8あるいは18から13
の変化K、中間熱交換器に゛よる作動媒体の変化は13
から14及び18から17の変化にそれぞれ対応する。 本発明の作動用媒体は中低温熱源を利用したヒートポン
プシステムに応用する場合に特に有効であるが、ランキ
ンサイクル用あるいは、その他各種の熱回収技術用の作
動媒体として使用することもできる0本発明の作動媒体
は熱安定性が優れており、通常の使用条件においては安
定剤を・必要としないが、苛酷な使用条件のため熱安定
性の向上が必要な場合には、ジメチルホスファイト、ジ
イソプロピルホスファイト、ジフェニルホスファイト等
のホスファイト系化合物、又はチオホスファイト系化合
物、あるいはトリフエノキシホスフィンサルファイド、
トリメチルホスフィンサルファイド等のホスフィンサル
ファイド系化合物、その他の安定剤を作動媒体100重
量部に対し、1重量部前後の少量添加すればよい。 [実施例] 本発明の作動媒体を用いた第1図又は、第2図のヒート
ポンプシステムの運転条件として蒸発器出口温度(符号
8あるいは!3の温度)を50、100℃に、凝縮器に
おける作動媒体の凝縮始めの温度(符号lOあるいは1
5の温度)を100゜150℃に設定した。 第1表〜9表に本発明の作動媒体を用いた上記ノヒート
ポンプシステムにおける設計パラメーターを示す。 第1表 第3表 敦顕50℃ 姻駄150℃ 第1成分03F7O−CF(CF3)CF2叫F5  
 第2成分圓1:+F(R11)第4表 義観50℃ 躯1150℃ 第1成分0sFzO(F(03)CF鐙QFs   第
2成分CG12F2 (R12)第5表 義顧50℃ IJjImJR150℃ 第1成分03F7O(F(α3)σ2缶QFs   第
2成分叩12F(に1)第6表 蒸発温度 50℃   凝縮温度 150℃第1成分c
3 F7O(F(0’3 )CF2O−Q F5  第
2成分01;l2F−CCIF2(R113)第7表 麟顕50℃ 顯顕150℃ 第1成分0zFyかσ(S3)σ2幀F5  第2成分
のlF2−CClF2 (R114)第8表 麟獣50℃ −M 150℃ 第1威分QI F7 D−CF((F3 )CF2()
G F5  第2成分(M2−Oh (R152a)第
9表 麟獣5G℃ m 150℃ 第1 #03F7O−CF(CF3 )σ2O−Q2 
F5 第2成分αrσrαz−CFz(RC318)[
発明の効果] 本発明の新規な作動媒体は熱安定性が優れているため、
従来から知られているR11. R113等のフロン類
では熱安定性の点で適用できない高温域でも適用できる
優れた効果を有している。 更に、熱安定性の優れた水と比べた場合、第1表から理
解されるように、同一条件でヒートポンプサイクルを適
用した場合1本発明の新規な作動媒体は圧縮比を小さく
できると共に、圧縮機吐出温度を100℃以上も低くで
き、圧縮機入口における蒸気の比容積が小さいという優
れた特性を有しており、装置を小型化できたり、工表か
ら理解されるように、本発明の新規な作動媒体は高温ヒ
ートポンプ用作動媒体として、優れた能力を有している
。 第3表〜第9表から理解されるように本発明の新規な作
動媒体にハロゲン化炭化水素を混合した作動媒体混合物
は圧縮機吐出温度を上げず、成績係数及び加熱能力を混
合前の単一媒体を用いた場合に比べ改善することができ
る0例えば03F7OCF(CF3)CF2OCzFs
にR21を混合した系では成績係数03F7O0FCC
F3)CF2O1C2Fsと比べ85%、R21と比べ
46%改善されており、加熱能力については同様に5.
5倍、 1.9倍改善されている。すなわち1本発明の
作動媒体混合物は圧縮機吐出温度を高くすることなく加
熱能力を改善するとともに成績係数も改善することがで
きる特性を有しているといえる。 以上説明したように本発明の新規作動媒体は従来の作動
媒体では適用できない高温域への適用が可能であると共
に、水と比べて圧縮比、圧炭化水素を混合した混合媒体
は成績係数が改善でき、しかも加熱能力を増大すること
ができ、実用上きわめて有用な効果をもたらす。
Freon, which has traditionally been used as a working medium, is particularly unstable in the presence of lubricating oil. It is unsuitable for heat pumps operating at high discharge temperatures in the compressor. On the other hand, water has no problems in terms of stability, but when used at low temperatures, the specific volume of steam is large, which increases the size of the equipment and reduces efficiency. Furthermore, since it has a high freezing point, it condenses when operated at low temperatures, so there is a limit to the temperature at which it can be used. Furthermore, from the perspective of energy conservation, improvements in efficiency are expected through the development of new operating media. It also improves the capacity (heating and cooling capacity) of the working medium per compressor suction volume. It is desired to develop a new working medium that improves the shortcomings of the working medium that has been conventionally used. [Means for Solving the Problems] The present inventors have conducted various studies in order to meet such demands, and as a result, perfluoroethers represented by the following general formula (C3F7O- [CF CCF3 ) CFzol n-
It has been found that C2F5 (1)n θ~3 has excellent properties as a working medium. Furthermore, it has been found that a mixed system of perfluoroethers and halogenated hydrocarbons has even better properties than perfluoroethers. That is, the present invention relates to a working medium containing a perfluoroether represented by the general formula (1) as an essential component, and a working medium containing a perfluoroether and a halogenated hydrocarbon as essential components. . The perfluoroethers in the present invention are... For example, it can be obtained by polymerizing B fluorinated propylene oxide (hereinafter abbreviated as θFPO) in a polar solvent such as acetonitrile in the presence of silver nitrate at a low temperature of θ to IQ''O, and further fluorinating the terminals. In formula (1), n=0 is the boiling point of 28.4°C, and nJ is the boiling point of 88.4
°C, nm2 has a boiling point of 14 B'O, nm3 has a boiling point of 185.5
These perfluoroethers with different boiling points may be used depending on the operating temperature of the working medium, which is a perfluoroether or a perfluoropolyether of °C.
Compounds where n is 4 or more have too high a boiling point and are therefore unsuitable for use as a normal working medium. Perfluoroethers are nonflammable, thermally and chemically stable, and are not easily affected by operating temperature or coexisting substances, so they are suitable as working media that can be operated for long periods of time. The combined use of perfluoroethers and halogenated hydrocarbons improves the coefficient of performance of heat pumps, for example. The halogenated hydrocarbon preferably has a boiling point close to that of perfluoroethers, and is a compound in which hydrogen in an aliphatic or cyclic hydrocarbon compound having 1 to 4 carbon atoms is replaced with a halogen atom such as chlorine, fluorine, or bromine. It is. Preferred examples include compounds in which part or all of the hydrogen in methane or ethane is replaced with at least one selected from chlorine, fluorine, or bromine atoms, or in cyclic saturated hydrocarbon compounds having 93 to 4 carbon atoms. It is a compound in which part or all of hydrogen has been replaced with chlorine and/or fluorine atoms. Specifically, to C 14 e CG Is F e C
C12F 2 @CHCIs *CHCItF, C
HClh, CH2C1teCHsO1, CBr2Fz,
CBrh. CChF-CG12F, CC1zF-CCIFr,
CCIFr-CCIFr. CBrF2-CBrF2. CCIFz-CFs, C
;HClz-CCIFz, CHCh-CFs, CH
CIF-CClF2. CHCIF-CFs, CCI
Ft-CjHh. CHF2-CFs, CH2Cl-CF3. CCh-
CHs, CC1h-CH3*CHh- to Hs, Ch-
Examples include Ch-Ch-Ch, an azeotrope of CCIzh and CHh-C1h, and an azeotrope of CHCIFz and CC1h-CF3. The preferred mixing molar ratio of perfluoroethers and halogenated hydrocarbons varies depending on the type of halogenated hydrocarbon used in combination, as can be understood based on the dLm coefficients in Tables 3 to 9 attached. - not determined by law. The case where the working medium of the present invention is applied to a heat pump system will be described below. Figures 1 and 2 show flow sheets of a heat pump using the working medium of the present invention, where l is a compressor, 2 is a condenser, 3 and 3' are load fluid piping, and 4 is a pressure reducing device. , 5
is an evaporator, e and e' are heat source fluid pipes, and 7 is an intermediate heat exchanger. In the heat pump cycle shown in FIG. 1, the working medium is compressed by a compressor 1 and then led to a condenser 2, where it is cooled and condensed by a high heat source fluid introduced from a pipe 3. on the other hand. The load fluid is inversely heated in the condenser 2 and subjected to load heating via the tube 3'. Next, the condensed working medium is transferred to the pressure reducing device 4
After the pressure is reduced, the fluid is introduced into the evaporator 5, where it is heated and evaporated by the heat source fluid discharged from the pipe B introduced through the pipe 6, and then sucked into the compressor 1 again to repeat the above cycle. In the heat pump cycle shown in FIG. 2, the working medium is compressed in the compression 411 and then led to the intermediate heat exchanger 7, in which it is superheated by the working medium condensed in the condenser 2, and then condensed. Guided by Vessel 2. On the other hand, the working medium introduced from the W1 compressor 2 is supercooled by the heat exchanger 7 and then reduced in pressure by the pressure reducing device 4. Thereafter, the cycle is repeated in the same way as in the case of FIG. Figure 3 is a pressure-enthalpy diagram showing the cycle of the working medium in the heat pump system shown in Figure 1 and Figure 4 is shown in Figure 2.0 When saturated vapor of the working medium is adiabatically compressed , the dry state is shown in Figure 1.
The items that become wet are shown in Fig. 2 and Fig. 4.
Corresponds to the figure. Changes in the working medium due to the compressor in Figures 1 and 2 are shown in Figure 3.
The change in the working medium due to the condenser is from 9 to 11 or 1 to the change from 8 to 9 or from 14 to 15 in Fig.
The change in working medium due to the pressure reducing device is from 11 to 12 or 17 to 18, and the change in working medium due to the evaporator is from 12 to 8 or 18 to 13.
The change in K, the change in the working medium due to the intermediate heat exchanger is 13
14 and 18 to 17, respectively. The working medium of the present invention is particularly effective when applied to a heat pump system using a medium-low temperature heat source, but it can also be used as a working medium for Rankine cycle or various other heat recovery technologies. The working medium has excellent thermal stability and does not require stabilizers under normal usage conditions, but when it is necessary to improve thermal stability due to severe usage conditions, dimethyl phosphite, diisopropyl Phosphite-based compounds such as phosphite and diphenylphosphite, or thiophosphite-based compounds, or triphenoxyphosphine sulfide,
A small amount of about 1 part by weight of a phosphine sulfide compound such as trimethylphosphine sulfide and other stabilizers may be added to 100 parts by weight of the working medium. [Example] The operating conditions for the heat pump system shown in FIG. 1 or 2 using the working medium of the present invention are as follows: the evaporator outlet temperature (the temperature indicated by code 8 or !3) is set at 50 or 100°C, and the condenser is set at 50 or 100°C. Temperature at the beginning of condensation of the working medium (symbol lO or 1
5) was set at 100°C to 150°C. Tables 1 to 9 show design parameters for the above-mentioned noheat pump system using the working medium of the present invention. Table 1 Table 3 Atsushi 50°C Atsushi 150°C 1st component 03F7O-CF (CF3) CF2 F5
2nd component circle 1: +F (R11) 4th expression 50℃ Body 1150℃ 1st component 0sFzO (F (03) CF stirrup QFs 2nd component CG12F2 (R12) 5th expression 50℃ IJjImJR150℃ 1st Component 03F7O (F (α3) σ2 can QFs 2nd component 12F (Ni 1) Table 6 Evaporation temperature 50℃ Condensation temperature 150℃ 1st component c
3 F7O(F(0'3)CF2O-Q F5 2nd component 01; l2F-CCIF2 (R113) Table 7 Rinxian 50℃ Hyunxian 150℃ 1st component 0zFy or σ(S3)σ2幀F5 2nd component 1F2-CClF2 (R114) Table 8 Rinju 50℃ -M 150℃ 1st weight QI F7 D-CF ((F3)CF2()
G F5 2nd component (M2-Oh (R152a) Table 9 Rinju 5G℃ m 150℃ 1st #03F7O-CF (CF3) σ2O-Q2
F5 Second component αrσrαz−CFz (RC318) [
Effect of the invention] Since the novel working fluid of the present invention has excellent thermal stability,
Conventionally known R11. It has an excellent effect that can be applied even in a high temperature range where fluorocarbons such as R113 cannot be applied in terms of thermal stability. Furthermore, when compared with water, which has excellent thermal stability, as can be understood from Table 1, when a heat pump cycle is applied under the same conditions, the novel working medium of the present invention can reduce the compression ratio and It has excellent properties such as lowering the discharge temperature of the compressor by more than 100°C and having a small specific volume of steam at the compressor inlet. The new working medium has excellent capabilities as a working medium for high temperature heat pumps. As can be understood from Tables 3 to 9, the working fluid mixture of the present invention in which a halogenated hydrocarbon is mixed with the novel working fluid does not increase the compressor discharge temperature and improves the coefficient of performance and heating capacity of the unit before mixing. For example, 03F7OCF (CF3)CF2OCzFs
In the system in which R21 is mixed with R21, the coefficient of performance is 03F7O0FCC
F3) Improved by 85% compared to CF2O1C2Fs and 46% compared to R21, and the heating capacity is also 5.
This is an improvement of 5 times and 1.9 times. In other words, it can be said that the working medium mixture of the present invention has characteristics that can improve the heating capacity and the coefficient of performance without increasing the compressor discharge temperature. As explained above, the new working fluid of the present invention can be applied to high temperature ranges that cannot be applied with conventional working fluids, and the compression ratio and the coefficient of performance of the mixed media containing compressed hydrocarbons are improved compared to water. Moreover, the heating capacity can be increased, which brings about an extremely useful effect in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を説明するため
のヒートポンプのフローシート、第3図および第4図は
本発明の媒体をヒートポンプ用作動媒体として用いたサ
イクルを圧力−エンタルピー線図に記入した図である。 第1 図
Figures 1 and 2 are heat pump flow sheets for explaining one embodiment of the present invention, and Figures 3 and 4 are pressure-enthalpy diagrams showing a cycle using the medium of the present invention as a working medium for a heat pump. This is a diagram filled out in the figure. Figure 1

Claims (1)

【特許請求の範囲】 1、下記一般式( I )で表わされるパーフルオロエー
テル類を必須成分とすることを特徴とする作動用媒体。 C_3F_7O−[CF(CF_3)CF_2O]n−
C_2F_5(1)n=0〜3 2、前記一般式(1)で表わされるパーフルオロエーテ
ル類とハロゲン化炭化水素とを必須成分とすることを特
徴とする作動用媒体。
[Claims] 1. A working medium comprising a perfluoroether represented by the following general formula (I) as an essential component. C_3F_7O-[CF(CF_3)CF_2O]n-
C_2F_5(1) n=0 to 3 2. A working medium comprising a perfluoroether represented by the general formula (1) and a halogenated hydrocarbon as essential components.
JP60097985A 1985-05-10 1985-05-10 Working medium Pending JPS61255978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097985A JPS61255978A (en) 1985-05-10 1985-05-10 Working medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097985A JPS61255978A (en) 1985-05-10 1985-05-10 Working medium

Publications (1)

Publication Number Publication Date
JPS61255978A true JPS61255978A (en) 1986-11-13

Family

ID=14206955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097985A Pending JPS61255978A (en) 1985-05-10 1985-05-10 Working medium

Country Status (1)

Country Link
JP (1) JPS61255978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042456A1 (en) * 2003-10-31 2005-05-12 Asahi Glass Company, Limited Fluorine-containing ether compound
WO2007105724A1 (en) * 2006-03-14 2007-09-20 Asahi Glass Company, Limited Working medium for heat cycle, rankine cycle system, heat pump cycle system, and refrigeration cycle system
JP2012247102A (en) * 2011-05-26 2012-12-13 Ihi Corp Heat pump
WO2014087642A1 (en) * 2012-12-06 2014-06-12 パナソニック株式会社 Rankine cycle device, cogeneration system, and rankine cycle device operation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042456A1 (en) * 2003-10-31 2005-05-12 Asahi Glass Company, Limited Fluorine-containing ether compound
US7408019B2 (en) 2003-10-31 2008-08-05 Asahi Glass Company, Limited Fluorinated ether compound
WO2007105724A1 (en) * 2006-03-14 2007-09-20 Asahi Glass Company, Limited Working medium for heat cycle, rankine cycle system, heat pump cycle system, and refrigeration cycle system
US7695636B2 (en) 2006-03-14 2010-04-13 Asahi Glass Company, Limited Working fluid for heat cycle, rankine cycle system, heat pump cycle system and refrigeration cycle system
JP5062170B2 (en) * 2006-03-14 2012-10-31 旭硝子株式会社 Rankine cycle system, working medium for heat pump cycle system or refrigeration cycle system, and Rankine cycle system, heat pump cycle system and refrigeration cycle system
JP2012247102A (en) * 2011-05-26 2012-12-13 Ihi Corp Heat pump
WO2014087642A1 (en) * 2012-12-06 2014-06-12 パナソニック株式会社 Rankine cycle device, cogeneration system, and rankine cycle device operation method
US10364708B2 (en) 2012-12-06 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle apparatus, combined heat and power system, and rankine cycle apparatus operation method

Similar Documents

Publication Publication Date Title
JPH02272086A (en) Operation medium composition
CN101018931B (en) Working fluids for thermal energy conversion of waste heat from fuel cells using rankine cycle systems
US20140305125A1 (en) Working fluid for rankine cycle
CN108844253B (en) Super-high temperature non-azeotropic working medium heat pump unit
JPS61255978A (en) Working medium
CN101285664A (en) Supercritical phase-change intensified heat diffusion method and its heat-transfer medium and applications
Li et al. Thermodynamic analysis of subcritical/transcritical ORCs with metal–organic heat carriers for efficient power generation from low-grade thermal energy
JPH01139678A (en) Working medium mixture
EP0110389B1 (en) Working fluids for rankine cycle
JPS6213481A (en) Working fluid
JPH01153786A (en) Working medium mixture
JPS6213482A (en) Working fluid
JPH0192286A (en) Working medium mixture
JPH05279659A (en) Working fluid for rankine cycle
JPH0119719B2 (en)
EP0101856B1 (en) Working fluids for rankine cycle
JPH0461910B2 (en)
JPS6312506B2 (en)
JPS60245686A (en) Hydraulic medium mixture
JPS60255885A (en) Mixed hydraulic fluid for rankine cycle
JPS60212481A (en) Operating medium mixture
CN117659951A (en) Mixed refrigerant and preparation method and application thereof
JPH01139683A (en) Working medium mixture
JPH01168785A (en) Working medium mixture
JPS60166374A (en) Working medium and heat pump using said working medium