JPS61254835A - Measuring cell - Google Patents
Measuring cellInfo
- Publication number
- JPS61254835A JPS61254835A JP9822685A JP9822685A JPS61254835A JP S61254835 A JPS61254835 A JP S61254835A JP 9822685 A JP9822685 A JP 9822685A JP 9822685 A JP9822685 A JP 9822685A JP S61254835 A JPS61254835 A JP S61254835A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- optical path
- width
- mirror
- mirror surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optical Measuring Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光吸収法を用いたガス分析計の測定セルに関
し、特に、セル内面を鏡面に形成して、光路を反射させ
ることにより、実効セル長を増大させるようにした測定
セルの改良に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a measurement cell for a gas analyzer using a light absorption method, and in particular, by forming the inner surface of the cell into a mirror surface to reflect the optical path, This invention relates to an improvement in a measurement cell that increases the effective cell length.
セル内面を鏡面に形成して、光路を反射させることによ
り、実効セル長を増大させるようにした測定セルとして
は、第7図に示すように、測定セルの光路aと平行な断
面形状を、一般的な直進セルと同様に方形状に形成し、
セル窓す、cと直角な内面にミラーd・・・を設けると
共に、セル窓す。As shown in FIG. 7, a measurement cell in which the inner surface of the cell is formed into a mirror surface to reflect the optical path to increase the effective cell length has a cross-sectional shape parallel to the optical path a of the measurement cell. Formed in a rectangular shape like a general straight cell,
A mirror d... is provided on the inner surface perpendicular to the cell window c, and the cell window is also provided.
Cの内面と対向する位置には、夫々光路aと略同幅の(
入射方向から見たときの幅が光路aの幅lと略等しい)
ミラーe・・・を設け、セル窓すから入射した光が前記
ミラーd・・・間でジグザグ状に反射してセル窓Cから
検出器fへと入射するように構成したものが知られてい
る0図中、gは光源、hはチョッパーである。At positions facing the inner surface of C, there are (
The width when viewed from the incident direction is approximately equal to the width l of optical path a)
There is a known structure in which a mirror e is provided, and light incident through the cell window is reflected in a zigzag pattern between the mirrors d and enters the detector f from the cell window C. In the figure, g is a light source and h is a chopper.
セル内面を鏡面に形成して、光路を反射させることによ
り、実効セル長を増大させるようにした測定セルは、ガ
ス分析計の高感度化を図る上で非常に有効である。A measurement cell in which the inner surface of the cell is mirror-finished to reflect the optical path to increase the effective cell length is very effective in increasing the sensitivity of a gas analyzer.
しかし従来の測定セルでは、第7図に示した通りの構造
であり、成る幅を持った光路aをミラーd・・・間でジ
グザグ状に反射させるため、光路a同士の重なり合う部
分が少なくて測定セル容積に対する実効セル容積(光が
通過する部分の容積)の比率が低く、光路aの幅を一定
とし且つ実効セル長を長くしたとき、測定セル容積を大
きくする必要があった。However, in the conventional measurement cell, the structure is as shown in Fig. 7, and the optical path a having a width is reflected in a zigzag pattern between the mirrors d..., so there is little overlap between the optical paths a. The ratio of the effective cell volume (volume of the part through which light passes) to the measurement cell volume is low, and when the width of the optical path a is constant and the effective cell length is lengthened, it is necessary to increase the measurement cell volume.
従って、ガス分析計の高感度化とコンパクト化とを同時
に達成することは困難であった0例えば光源と検出器の
間に並列的に配置された2つのセルに基準ガスと試料ガ
スを、各セルに流れるガスが互い違いになるように、一
定周期かつ一定量で交互に流すようにした所謂ダブルセ
ルタイプの流体変調方式のガス分析計においては、セル
容積が一定の場合、ガス流量が多い程、セル内のガスの
切り換えが迅速に行えるのであるが、セルに流すことが
できるガスの量に限りがあって、このガス量からセルの
容積が制限され、セル容積が小さいものとなった場合、
上記の従来構造では、実効セル長を長くすることができ
ず、高感度化は困難であった。Therefore, it has been difficult to simultaneously achieve high sensitivity and compactness in a gas analyzer. In a so-called double cell type fluid modulation type gas analyzer, in which the gases flow through the cells alternately at a constant period and a constant amount, when the cell volume is constant, the higher the gas flow rate, the higher the gas flow rate. , the gas in the cell can be switched quickly, but there is a limit to the amount of gas that can flow into the cell, and this gas amount limits the cell volume, resulting in a small cell volume. ,
With the conventional structure described above, it was not possible to increase the effective cell length, and it was difficult to achieve high sensitivity.
本発明は、光路の幅を一定としたとき、セル容積の割に
実効セル長を長くとれ、もってガス分析計の高感度化と
コンパクト化とを同時に達成することが可能となる測定
セルを提供するものである。The present invention provides a measurement cell that allows the effective cell length to be long relative to the cell volume when the width of the optical path is constant, thereby making it possible to simultaneously achieve high sensitivity and compactness of the gas analyzer. It is something to do.
上記の目的を達成するために、本発明は、測定セルの光
路と平行な断面形状を、入射方向視において光路の幅と
略同幅の内面を有する奇数角形または当該奇数角形の組
み合わされた形状とし、セル窓以外の前記内面を略全域
にわたって鏡面に形成し、光路を前記鏡面で反射させる
ように構成したのである。In order to achieve the above object, the present invention makes the cross-sectional shape of the measurement cell parallel to the optical path into an odd-numbered angular shape or a combination of the odd-numbered angular shapes having an inner surface that is approximately the same width as the optical path width when viewed from the incident direction. The interior surface except for the cell window is formed into a mirror surface over almost the entire area, and the optical path is reflected by the mirror surface.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明に係る測定セル1を用いた光吸収法によ
るガス分析計の概要を示す、2は光源、3はチョッパー
、4は検出器、5,6は赤外線透過材料等よりなるセル
窓である。FIG. 1 shows an outline of a gas analyzer using a light absorption method using a measuring cell 1 according to the present invention, where 2 is a light source, 3 is a chopper, 4 is a detector, and 5 and 6 are cells made of infrared transmitting materials, etc. It's a window.
前記測定セル1の光路aと平行な断面形状は、入射方向
視において光路aの幅lと略同幅の内面を有する奇数角
形とし、セル窓5.6以外の前記内面を略全域にわたっ
て鏡面M、、M、に形成し、光路aを前記鏡面M 1.
M tで反射させるように構成しである。The cross-sectional shape of the measuring cell 1 parallel to the optical path a is an odd square having an inner surface approximately the same width as the width l of the optical path a when viewed from the incident direction, and the inner surface except for the cell window 5.6 is mirror-finished over almost the entire area. , , M, and the optical path a is formed on the mirror surface M1.
It is configured to reflect at Mt.
より具体的に説明すると、前記測定セル1は、その断面
形状を第1図に示す如く直角二等辺三角形とし、底辺の
長さを光路aの幅lの約2倍、斜辺の長さを約1σに設
定し、底辺に相当する部分に幅lのセル窓5.6を直線
的に並べて設け、斜辺に相当する部分の内面全体を鏡面
M、、 Mlに形成したものである。内面全体を鏡面
M、、M、に形成するにあたっては、例えば金メッキ、
ミラーの貼着など任意の手段を採用できる。7はガス入
口、8はガス出口である。More specifically, the measurement cell 1 has a cross-sectional shape of a right-angled isosceles triangle as shown in FIG. 1σ, cell windows 5.6 with a width l are arranged linearly in the portion corresponding to the base, and the entire inner surface of the portion corresponding to the oblique side is formed into a mirror surface M, . . . Ml. When forming the entire inner surface into a mirror surface M, , M, for example, gold plating,
Any method such as attaching a mirror can be used. 7 is a gas inlet, and 8 is a gas outlet.
上記の構成によれば、光源2から照射された光がチョッ
パー3で断続され、セル窓5に垂直に入射する。測定セ
ル1内に入った光は鏡面Mlで反射され、さらに鏡面M
2で反射されて後、セル窓6を通って検出器4に入射す
る。According to the above configuration, the light emitted from the light source 2 is interrupted by the chopper 3 and enters the cell window 5 perpendicularly. The light entering the measurement cell 1 is reflected by the mirror surface Ml, and further reflected by the mirror surface M
2 and then enters the detector 4 through the cell window 6.
前記内面を当該内面への入射方向から見たときの幅(鏡
面M+、Mtの入射方向から見た幅)は光路aの幅lと
略等しいので、光路aは測定セル1内で2回重なること
になる。つまり、セル窓5から鏡面M1に入射した光と
該鏡面M+で反射した光とが殆ど重なり合い、鏡面Ml
に入射した光と該鏡面M2で反射した光とが殆ど重なり
合うことになる。The width of the inner surface when viewed from the direction of incidence on the inner surface (the width when viewed from the direction of incidence of mirror surface M+, Mt) is approximately equal to the width l of optical path a, so optical path a overlaps twice within measurement cell 1. It turns out. In other words, the light incident on the mirror surface M1 from the cell window 5 and the light reflected on the mirror surface M+ almost overlap,
The light incident on the mirror surface M2 and the light reflected on the mirror surface M2 almost overlap.
従って、光路aは、測定セル1の実容積の2倍のを効容
積を通過したことになる。これは、同−実容積の直進セ
ルを用いた場合に比較して原理的に2倍の感度が得られ
ることを意味している。また、光路aの反射により実効
セル長を増大しているにもかかわらず、測定セル1内に
デッドスペース(光の通らない空間部分)が殆ど生じな
い。Therefore, the optical path a passes through an effective volume twice the actual volume of the measurement cell 1. This means that, in principle, twice the sensitivity can be obtained compared to the case where a straight cell with the same actual volume is used. Further, although the effective cell length is increased by the reflection of the optical path a, almost no dead space (a space through which light does not pass) is generated within the measurement cell 1.
第2図は本発明の別実施例を示す、この実施例は、測定
セル1の断面形状を直角2等辺三角形とし、斜辺に相当
する部分にセル窓5.6を形成し、底辺に相当する部分
の内面を略全域にわたって鏡面Mに形成した点に特徴が
ある。斜辺の長さは光路aの幅lと略等しく設定されて
いる。FIG. 2 shows another embodiment of the present invention. In this embodiment, the cross-sectional shape of the measurement cell 1 is a right-angled isosceles triangle, and a cell window 5.6 is formed in a portion corresponding to the hypotenuse, and a cell window 5.6 is formed in a portion corresponding to the base. The feature is that the inner surface of the portion is formed into a mirror surface M over almost the entire area. The length of the oblique side is set to be approximately equal to the width l of the optical path a.
この構成によれば、先の実施例と同様に光路aが測定セ
ル1の容積の2倍の有効容積を通過し、その倍率分感度
が上昇すると云う作用効果に加えて、光源2及びチョッ
パー3と検出器4とを、互いに適当距離層れた位置に設
けて、チョッパー3やその駆動部の振動による検出器4
への悪影響を容易に除去できる利点がある。According to this configuration, in addition to the effect that the optical path a passes through an effective volume twice the volume of the measurement cell 1 and the sensitivity increases by that magnification, as in the previous embodiment, the light source 2 and the chopper 3 and the detector 4 are placed at appropriate distances from each other, and the detector 4 is caused by the vibration of the chopper 3 and its driving part.
It has the advantage of being able to easily eliminate any negative effects on it.
第3図と第4図は各々本発明の別の実施例を示す、第3
図の実施例は、測定セル1の断面形状を、正五角形を基
本にし且つ入射面及び出光面となるセル窓5.6だけを
、当該セル窓5,6での反射を防止するため光路aに対
して垂直にした形状とし、セル窓5,6以外の3つの内
面を略全域にわたって鏡面M + 、 M t、 M
sに形成した点に特徴がある。入射方向視における前記
内面の幅は光路aの幅lと等しく設定されている点は先
の実施例と同じである。FIGS. 3 and 4 each illustrate another embodiment of the present invention.
In the embodiment shown in the figure, the cross-sectional shape of the measurement cell 1 is basically a regular pentagon, and only the cell window 5.6, which serves as the incident surface and the light exit surface, is used to prevent reflections at the cell windows 5 and 6. The three inner surfaces other than the cell windows 5 and 6 are mirrored over almost the entire area M + , M t , M
It is distinctive in that it is formed in the shape of s. The width of the inner surface as viewed from the direction of incidence is set equal to the width l of the optical path a, which is the same as in the previous embodiment.
第4図の実施例は測定セル1の断面形状を、正七角形を
基本にし且つ入射面及び出光面となるセル窓5,6だけ
を光路aに対して垂直にした形状とし、セル窓5.6以
外の5つの内面を略全域にわたって鏡面M、、Mよ、
M !、 M a、 M sに形成した点に特徴がある
。その他の構成は第3図の実施例と同じである。In the embodiment shown in FIG. 4, the cross-sectional shape of the measurement cell 1 is basically a regular heptagon, and only the cell windows 5 and 6, which are the incident surface and the light exit surface, are perpendicular to the optical path a. 5 inner surfaces other than 6 are mirrored over almost the entire area M,,M,
M! , M a , M s . The rest of the structure is the same as the embodiment shown in FIG.
第3図の実施例によれば、光路aの重なり合いにより、
測定セル1の有効容積が測定セルlの実容積の約2.6
倍に、第4図の実施例では約3.2倍になり、同−実容
積の直進セルを用いたときに較べて、ガス分析計の感度
が前者では約2.6倍、後者では約3.2倍原理的に上
昇することになる。According to the embodiment shown in FIG. 3, due to the overlap of the optical paths a,
The effective volume of measurement cell 1 is approximately 2.6 of the actual volume of measurement cell 1.
The sensitivity of the gas analyzer is about 3.2 times greater in the embodiment shown in Figure 4, compared to when a straight cell with the same actual volume is used. In principle, it will increase by 3.2 times.
第5図と第6図は各々本発明の別の実施例を示す、第5
図の実施例は、測定セル1の断面形状を、第1図に示し
た直角二等辺三角形を二個組み合わせた形状とし、光を
鏡面Ml−M、−Ml・−Mt・の順に反射させて、セ
ル長を倍増した点に特徴がある。第6図の実施例は、測
定セル1の断面形状を、第3図に示した形状(正五角形
を基本にし且つ入射面及び出光面だけを光路に対して垂
直にした形状)を二個組み合わせた形状とし、光を鏡面
M1→M、→M、→M、・−M、・→M、・の順に反射
させて、セル長を倍増した点に特徴がある。FIGS. 5 and 6 each illustrate another embodiment of the present invention.
In the embodiment shown in the figure, the cross-sectional shape of the measurement cell 1 is a combination of two right-angled isosceles triangles shown in FIG. , is characterized by doubling the cell length. In the embodiment shown in FIG. 6, the cross-sectional shape of the measurement cell 1 is a combination of two shapes shown in FIG. The cell length is doubled by reflecting light in the order of mirror surfaces M1→M, →M, →M, .-M, .→M, .
本発明は、上述した構成よりなり、光路の重なり合いに
よりセル容積が有効に利用されるため、セル容積の割に
実効セル長を長くとれ、もってガス分析針の高感度化と
コンパクト化とを同時に達成することが可能である。The present invention has the above-mentioned configuration, and since the cell volume is effectively utilized by overlapping optical paths, the effective cell length can be made long in proportion to the cell volume, and thus the gas analysis needle can be made highly sensitive and compact at the same time. It is possible to achieve this.
第1図は本発明の実施例を示すガス分析計の概略断面図
、第2図乃至第6図は各々本発明の別の実施例を示す測
定セルの断面図である。第7図は従来例を示す断面図で
ある。
1・・・測定セル、5.6・・・セル窓、M 、 M
+ 、 M z。
Ms、Ma、Ms、M+・、Mt・、Ms・−鏡面、a
”’光路、!・・・光路幅。
第1図
1−光路幅
第2°図FIG. 1 is a schematic cross-sectional view of a gas analyzer showing an embodiment of the present invention, and FIGS. 2 to 6 are cross-sectional views of measurement cells showing other embodiments of the present invention. FIG. 7 is a sectional view showing a conventional example. 1...Measurement cell, 5.6...Cell window, M, M
+, Mz. Ms, Ma, Ms, M+・, Mt・, Ms・− mirror surface, a
”'Optical path!...Optical path width. Figure 1 1-Optical path width 2° diagram
Claims (1)
て光路の幅と略同幅の内面を有する奇数角形または当該
奇数角形の組み合わされた形状とし、セル窓以外の前記
内面を略全域にわたつて鏡面に形成し、光路を前記鏡面
で反射させるように構成したことを特徴とする測定セル
。The cross-sectional shape of the measurement cell parallel to the optical path is an odd-numbered square having an inner surface approximately the same width as the width of the optical path when viewed in the direction of incidence, or a combination of the odd-numbered squares, and the inner surface other than the cell window is spread over approximately the entire area. 1. A measurement cell characterized in that the measurement cell is formed with a mirror surface, and is configured such that an optical path is reflected by the mirror surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9822685A JPS61254835A (en) | 1985-05-08 | 1985-05-08 | Measuring cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9822685A JPS61254835A (en) | 1985-05-08 | 1985-05-08 | Measuring cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61254835A true JPS61254835A (en) | 1986-11-12 |
Family
ID=14214045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9822685A Pending JPS61254835A (en) | 1985-05-08 | 1985-05-08 | Measuring cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61254835A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169645A (en) * | 2010-02-16 | 2011-09-01 | Hamamatsu Photonics Kk | Gas concentration calculation device and gas concentration measurement module |
US9274048B2 (en) | 2010-02-16 | 2016-03-01 | Hamamatsu Photonics K.K. | Gas concentration calculation device and gas concentration measurement module |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4958883A (en) * | 1972-10-03 | 1974-06-07 | ||
JPS509480A (en) * | 1973-05-23 | 1975-01-30 | ||
JPS571953A (en) * | 1980-06-05 | 1982-01-07 | Yamatake Honeywell Co Ltd | Infrared gas analyzer |
-
1985
- 1985-05-08 JP JP9822685A patent/JPS61254835A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4958883A (en) * | 1972-10-03 | 1974-06-07 | ||
JPS509480A (en) * | 1973-05-23 | 1975-01-30 | ||
JPS571953A (en) * | 1980-06-05 | 1982-01-07 | Yamatake Honeywell Co Ltd | Infrared gas analyzer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169645A (en) * | 2010-02-16 | 2011-09-01 | Hamamatsu Photonics Kk | Gas concentration calculation device and gas concentration measurement module |
US9274048B2 (en) | 2010-02-16 | 2016-03-01 | Hamamatsu Photonics K.K. | Gas concentration calculation device and gas concentration measurement module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6236455B1 (en) | Photoacoustic spectroscopy sample cells and methods of photoacoustic spectroscopy | |
US5060508A (en) | Gas sample chamber | |
TWI651529B (en) | Concentration measuring device | |
CN105334556A (en) | Reflecting prism for optical resonant cavity and optical resonant cavity and optical spectrum measuring instrument applying same | |
JPS6249240A (en) | Wave guide as optical probe for spectroscopic analysis | |
JPH0678982B2 (en) | Fluorescence measuring device for substance concentration in sample | |
CN205176310U (en) | Reflecting prism for optical resonator and optical resonator and spectral measurement appearance thereof | |
CN1963464A (en) | Total internal reflection ellipsometry imaging device and method therefor | |
JPH08114421A (en) | Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material | |
US10533939B2 (en) | Gas detection device | |
JPS61254835A (en) | Measuring cell | |
CN117740682A (en) | W-shaped foldback type multi-way absorption tank and manufacturing method thereof | |
US4444499A (en) | Detector for use in optical measuring instruments | |
TWI651526B (en) | Gas detection device | |
JP2002340790A (en) | Spr sensor | |
US10054538B1 (en) | Gas detection device | |
US3635563A (en) | Apparatus for detecting small rotations | |
JPH0585020B2 (en) | ||
CN114166795B (en) | Multi-channel pool construction method shared by multi-wavelength lasers | |
JPH0210441Y2 (en) | ||
JPS61226639A (en) | Throw type component analyzer | |
CN109283152A (en) | Gas measurement device | |
JPS63101714A (en) | Laser energy detector | |
TW201809630A (en) | Gas detection device and method for detecting gas concentration | |
JP2002250692A (en) | Instrument and method for measuring oil concentration in oily water containing contaminant |