JPS61255055A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61255055A
JPS61255055A JP9710985A JP9710985A JPS61255055A JP S61255055 A JPS61255055 A JP S61255055A JP 9710985 A JP9710985 A JP 9710985A JP 9710985 A JP9710985 A JP 9710985A JP S61255055 A JPS61255055 A JP S61255055A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
fet
integrated circuit
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9710985A
Other languages
Japanese (ja)
Inventor
Katsuzo Tsuchida
土田 勝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9710985A priority Critical patent/JPS61255055A/en
Publication of JPS61255055A publication Critical patent/JPS61255055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To allow a semiconductor integrated circuit device to absorb a large current by a method wherein connection is accomplished for a parasitic MOSFET to surround a portion of a diffusion layer in the vicinity of a contact hole connecting an input terminal and a diffusion layer serving as a protecting resistor so that the FET threshold value may be set dependent upon the breakdown voltage of a P-N junction diode. CONSTITUTION:An input protecting circuit is built in a semiconductor integrated circuit, and a parasitic insulating gate MOSFET T2 is inserted between the input terminal 1 of the protecting circuit and a diffusion layer resistor R1. The FET T2 is so provided as to surround a portion of a diffusion layer 3 near a contact hole C1 connecting the FET T2 and the terminal 1. As a means to meet an alloy spike, an N-well 8 is formed of the N-type impurity in the diffusion layer 3 deeper than the diffusion layer 3, just under the contact hole C1. Distance L1 is arbitarily set between the source and drain of the FET T2 so that the threshold voltage of the FET T2 may be as high as or lower than the breakdown voltage of a P-N junction diode D1, which capacitates the FET T2 to absorb a large quantity of electric current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特に、絶縁ゲート
型電界効果トランジスタを、静電気等の異常入力電圧か
ら保護するための入力保護回路を有する半導体集積回路
装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and in particular to a semiconductor integrated circuit device having an input protection circuit for protecting an insulated gate field effect transistor from abnormal input voltages such as static electricity. The present invention relates to integrated circuit devices.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路装置の入力保護回路は、静電気等
の異常電圧が直接、絶縁ゲート型電界効果トランジスタ
のゲート絶縁膜に印加されないようにするために、入力
端子としてのポンディングパッドと絶縁ゲート型電界効
果トランジスタのゲート電極との間に、基板とは逆導電
型の拡散層を具備した構造になっていた。なお以下の説
明では絶縁ゲート電界効果トランジスタについてはMO
8型電界効果トランジスタ(以下MO8FETと記す)
を例にして説明する。第2図伽)及び第2図Φ)は、各
々、従来の入力保護回路の等価回路図及び模式的平面図
で、第2図(C)は第2図Q))のY−Y’線における
断面図である。即ち、従来は、第2図(a)に示される
様に、入力端子1とゲート電極2との間に、拡散層で形
成された抵抗几1が入っておシ、かつ基板4との間には
、PN接合ダイオードD1が形成された構成になってい
た。この拡散層は、第2図(6)及び第2図(e)に示
される様に、拡散層3自身の抵抗kL1とPN接合ダイ
オードD1のブレイクダウン作用により、入力端子1鴫
印加される異常電圧を、ゲート電極2に近づくにつれて
除々に低下させる役割を果たしていた。尚、図中4はP
fiシリコン基板、5は高a度P型不純物層、6はフィ
ールド酸化膜、3はN型拡散層、7は眉間絶縁膜、R2
はP型シリコン基板4の広がり抵抗である。
Conventionally, input protection circuits for semiconductor integrated circuit devices have been designed to prevent abnormal voltages such as static electricity from being directly applied to the gate insulating film of an insulated gate field effect transistor by connecting a bonding pad as an input terminal and an insulated gate field effect transistor. It had a structure in which a diffusion layer of a conductivity type opposite to that of the substrate was provided between the field-effect transistor and the gate electrode. In the following explanation, MO is used for insulated gate field effect transistors.
Type 8 field effect transistor (hereinafter referred to as MO8FET)
This will be explained using an example. Fig. 2 (G) and Fig. 2 (Φ) are respectively an equivalent circuit diagram and a schematic plan view of a conventional input protection circuit, and Fig. 2 (C) is the Y-Y' line of Fig. 2 Q)). FIG. That is, conventionally, as shown in FIG. 2(a), a resistor 1 formed of a diffusion layer is inserted between an input terminal 1 and a gate electrode 2, and a resistor 1 formed of a diffusion layer is inserted between an input terminal 1 and a gate electrode 2. had a configuration in which a PN junction diode D1 was formed. As shown in FIG. 2(6) and FIG. 2(e), this diffusion layer is affected by the abnormal voltage applied to the input terminal 1 due to the breakdown effect of the resistance kL1 of the diffusion layer 3 itself and the PN junction diode D1. It played the role of gradually lowering the voltage as it approaches the gate electrode 2. In addition, 4 in the figure is P
fi silicon substrate, 5 is a high-a-degree P-type impurity layer, 6 is a field oxide film, 3 is an N-type diffusion layer, 7 is an insulating film between the eyebrows, R2
is the spreading resistance of the P-type silicon substrate 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の入力保護回路は、入力端
子1と拡散層3とは、コンタクト孔C1を介して直接、
接続されているために1コンタクト孔C1近傍では、入
力端子1に印加される異常電圧が、高電圧のまま拡散層
3に加わることになる。
However, in the conventional input protection circuit described above, the input terminal 1 and the diffusion layer 3 are connected directly through the contact hole C1.
Because of the connection, the abnormal voltage applied to the input terminal 1 is applied to the diffusion layer 3 as a high voltage in the vicinity of the first contact hole C1.

そして、コンタクトC1近傍の拡散層3とシリコン基板
4との間で瞬間的に、PN接合ダイオードD1のブレイ
クダウンによる大電流が流れることになる。このとき、
従来の構造では、コンタクト孔CI近傍の拡散層30P
N接合ダイオードD1の電流シンク能力が不十分なため
に、この部分のPN接合ダイオードD1自身の破壊を招
いたシ、アロイスパイクによる入力端子1とシリコン基
板4とのシl−トを招いたシして、入力保護回路自身の
信頼性に問題があった。
Then, a large current momentarily flows between the diffusion layer 3 near the contact C1 and the silicon substrate 4 due to the breakdown of the PN junction diode D1. At this time,
In the conventional structure, the diffusion layer 30P near the contact hole CI
Due to the insufficient current sink ability of the N-junction diode D1, the PN junction diode D1 itself was destroyed in this part, and the alloy spike caused a shield between the input terminal 1 and the silicon substrate 4. However, there was a problem with the reliability of the input protection circuit itself.

本発明は上記欠点を除去し、入力保護回路の電流シンク
能力を増して、保護回路としての効果を高め、信頼性の
優れた入力保護回路を有する半導体集積回路装置を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit device having an input protection circuit that eliminates the above-mentioned drawbacks, increases the current sink capability of the input protection circuit, enhances the effectiveness of the protection circuit, and has excellent reliability. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路装置は、入力端子と内部回路の
ゲート電極との間にP型シリコン基板とは逆導電型の第
一のN型拡散層よりなる保護抵抗を具備した保護回路を
有する半導体集積回路装置において、前記入力端子と前
記第一のN型拡散層を接続するコンタクト孔の近傍の前
記第一のN型拡散層に存生絶縁ゲート型電界効果トラン
ジスタが接続され、該寄生絶縁ゲート型電界効果トラン
ジスタは前記第一のN型拡散層を取シ囲むように1かつ
該第一のN型拡散層より深く形成された第二のN型拡散
層(Nウェル)よりなるソース電極を有し、また前記コ
ンタクト孔の直下にも第二のN型拡散層(Nウェル)を
有することにより構成される。
The semiconductor integrated circuit device of the present invention is a semiconductor device having a protective circuit including a protective resistor formed of a first N-type diffusion layer having a conductivity type opposite to that of a P-type silicon substrate between an input terminal and a gate electrode of an internal circuit. In the integrated circuit device, a parasitic insulated gate field effect transistor is connected to the first N-type diffusion layer near a contact hole connecting the input terminal and the first N-type diffusion layer, and the parasitic insulated gate The type field effect transistor has a source electrode formed of a second N-type diffusion layer (N-well) that surrounds the first N-type diffusion layer and is formed deeper than the first N-type diffusion layer. In addition, a second N-type diffusion layer (N well) is also provided directly under the contact hole.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)及び第1図中)は各々、本発明の一実施例
の等価回路図及び模式的平面図でおり、第1図(C)は
第1図中)のx−x’線における断面図でおる。
FIG. 1(a) and FIG. 1 inside) are an equivalent circuit diagram and a schematic plan view of an embodiment of the present invention, respectively, and FIG. 1(C) is xx' in FIG. 1 inside). This is a cross-sectional view along the line.

本発明による入力保護回路を有する半導体集積回路装置
は、第1図(a)の等価回路図に示すように、入力端子
1と拡散層で形成された抵抗几1との間に寄生MO8F
ETTgが付加されている。この寄生M08FETT2
は、第1図幹)の平面図に示すように、入力端子1と拡
散層3を接続するコンタクト孔C1の近傍における拡散
層3を取)囲むように形成されている。tた、コンタク
ト孔C1の直下には、アロイ−スパイク対策として、拡
散層3内に、拡散層3よりも深く形成されたN型不純物
層(Nウェル)8が設けられている。
As shown in the equivalent circuit diagram of FIG. 1(a), a semiconductor integrated circuit device having an input protection circuit according to the present invention has parasitic MO8F between an input terminal 1 and a resistor 1 formed of a diffusion layer.
ETTg is added. This parasitic M08FET T2
As shown in the plan view of FIG. In addition, an N-type impurity layer (N well) 8 formed deeper than the diffusion layer 3 in the diffusion layer 3 is provided directly under the contact hole C1 as a countermeasure against alloy spikes.

上記畜生M08FETTzの構造は、第1図(C) r
こ示すように、ソース電極10がNウェル8によって形
成されていることt−%徴とする。
The structure of the above damn M08FETTz is shown in Figure 1 (C) r
As shown, it is assumed that the source electrode 10 is formed by the N well 8 at t-%.

この構造により、寄生MO8FETT2のソース・ドレ
イン間隔りを任意に選ぶことが可能になり、間隔L1に
短くすることで、T2のスレッシ曹−ルド電圧(7丁2
)を、PN接合ダイオードのブレイクダウン電圧と同程
度か、或いはそれ以下の値に設定することが可能である
。仮に、寄生MO8FETのソース電極としてNウェル
8を形成せずに拡散層9だけで形成したものは、通常、
スレッシ冒−ルド電圧(Vtz)がPN接合ダイオード
のブレイクダウン電圧よりも高いため、電流シンクとし
ての能力はほとんど期待できない。従って、本発明によ
る構造は、入力端子1に異常電圧が印加されたとき、寄
生MO8FETTzがオンして大電流を吸収するため、
入力保護回路の電流シンク能力を飛躍的に高めることが
可能で、従来のような大電流によるPN接合ダイオード
の破壊を防ぐことが可能でおる。
This structure makes it possible to arbitrarily select the source-drain spacing of the parasitic MO8FET T2, and by shortening the spacing to L1, the threshold voltage of T2 (7 to 2
) can be set to a value comparable to or lower than the breakdown voltage of the PN junction diode. If the source electrode of a parasitic MO8FET is formed only with the diffusion layer 9 without forming the N well 8, normally,
Since the threshold voltage (Vtz) is higher than the breakdown voltage of the PN junction diode, its ability as a current sink can hardly be expected. Therefore, in the structure according to the present invention, when an abnormal voltage is applied to the input terminal 1, the parasitic MO8FET Tz turns on and absorbs a large current.
It is possible to dramatically increase the current sink capability of the input protection circuit, and it is possible to prevent the destruction of the PN junction diode due to a large current as in the conventional case.

なお、第1図軸)、伽)、 (c)に於て第2図(a)
、Φ)。
In addition, Fig. 2 (a) in Fig. 1 axis), 载), (c)
,Φ).

(C)と同一符号は同一部分をあられすので説明を省略
した。
The same reference numerals as in (C) refer to the same parts, so the explanation is omitted.

また、上記実施例はMOSFETを例に説明したが絶縁
ゲート型電界効果トランジスタ全般で同様実施できるこ
とは説明するまでもない。
Further, although the above embodiments have been described using MOSFET as an example, it goes without saying that the same can be implemented with any insulated gate field effect transistor.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明による入力保護回
路は、静電気等の異常電圧が、入力端子に印加されたと
き、入力端子と保護抵抗としての拡散層とを接続するコ
ンタクト孔の近傍の拡散層を取り囲むように、寄生MO
8FETが接続されておシ、かつ寄生MO8FETのス
レッショールド電圧が、PN接合ダイオードのブレイク
ダウン電圧と同程度か、或いはそれ以下の値に設定され
ているため、寄生MO8FETがオンして大電流を吸収
する。
As described above in detail, the input protection circuit according to the present invention is capable of protecting the input terminal near the contact hole connecting the input terminal and the diffusion layer serving as a protective resistor when abnormal voltage such as static electricity is applied to the input terminal. A parasitic MO surrounds the diffusion layer.
8FET is connected, and the threshold voltage of the parasitic MO8FET is set to a value similar to or lower than the breakdown voltage of the PN junction diode, so the parasitic MO8FET turns on and generates a large current. absorb.

従って、入力保護回路の電流シンク能力が飛躍的に高ま
ると同時に、入力端子と拡散層とを接続するコンタクト
孔の直下に、アロイスパイク防止対策がなされているた
め、信頼性の優れた入力保護回路を実現でき、その効果
は大きい。
Therefore, the current sink capability of the input protection circuit is dramatically increased, and measures to prevent alloy spikes are taken directly under the contact hole that connects the input terminal and the diffusion layer, making the input protection circuit highly reliable. can be achieved, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に)、Φ)、 (C)はそれぞれ本発明の一実施
例の等価回路図、模式的平面図及び第1図Φ)のX−X
′線における断面図、第2図(屹(b)、 (C)はそ
れぞれ従来の半導体集積回路装置の一例の等価回路図、
模式的平面図及び第2図り)のY−Y’線における断面
図である。 l・・・・・・入力端子、2・・・・・・ゲート電極、
3・・・・・・N型拡散層、4・・・・・・P型シリコ
ン基板、5・・・・・・高濃度P型不純物層、6・・・
・・・フィールド酸化膜、7・・・・・・層間絶縁膜、
8・・・・・・Nウェル、9・・・・・・N型拡散層、
10・・・・・・ソース電極、R1・・・・・・拡散層
抵抗、几2・・・・・・基板4の広がり抵抗、Dl・・
・・・・PN接合ダイオード、Tl・・・・・・MOS
FET、T2・・・・・・寄生MO8PET%C1・・
・・・・コンタクト孔、L・・・・・・寄生MO8FE
Tのソース・ドレイン間隔。 ≦散層枦qだ $lWJ
1), Φ), and (C) are an equivalent circuit diagram and a schematic plan view of an embodiment of the present invention, and X-X of FIG. 1 Φ), respectively.
2 (b) and (C) are equivalent circuit diagrams of an example of a conventional semiconductor integrated circuit device, respectively.
It is a sectional view taken on the YY' line of a typical plan view and a second figure. l...Input terminal, 2...Gate electrode,
3...N-type diffusion layer, 4...P-type silicon substrate, 5...High concentration P-type impurity layer, 6...
...Field oxide film, 7...Interlayer insulating film,
8...N well, 9...N type diffusion layer,
10... Source electrode, R1... Diffusion layer resistance, 几2... Substrate 4 spreading resistance, Dl...
...PN junction diode, Tl...MOS
FET, T2... Parasitic MO8PET%C1...
... Contact hole, L ... Parasitic MO8FE
Source-drain spacing of T. ≦Scattered layer qda $lWJ

Claims (1)

【特許請求の範囲】[Claims] 入力端子と内部回路のゲート電極との間にP型シリコン
基板とは逆導電型の第一のN型拡散層よりなる保護抵抗
を具備した保護回路を有する半導体集積回路装置におい
て、前記入力端子と前記第一のN型拡散層を接続するコ
ンタクト孔の近傍の前記第一のN型拡散層に寄生絶縁ゲ
ート型電界効果トランジスタが接続され、該寄生絶縁ゲ
ート型電界効果トランジスタは前記第一のN型拡散層を
取り囲むように、かつ該第一のN型拡散層より深く形成
された第二のN型拡散層(Nウェル)よりなるソース電
極を有し、また前記コンタクト孔の直下にも第二のN型
拡散層(Nウェル)を有することを特徴とする半導体集
積回路装置。
In a semiconductor integrated circuit device having a protection circuit including a protection resistor formed of a first N-type diffusion layer having a conductivity type opposite to that of a P-type silicon substrate between an input terminal and a gate electrode of an internal circuit, the input terminal and A parasitic insulated gate field effect transistor is connected to the first N type diffusion layer near the contact hole connecting the first N type diffusion layer, and the parasitic insulated gate field effect transistor is connected to the first N type diffusion layer. It has a source electrode made of a second N-type diffusion layer (N-well) formed to surround the type diffusion layer and deeper than the first N-type diffusion layer, and also has a second N-type diffusion layer formed directly below the contact hole. A semiconductor integrated circuit device comprising two N-type diffusion layers (N-wells).
JP9710985A 1985-05-08 1985-05-08 Semiconductor integrated circuit device Pending JPS61255055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9710985A JPS61255055A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9710985A JPS61255055A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61255055A true JPS61255055A (en) 1986-11-12

Family

ID=14183418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9710985A Pending JPS61255055A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61255055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413590A2 (en) * 1989-08-18 1991-02-20 Fujitsu Limited Wafer scale integrated circuit device
US5276350A (en) * 1991-02-07 1994-01-04 National Semiconductor Corporation Low reverse junction breakdown voltage zener diode for electrostatic discharge protection of integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413590A2 (en) * 1989-08-18 1991-02-20 Fujitsu Limited Wafer scale integrated circuit device
US5276350A (en) * 1991-02-07 1994-01-04 National Semiconductor Corporation Low reverse junction breakdown voltage zener diode for electrostatic discharge protection of integrated circuits

Similar Documents

Publication Publication Date Title
US11664368B2 (en) Low capacitance transient voltage suppressor including a punch-through silicon controlled rectifier as low-side steering diode
CA1242532A (en) Input protection arrangement for vlsi intergrated circuit devices
US4893157A (en) Semiconductor device
US10497697B2 (en) Low capacitance transient voltage suppressor
EP0242383B1 (en) Protection of igfet integrated circuits from electrostatic discharge
JP2822915B2 (en) Semiconductor device
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JP3447372B2 (en) Semiconductor device
JPS61255055A (en) Semiconductor integrated circuit device
KR20040082832A (en) Protecting device of semiconductor device
JPH09181267A (en) Esd protective circuit
JPS63228667A (en) Semiconductor device
JPH10200057A (en) Electrostatic breakdown preventing equipment
JP2611639B2 (en) Semiconductor device
JP3211871B2 (en) I / O protection circuit
JPS58182861A (en) Semiconductor device
JPS63172468A (en) Input protective circuit
JPH0373567A (en) Input protector for semiconductor integrated circuit
JPS61100954A (en) Semiconductor device
JPS60103658A (en) Semiconductor ic
KR930008874B1 (en) Electrostatic protecting device
KR100984411B1 (en) ESD protection device of semiconductor device and memufacturing method thereof
JPH0526344B2 (en)
JPH0666428B2 (en) Semiconductor device
KR920700477A (en) Overvoltage Protection Circuit for MOS Devices