JPS61255318A - Endoscope device - Google Patents

Endoscope device

Info

Publication number
JPS61255318A
JPS61255318A JP60096951A JP9695185A JPS61255318A JP S61255318 A JPS61255318 A JP S61255318A JP 60096951 A JP60096951 A JP 60096951A JP 9695185 A JP9695185 A JP 9695185A JP S61255318 A JPS61255318 A JP S61255318A
Authority
JP
Japan
Prior art keywords
light
endoscope
spot light
subject
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60096951A
Other languages
Japanese (ja)
Other versions
JPH0679110B2 (en
Inventor
Tatsuo Nagasaki
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60096951A priority Critical patent/JPH0679110B2/en
Publication of JPS61255318A publication Critical patent/JPS61255318A/en
Publication of JPH0679110B2 publication Critical patent/JPH0679110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain an endoscope device which can pick up an object with high resolution without enlarging the diameter of its endoscope, by providing a means which irradiates spot light upon the object while making two-dimensional scanning and another means which photoelectrically converts the reflecting light from the object. CONSTITUTION:Since spot light made incident on a 'SELFOC(R)' fiber lens 18 is projected on an object 20 after it is enlarged in accordance with a necessary light distributing angle by means of an enlarging lens 16 at the front end of an endoscope and the object is illuminated, the spot light scans the object 20 in accordance with the raster scan of an electron beam. Reflecting light from the object 20 is photoelectrically converted by a photoreceptor element 12 contained in the front end of the endoscope 12 and only the reflecting light from the part, upon which the spot light is irradiated, is made incident on the photoreceptor element 12. Since the spot light is raster-scanned, however, the two-dimensional distribution information of the reflecting intensity on the object 20 is outputted in time series from the photoreceptor element 12. Therefore, the object is practically scanned for image pickup even when the photoreceptor element 12 does not make image pickup scan, namely, even when only one picture element exists.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は内視鏡装置に係り、特に被写体を撮像する内
視鏡装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an endoscope apparatus, and particularly to an endoscope apparatus for imaging a subject.

[従来の技術] 従来の技術としては、例えば実公昭59−31212号
に示されているように、内視鏡内にイメージガイドを設
ける代りに内視鏡先端に固体撮像素子を挿入し、被写体
を撮像して画像信号を内視鏡内を介して外部のモニタに
供給して表示する内視鏡装置がある。このような内視鏡
装置の性能は固体撮像素子の件部に委ねられている。特
に、その画素数が多いことが望まれている。しかしなが
ら、内視鏡は狭い管状部材の中や体腔内に挿入されるこ
とが多いので、その先端の径は大きくできないという事
情もある。
[Prior Art] As shown in, for example, Japanese Utility Model Publication No. 59-31212, a conventional technique involves inserting a solid-state image pickup device into the tip of an endoscope instead of providing an image guide inside the endoscope, and detecting the subject. There is an endoscope device that captures an image and supplies the image signal to an external monitor via the endoscope for display. The performance of such an endoscope device depends on the solid-state image sensor. In particular, it is desired that the number of pixels be large. However, since endoscopes are often inserted into narrow tubular members or into body cavities, there is also a situation in which the diameter of the end cannot be increased.

[発明が解決しようとする問題点1 このように従来の技術においては、内視鏡先端に内蔵さ
れる固体撮像素子に対して大画素数、小形状という相反
する要求が課せられていた。この発明はこのような問題
点に着目してなされたもので、内視鏡の径を大きくする
ことなく、被写体を高解像度で撮像する内視鏡装置を提
供することを目的とする。
[Problem to be Solved by the Invention 1] As described above, in the conventional technology, conflicting demands such as a large number of pixels and a small size have been imposed on the solid-state image pickup device built into the tip of the endoscope. The present invention was made in view of these problems, and it is an object of the present invention to provide an endoscope device that can image a subject at high resolution without increasing the diameter of the endoscope.

[問題点を解決するための手段] この発明による内視鏡装置によれば、スポット光を被写
体に2次元走査しながら照射する手段と、被写体からの
反射光を光電変換する手段が設けられている。
[Means for Solving the Problems] According to the endoscope apparatus according to the present invention, a means for irradiating a subject with spot light while scanning the subject in two dimensions, and a means for photoelectrically converting light reflected from the subject are provided. There is.

[作用] この?c2ではスポット光を2次元走査しながら被写体
を照明し、被写体からの反射光を受光素子により光電変
換し、光電変検出力をスポット光の走査に対応して記憶
手段に書き込むことにより、被写体を撮像素子を用いて
撮像した場合と同様な被写体上の反射強度の2次元分布
、すなわち、光学像が求められる。
[Effect] This? In c2, the subject is illuminated while scanning the spot light two-dimensionally, the light reflected from the subject is photoelectrically converted by the light receiving element, and the photoelectric change detection power is written in the storage means in correspondence with the scanning of the spot light, thereby illuminating the subject. A two-dimensional distribution of reflection intensity on the subject, that is, an optical image, similar to that obtained when an image is captured using an image sensor is obtained.

[実施例] 以ド図面を参照してこの発明による内視鏡装置の一実施
例を説明する。第1図は第1実施例の構成を示すブロッ
ク図である。内視鏡本体10に光源ユニツ)19、ビデ
オプロセッサ22が接続される。光源二二ッ)20は電
子銃44と蛍光板52を有し、電子銃44からの電子線
46が電子レンズ48で収束された後、偏向コイル50
で蛍光板52上を2次元的にラスク走査される。電子線
46が照射されることにより、蛍光板52から発生され
たスポット光が結像レンズ54により面56で結像され
、その後5回転色フィルタ60を介してセルフォックフ
ァイバレンズ18に入射される。結像レンズ54はセル
フォックファイバレンズ18への入射光量を増加するた
めのリレーレンズの役目とセルフォックファイバレンズ
18の色収差を補正する役目を持っている0回転色フィ
ルタ60は第2図に示すようにR(赤)、G(緑)、B
(青)の3原色の透過色フィルタが円板の円周に沿って
順次配列されてなる。各色のフィルタは電子線の1回の
ラスク走査が終了した時点の休み時間にモータ58によ
り切り換するようになっている。
[Embodiment] An embodiment of an endoscope apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the first embodiment. A light source unit 19 and a video processor 22 are connected to the endoscope body 10. The light source (22) 20 has an electron gun 44 and a fluorescent screen 52, and after an electron beam 46 from the electron gun 44 is focused by an electron lens 48, a deflection coil 50
Then, the fluorescent screen 52 is scanned two-dimensionally. By being irradiated with the electron beam 46, a spot light generated from the fluorescent screen 52 is imaged on a surface 56 by the imaging lens 54, and then enters the Selfoc fiber lens 18 via the 5-rotation color filter 60. The imaging lens 54 has the role of a relay lens for increasing the amount of light incident on the SELFOC fiber lens 18, and the role of correcting the chromatic aberration of the SELFOC fiber lens 18.A zero-rotation color filter 60 is shown in FIG. Like R (red), G (green), B
Transmissive color filters of three primary colors (blue) are sequentially arranged along the circumference of the disk. The filters of each color are switched by a motor 58 during a rest period when one rask scan of the electron beam is completed.

セルフォックファイバレンズ18に入射されたスポット
光は内視鏡先端の拡大用レンズ16により必要な配光角
に応じて拡大され被写体20上に投影され、被写体が照
明される。このため、電子線のラスク走査に応じてスポ
ット光が被写体20を走査する。また、このスポット光
は1回の走査毎にR,G、Hの3原色に切り換えられて
いる。
The spot light incident on the SELFOC fiber lens 18 is magnified by a magnifying lens 16 at the end of the endoscope according to a necessary light distribution angle, and is projected onto the subject 20, thereby illuminating the subject. Therefore, the spot light scans the object 20 according to the rask scan of the electron beam. Further, this spot light is switched to the three primary colors of R, G, and H for each scan.

被写体20からの反射光が内視鏡12の先端に内蔵され
た受光素子12で光電変換される。内視鏡により撮影さ
れる箇所は体腔内等の自然光が全くあるいは殆ど無い箇
所であるので、スポット光が照射された部分の反射光の
みが受光素子12に入射される。ここで、スポット光が
ラスク走査されているので、受光素子12からは被写体
20上の反射強度の2次元分布情報が時系列的に出力さ
れる。これにより、受光素子12が撮像走査しなくても
、すなわち、1画素しかなくても実質的に被写体が撮像
走査されることになる。
Reflected light from the subject 20 is photoelectrically converted by a light receiving element 12 built into the tip of the endoscope 12. Since the location photographed by the endoscope is a location where there is no or almost no natural light, such as in a body cavity, only the reflected light from the portion irradiated with the spot light is incident on the light receiving element 12. Here, since the spot light is scanned by rask scanning, the light receiving element 12 outputs two-dimensional distribution information of the reflection intensity on the subject 20 in a time series manner. As a result, even if the light-receiving element 12 does not perform imaging scanning, that is, even if there is only one pixel, the subject is substantially imaged and scanned.

受光素子12から出力された受光信号がプリアンプ14
を介してビデオプロセッサ22に供給される。受光信吟
はビデオプロセッサ22内テ先スAGC(オートゲイン
コントロール)回路24、γ補正回路26でTV倍信号
必要な信号処理を受けた後、A/D変換器28によりデ
ィジタル化される。ディジタル化されたTV倍信号マル
チプレクサ回路30により、電子線の1回のラスク走査
に同期して、すなわち、回転色フィルタ60の各原色が
切り換えられるタイミングと同期して切り換えられる。
The light receiving signal output from the light receiving element 12 is sent to the preamplifier 14.
is supplied to the video processor 22 via the video processor 22. The received light signal is subjected to necessary signal processing as a TV multiplied signal in a video processor 22 in an AGC (auto gain control) circuit 24 and a γ correction circuit 26, and then digitized by an A/D converter 28. The digitized TV double signal multiplexer circuit 30 performs switching in synchronization with one rask scan of the electron beam, that is, in synchronization with the timing at which each primary color of the rotating color filter 60 is switched.

そして、Rのスポット光で照明した時のTV倍信号R画
像用のフレームメモリ32−1に、Gのスポット光で照
明した時のTV倍信号G画像用のフレームメモリ32−
2に、Bのスポット光で照明した時のTV@号がB画像
用のフレームメモリ3z−3にそれぶれ供給される。
Then, the frame memory 32-1 for the TV double signal R image when illuminated with the R spotlight is stored in the frame memory 32-1 for the TV double signal G image when illuminated with the G spotlight.
2, the TV @ signal when illuminated with the B spot light is supplied to the frame memory 3z-3 for the B image.

R,G、Bの3枚の成分画像がフレームメモリ32−1
.32−2.32−3に書き込まれると、各フレームメ
モリ32−1.32−2.32−3内の信号が並列的に
読み出され、それぞれD/A変換器34−1.34−2
.34−3を介してカラーモニタ36に供給される。
Three component images of R, G, and B are stored in the frame memory 32-1.
.. 32-2.32-3, the signals in each frame memory 32-1.32-2.32-3 are read out in parallel, and each D/A converter 34-1.34-2
.. It is supplied to the color monitor 36 via 34-3.

マルチプレクサ30の切り換え、フレームメモリ32−
1.32−2.32−3の読み書き、カラーモニタ36
の制御は光源ユニット19内に設けられたタイミングジ
ェネレータ42により制御される。タイミングジェネレ
ータ42は電子銃44からの電子線のラスク走査、回転
色フィルタ60を回転させるモータ58も制御している
6回転色フィルタ60の回転は円板の外周部に対応して
設けられた光学的な回転検出器62により検出され、回
転検出器62の出力がタイミングジェネレータ42に供
給される。
Switching of multiplexer 30, frame memory 32-
1.32-2.32-3 reading and writing, color monitor 36
is controlled by a timing generator 42 provided within the light source unit 19. The timing generator 42 also controls the rask scanning of the electron beam from the electron gun 44 and the motor 58 that rotates the rotary color filter 60.The rotation of the 6-rotation color filter 60 is controlled by an optical system provided corresponding to the outer periphery of the disk. The output of the rotation detector 62 is supplied to the timing generator 42.

一方、ビデオプロセッサ22内に入力された受光信号は
ローパスフィルタ38を介して比較器40にも供給され
る。比較器40はこの受光信号を基準電圧と比較し、そ
の差を電子銃44の加速電圧に負帰還する。これにより
、電子銃44の加速電圧は自動的に調整され、照明光の
強度は自動調光される。
On the other hand, the light reception signal input into the video processor 22 is also supplied to the comparator 40 via the low-pass filter 38. The comparator 40 compares this light reception signal with a reference voltage, and feeds back the difference negatively to the acceleration voltage of the electron gun 44. Thereby, the acceleration voltage of the electron gun 44 is automatically adjusted, and the intensity of the illumination light is automatically adjusted.

このように第1実施例によれば、内視鏡撮像は専用光源
の下で行なわれるので、撮像素子上で被写体を走査する
代りに専用光源からのスポット光を被写体上を2次元走
査させ、受光素子から時系列的に出力される反射光信号
をスポット光の走査に対応してメモリに書込むことによ
り、1画素の受光素子により被写体の反射強度情報の2
次元分布、すなわち、光学像が得られる。このため、受
光面上に被写体像を結像させるレンズ系が不要である。
According to the first embodiment, since endoscopic imaging is performed under a dedicated light source, instead of scanning the subject on the image sensor, a spot light from the dedicated light source is used to two-dimensionally scan the subject. By writing the reflected light signals outputted in time series from the light receiving element into the memory in accordance with the scanning of the spot light, the light receiving element of one pixel can obtain two pieces of reflection intensity information of the subject.
A dimensional distribution, ie an optical image, is obtained. Therefore, a lens system for forming a subject image on the light-receiving surface is not required.

この場合、撮像画像の解像度はスポット光の径を細くす
る、または、走査線の数を増加することにより向丘され
るので、内視鏡先端の径を太くすることなく、高解像度
で被写体を撮像できる内視鏡装置が実現される。
In this case, the resolution of the captured image can be improved by narrowing the diameter of the spot light or increasing the number of scanning lines, so the subject can be imaged with high resolution without increasing the diameter of the endoscope tip. A capable endoscope device will be realized.

なお、第1実施例においてセルフォックファイバレンズ
18の入射端を図示矢印の方向に移動することにより、
被写体20上のスポット光のラスク走査範囲を可変する
ことができ、撮像する像の拡大、縮小が自由にできる。
In addition, in the first embodiment, by moving the entrance end of the SELFOC fiber lens 18 in the direction of the illustrated arrow,
The rask scanning range of the spot light on the subject 20 can be varied, and the captured image can be freely enlarged or reduced.

この発明の第2実施例を第3図に示す、第2実施例は回
転色フィルタで3原色の照明を切り換えるのではなく、
3つの光源を具備し、各光源からの光を順次照射し3原
色の照明を切り換えている。R用、G用、B用のレーザ
発振!!70.72゜74が設けられ、これらのレーザ
発振器70゜72.74からのレーザ光線がそれぞれR
,G、Bのレーザ光線のみを反射するグイクロイー、ク
ミラー76.78.80を介してX方向の偏向用の回転
多面体ミラー(ポリゴンミラー)82に入射され、X方
向(図面の紙面の上下方向)に偏向される。この回転多
面体ミラー82で反射されたX偏向レーザ光線はY方向
の偏向用の回転多面体ミラー84に入射され、Y方向(
図面の紙面に垂直な方向)に偏向される。この回転多面
体ミラー84から出射されたxY偏向レーザ光線は結像
用レンズ系86によって面88の位置で結像され。
A second embodiment of this invention is shown in FIG. 3.In the second embodiment, instead of switching the three primary colors of illumination with a rotating color filter,
It is equipped with three light sources, and the light from each light source is sequentially irradiated to switch between the three primary colors. Laser oscillation for R, G, and B! ! 70.72°74 are provided, and the laser beams from these laser oscillators 70°72.74 are respectively R.
. be deflected. The X-polarized laser beam reflected by the rotating polyhedral mirror 82 is incident on the rotating polyhedral mirror 84 for deflection in the Y direction (
deflected in the direction perpendicular to the plane of the drawing. The xY polarized laser beam emitted from the rotating polygon mirror 84 is imaged at a surface 88 by an imaging lens system 86 .

その後、セルフォックファイバレンズ18に入射される
。その他の構成は第1実施例と同様であるので、説明は
省略する。
Thereafter, the light is incident on the SELFOC fiber lens 18. The rest of the configuration is the same as that of the first embodiment, so a description thereof will be omitted.

このような構成で、各レーザ発振器70,72゜74は
第1実施例で回転色フィルタ60が切り換えられるタイ
ミングと同様なタイミングで切り換えられ、第1実施例
と同様に動作する。レーザ光線は電子銃からの電子線に
比べて径が細いので。
With this configuration, each laser oscillator 70, 72, 74 is switched at the same timing as the rotating color filter 60 is switched in the first embodiment, and operates in the same manner as in the first embodiment. The laser beam has a smaller diameter than the electron beam from an electron gun.

第2実施例は第1実施例に比べてさらに解像度を向上で
きる。
The second embodiment can further improve the resolution compared to the first embodiment.

なお、回転多面体ミラー82.84を表面波を応用した
光角度変調器に置き換えてもよい。
Note that the rotating polyhedral mirrors 82 and 84 may be replaced with optical angle modulators that utilize surface waves.

第4図にこの発明の第3実施例を示す、この実施例は光
源ユニットは設けずに、内視鏡本体lOの先端にレーザ
発振器922表面波を応用した光角度変調器94を内蔵
し、内視鏡先端でレーザ光線を走査させている。
FIG. 4 shows a third embodiment of the present invention. This embodiment does not include a light source unit, but has a built-in optical angle modulator 94 using a laser oscillator 922 and a surface wave at the tip of the endoscope body 1O. A laser beam is scanned at the end of the endoscope.

この発明は上述した実施例に限定されず、種々変形可能
である。第1、第2実施例で3原色の色フィルタは各フ
レーム毎に切り換えられたが、回転色フィルタを高速で
回転し所定画素毎にRlG、Hの照明を切り換えてもよ
い、そして、従来のストライプフィルタを使った単管式
カメラや、色モザイクフィルタを前面に貼り付けた固体
撮像素子カメラと同様の信号処理を行なえば、ビデオフ
ロセッサ22内のフレームメモリ32−1.32−2.
32−3は不要になる。
This invention is not limited to the embodiments described above, and can be modified in various ways. In the first and second embodiments, the three primary color filters were switched for each frame, but it is also possible to rotate the rotating color filter at high speed and switch the RlG and H illumination for each predetermined pixel. If signal processing similar to that of a single-tube camera using a stripe filter or a solid-state image sensor camera with a color mosaic filter attached to the front is performed, the frame memories 32-1, 32-2, .
32-3 becomes unnecessary.

[発明の効果] 以上説明したようにこの発明によれば、撮像素子が被写
体を走査するのではなく、照明光が被写体を走査するの
で、受光手段としては撮像素子を設ける必要はなく単一
画素の受光素子を設けるだけでよい、このため、撮像画
像の解像度は被写体を2次元走査するスポット光の径と
走査線の数により決まるので、内視鏡の径を太くするこ
となく、高分解能で被写体を撮像できる内視鏡装置が提
供される。
[Effects of the Invention] As explained above, according to the present invention, the illumination light scans the object instead of the image sensor scanning the object, so there is no need to provide an image sensor as a light receiving means and a single pixel is used as the light receiving means. Therefore, the resolution of the captured image is determined by the diameter of the spot light that two-dimensionally scans the subject and the number of scanning lines, so it is possible to achieve high resolution without increasing the diameter of the endoscope. An endoscope device that can image a subject is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による内視鏡装置の第1実施例の構成
を示すブロック図、第2図は第1実施例に用いられる回
転色フィルタを示す図、第3図はこの発明による内視鏡
装置の第2実施例の要部を示す図、第4図はこの発明に
よる内視鏡装置の第3実施例の要部を示す図である。 12・・−受光素子 30・・・マルチプレクサ 32−1.32−2.32−3・・・フレームメモリ3
6・・・カラーモニタ 42・・・タイミングジェネレータ 44・・・電子銃 50・・・偏向コイル 52・・・蛍光板 60・・・回転色フィルタ
FIG. 1 is a block diagram showing the configuration of a first embodiment of an endoscope device according to the present invention, FIG. 2 is a diagram showing a rotating color filter used in the first embodiment, and FIG. FIG. 4 is a diagram showing a main part of a second embodiment of a mirror device, and FIG. 4 is a diagram showing a main part of a third embodiment of an endoscope device according to the present invention. 12...-Photodetector 30...Multiplexer 32-1.32-2.32-3...Frame memory 3
6... Color monitor 42... Timing generator 44... Electron gun 50... Deflection coil 52... Fluorescent screen 60... Rotating color filter

Claims (5)

【特許請求の範囲】[Claims] (1)スポット光を被写体に2次元走査しながら照射す
る手段と、被写体からの反射光を光電変換する手段とを
具備する内視鏡装置。
(1) An endoscope device comprising means for irradiating a subject with spot light while scanning in two dimensions, and means for photoelectrically converting light reflected from the subject.
(2)前記スポット光の走査範囲に対応する記憶領域を
有する記憶手段が前記光電変換手段の出力端に接続され
、前記光電変換手段の出力が前記スポット光の走査と同
期して記憶手段に書き込まれることを特徴とする特許請
求の範囲第1項に記載の内視鏡装置。
(2) A storage means having a storage area corresponding to the scanning range of the spotlight is connected to the output end of the photoelectric conversion means, and the output of the photoelectric conversion means is written into the storage means in synchronization with the scanning of the spotlight. The endoscope device according to claim 1, characterized in that:
(3)前記照射手段は電子銃と、偏向コイルと、電子銃
からの電子線が照射される蛍光板からなることを特徴と
する特許請求の範囲第1項に記載の内視鏡装置。
(3) The endoscope apparatus according to claim 1, wherein the irradiation means includes an electron gun, a deflection coil, and a fluorescent screen to which the electron beam from the electron gun is irradiated.
(4)前記照射手段はレーザ発振器と、回転多面体ミラ
ーからなることを特徴とする特許請求の範囲第1項に記
載の内視鏡装置。
(4) The endoscope apparatus according to claim 1, wherein the irradiation means comprises a laser oscillator and a rotating polygon mirror.
(5)前記照射手段はレーザ発振器と、光角度変調器か
らなることを特徴とする特許請求の範囲第1項に記載の
内視鏡装置。
(5) The endoscope apparatus according to claim 1, wherein the irradiation means includes a laser oscillator and an optical angle modulator.
JP60096951A 1985-05-08 1985-05-08 Endoscope device Expired - Lifetime JPH0679110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096951A JPH0679110B2 (en) 1985-05-08 1985-05-08 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096951A JPH0679110B2 (en) 1985-05-08 1985-05-08 Endoscope device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4029144A Division JPH0792553B2 (en) 1992-02-17 1992-02-17 Imaging device

Publications (2)

Publication Number Publication Date
JPS61255318A true JPS61255318A (en) 1986-11-13
JPH0679110B2 JPH0679110B2 (en) 1994-10-05

Family

ID=14178599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096951A Expired - Lifetime JPH0679110B2 (en) 1985-05-08 1985-05-08 Endoscope device

Country Status (1)

Country Link
JP (1) JPH0679110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135777A (en) * 2005-11-16 2007-06-07 Hamamatsu Univ School Of Medicine Switching type imaging fiber apparatus
JP2010115391A (en) * 2008-11-14 2010-05-27 Hoya Corp Endoscope apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086567B2 (en) * 2006-06-23 2012-11-28 オリンパス株式会社 Lighting device and lighting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137326A (en) * 1980-03-29 1981-10-27 Sumitomo Electric Ind Ltd Observing device
JPS5850936A (en) * 1981-09-21 1983-03-25 富士写真光機株式会社 Endoscope having line sensor type photography element
JPS59187310A (en) * 1983-04-07 1984-10-24 Sumitomo Electric Ind Ltd Internal observation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137326A (en) * 1980-03-29 1981-10-27 Sumitomo Electric Ind Ltd Observing device
JPS5850936A (en) * 1981-09-21 1983-03-25 富士写真光機株式会社 Endoscope having line sensor type photography element
JPS59187310A (en) * 1983-04-07 1984-10-24 Sumitomo Electric Ind Ltd Internal observation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135777A (en) * 2005-11-16 2007-06-07 Hamamatsu Univ School Of Medicine Switching type imaging fiber apparatus
JP2010115391A (en) * 2008-11-14 2010-05-27 Hoya Corp Endoscope apparatus
US8947514B2 (en) 2008-11-14 2015-02-03 Hoya Corporation Endoscope system with scanning function

Also Published As

Publication number Publication date
JPH0679110B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
CA1266324A (en) Image pick-up apparatus
EP0710039A2 (en) Video camera apparatus
US6337474B1 (en) Scanning microscope
JPH0785130B2 (en) Color video endoscope system
JPH0481178A (en) Dc offset correction method for irccd detector
JPS6125130B2 (en)
JP2003167197A (en) Confocal microscope
US4245240A (en) Color camera having linear scanning arrays and vertical scanning mirror
JP2002196438A (en) Wide angle image pickup apparatus
JPS61255318A (en) Endoscope device
JPS6054589A (en) Illuminating and image pickup device for color video
JP3098448B2 (en) Image input device
JPH0560984A (en) Endoscope device
JPS6052819A (en) Reader
JPS61177421A (en) Light source device for endoscope
JPS62190980A (en) High-resolution television camera
JPS625791A (en) Color image pickup device
JPH09297269A (en) Scanning image input device and scanning probe microscope
JP2004309568A (en) Omnidirectional photographing device
JP3462565B2 (en) Endoscope imaging device
JPH09139806A (en) Image information reader
US5365058A (en) Compensating optical system for video monitor
JPS6161583A (en) Interpolating method of display/scan line in endoscope employing solid-state image pickup element
JPH0662288A (en) Wide angle image fetching device
JPH02140075A (en) Infrared ray image pickup device