JPS61254813A - Wave observing device - Google Patents

Wave observing device

Info

Publication number
JPS61254813A
JPS61254813A JP60097291A JP9729185A JPS61254813A JP S61254813 A JPS61254813 A JP S61254813A JP 60097291 A JP60097291 A JP 60097291A JP 9729185 A JP9729185 A JP 9729185A JP S61254813 A JPS61254813 A JP S61254813A
Authority
JP
Japan
Prior art keywords
wave
image pickup
dimensions
image
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097291A
Other languages
Japanese (ja)
Inventor
Sohei Kawabata
川端 荘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIPBUILD RES ASSOC JAPAN
IHI Corp
Original Assignee
SHIPBUILD RES ASSOC JAPAN
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIPBUILD RES ASSOC JAPAN, IHI Corp filed Critical SHIPBUILD RES ASSOC JAPAN
Priority to JP60097291A priority Critical patent/JPS61254813A/en
Publication of JPS61254813A publication Critical patent/JPS61254813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To automatically observe wave information, such as wavelength, wave height, etc., by processing video signals taken by an image pickup device fitted to a ship toward the water surface and extracting shapes and dimensions of wave pictures in the video, and then, estimating the distance to the wave. CONSTITUTION:An image pickup device 3 is fitted to a ship 2 toward the water surface 1 and a string of taken digital signals is divided at every fixed time synchronously to each horizontal scanning at the time of image pickup, and then, dimensions of wavelengths and wave heights of waves in the pictures are found by counting the number of wave video signals or picture elements contained in each divided string. These dimensions are converted into actual dimensions by using distances between waves observed by means of the image pickup device 3 and the image pickup is repeated with the image pickup device 3 under a condition where the device 3 is set in a fixed direction. By observing the moving condition of a waveform with the lapse of time in such a way, direction of waves can be known.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は船舶に装備される波浪観測装置、とくに波長、
波高などの波浪情報を自動的に観測し、正確なデータを
把握し得る波浪観測装置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a wave observation device installed on a ship, and particularly to a wave observation device equipped on a ship.
This invention relates to a wave observation device that can automatically observe wave information such as wave height and obtain accurate data.

[従来の技術] 洋上を航行する船舶には、航行海域における海象および
気象に関する情報を気象庁に通報する義務があり、これ
ら情報のうちでもとくに船舶の安全航行および運航経済
に重大な影響を与える波浪情報、すなわち波長、波高、
波向(波の移動方向)などの観測は通常、船員の目視に
よって行われていた。
[Prior Art] Ships navigating the ocean are obligated to report to the Japan Meteorological Agency information on sea conditions and weather in the sea area in which they are sailing. Information, i.e. wavelength, wave height,
Observations such as wave direction (direction of movement of waves) were usually done visually by sailors.

[発明が解決しようとする問題点] しかし、目視による観測方法は、0個人差が含まれるの
で観測データが正確でない、■荒天時の観測に危険が伴
う、■夜間観測ができない、などの問題点があった。
[Problems to be solved by the invention] However, the visual observation method includes problems such as the observation data is not accurate because it includes 0 individual differences, ■ Observation during stormy weather is dangerous, and ■ Night observation is not possible. There was a point.

なお、最近、電波式波高計および波浪レーダなどが開発
されているが、前者は、■船首から前方に張り出して装
備する必要があるので取付方法に難点がある、■バルバ
スパウを有する船舶前方の波浪は、形状が歪んでいるの
で誤差が大きくなるなどの問題点があり、後者によると
、波長、波向データの精度は良いが、波高の計測精度が
低い、などの問題点があった。
Recently, radio wave height meters and wave radars have been developed, but the former have problems in the installation method as they need to be installed protruding forward from the bow. According to the latter, the accuracy of wavelength and wave direction data is good, but the measurement accuracy of wave height is low.

[問題点を解決するための手段] 本発明は前述の問題点を解決するためになしたもので、
水面に向けて船体に取り付けた撮像装置と、該撮像装置
がil像した映像信号を処理し映像中の波浪画像の形状
、寸法を抽出する画像処理装置と、前記WA像装置から
観測する波浪までの距離を推定するためのセンサとを備
えたものである。
[Means for solving the problems] The present invention has been made to solve the above-mentioned problems.
An imaging device attached to the hull facing the water surface, an image processing device that processes the video signal imaged by the imaging device and extracts the shape and size of the wave image in the video, and waves observed from the WA imaging device. and a sensor for estimating the distance.

[作   用] 搬像したディジタル信号の列を、撮像時の各水平走査に
同期させて一定時間ごとに区切り、区切られた各列の中
に含まれる波浪映像信号、または画素の数を計測して画
面上の波長、波高の寸法を求め、この寸法を撮像装置と
観測した波浪間の距離のデータを用いて実物大の寸法に
換算し、さらに、撮像装置を一定方向に向けた状態で撮
像を繰り返し、波形の移動状況を経時的に観測すること
によって、波向を知ることができる。
[Operation] The image-transferred digital signal row is divided into sections at fixed time intervals in synchronization with each horizontal scan during imaging, and the number of wave image signals or pixels contained in each divided row is measured. The dimensions of the wavelength and wave height on the screen are determined using the image sensor, and these dimensions are converted to the actual size using data on the distance between the imaging device and the observed waves. By repeating this and observing the movement of the waveform over time, the direction of the wave can be determined.

[実 施 @] 以下、本発明の実施例を図面を参照して説明する。第1
図ないし第4図は本発明の一実施例を示し、図中、1は
観測しようとする波、′2は海面に浮ぶ船体、3は船体
上部に設置したテレビカメラ、4はテレビカメラ3を船
体に対し前後および左右方向に揺動自在に支持する据付
台、5はテレビカメラ3の光軸6を常に一定の方向、例
えば光軸6と鉛直線7とが挾む角度θを一定に維持する
姿勢制御装置、8はテレビカメラ3から送られた映像信
号9を処理して波浪情報[波高a、波長b、波向C1第
3図参照]を抽出する画像処理装置、10および11は
得られた画像情報をスクリーンに画像表示するモニタお
よび記録用紙に印字するプリンタである。
[Implementation @] Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
Figures 4 to 4 show one embodiment of the present invention, in which 1 is the wave to be observed, 2 is the hull floating on the sea surface, 3 is a television camera installed on the upper part of the hull, and 4 is the television camera 3. A mounting base 5 that supports the hull so as to be able to swing back and forth and left and right keeps the optical axis 6 of the television camera 3 in a constant direction, for example, the angle θ between the optical axis 6 and a vertical line 7. 8 is an image processing device that processes the video signal 9 sent from the television camera 3 to extract wave information [wave height a, wavelength b, wave direction C1, see Fig. 3]; A monitor displays the image information on a screen, and a printer prints it on recording paper.

テレビカメラ3は、光導筒形撮像管(例えばビジコン)
、または固体撮像デバイス(例えばCODイメージセン
サ)などを用い、とくに夜間観測を行う場合は赤外線を
利用した暗視テレビカメラを使用する。
The television camera 3 is an optical tube type image pickup tube (for example, a vidicon).
, or a solid-state imaging device (for example, a COD image sensor), or a night-vision television camera that uses infrared rays, especially when performing night observations.

テレビカメラ用据付台4は、船体2に固定され頂部を球
面状に形成した受台13と、この受台13上に載置され
前記球面に係合する凹面を有する支台14などからなり
、ジャイロの原理を応用した姿勢制御装置5が、アーム
を介して支台14を前後、左右に揺動させ(矢印d、e
 ) 、船体2が傾斜しても前記θを一定に維持してい
る。なお、船体2の左右舷にはそれぞれ吃水計15.1
6が設けてあり、この吃水データは後述するようにテレ
ビカメラ3と観測しようとする波1間の距離fを正確に
推定するために利用される。
The television camera installation stand 4 consists of a pedestal 13 fixed to the hull 2 and having a spherical top, and a pedestal 14 placed on the pedestal 13 and having a concave surface that engages with the spherical surface. An attitude control device 5 that applies the principle of a gyro swings the support base 14 back and forth and left and right via an arm (as indicated by arrows d and e).
), the above-mentioned θ is maintained constant even if the hull 2 is tilted. In addition, there are water gauges 15.1 on the port and starboard sides of the hull 2.
6 is provided, and this stuttering data is used to accurately estimate the distance f between the television camera 3 and the wave 1 to be observed, as will be described later.

画像処LIT!装四8は、テレビカメラ3から送り出さ
れた映像信号9、すなわち電子画像を構成する各光電変
換素子に蓄積され走査によって順次取り出されてくる電
荷の流れをA/D変換するアナログディジタル変換装置
17(テレビカメラ3が固体fi画像バイスである場合
はクロックパルスで制御される転送パルスによって映像
信号が一定時間間隔でディジタル的に取り出されるので
A/D変換装置は不要となる)と、ディジタル信号の列
を撮像時の各水平走査に同期した一定時間ごとに区切っ
て入力させるゲート回路18と、入力した信号を波浪信
号とそうでない信号に2値化する識別回路19と、21
il化した各信号の数を計測する計数回路20と、各計
測結果をi像時の垂直走査にWJ連させて積み重ね波浪
画像22の形状、寸法を演算し、且つ半波長の波浪画像
の面積中心位置(重心)24を演算、記憶し、さらにこ
の面積中心位置24が時間の経過に従って移動する軌跡
25から波向Cすなわち動きベクトルを演算する演算・
記憶装置27などからなる。
Image processing LIT! The device 48 is an analog-to-digital converter 17 that A/D converts the video signal 9 sent out from the television camera 3, that is, the flow of charges accumulated in each photoelectric conversion element constituting an electronic image and sequentially taken out by scanning. (If the TV camera 3 is a solid-state FI image device, the video signal is digitally extracted at fixed time intervals by the transfer pulse controlled by the clock pulse, so an A/D converter is not necessary.) a gate circuit 18 for dividing and inputting columns at fixed time intervals synchronized with each horizontal scan during imaging; a discriminating circuit 19 for binarizing the input signal into a wave signal and a signal other than the wave signal;
A counting circuit 20 that measures the number of each signal converted to il, calculates the shape and dimensions of a stacked wave image 22 by connecting each measurement result to vertical scanning at the i-image time, and calculates the area of a half-wave wave image. Calculating and storing the center position (center of gravity) 24, and further calculating the wave direction C, that is, the motion vector, from the locus 25 along which the area center position 24 moves over time.
It consists of a storage device 27 and the like.

なお、上記では述べなかったがA/D変換変換装置1註 設けである。Although not mentioned above, the A/D conversion device 1 note It is a provision.

また、第1図において28は演算後、波向の方角を割り
出すための方位計、29は波向を示す動きベクトルを補
正するための船速計、30は波向の参考となる風向、風
速計、32は船体が水平になった状態を検出する傾斜計
、33. 34はインターフェースであり、上記傾斜計
32は船体両舷に吃水針を装備してしている場合は省略
してもよい。
Further, in Fig. 1, 28 is a compass for determining the direction of the wave direction after calculation, 29 is a speedometer for correcting the motion vector indicating the wave direction, and 30 is the wind direction and wind speed that serve as a reference for the wave direction. 32 is an inclinometer for detecting the horizontal state of the hull; 33. Reference numeral 34 denotes an interface, and the inclinometer 32 may be omitted if water droplets are provided on both sides of the hull.

次に、本装置による波浪観測要領について説明する。観
測方法には、波浪を瞬時にm像して波長と波高を求める
方法と、成る時間の間テレビカメラを一方向に向けて波
浪の動きを経時的に撮像し、波長、波高のほかに波向を
観測する二つの方法があるが、先ず後者の方法について
説明する。
Next, the wave observation procedure using this device will be explained. There are two observation methods: one is to instantaneously m-image the waves to determine the wavelength and wave height, and the other is to point a TV camera in one direction for a certain period of time to capture images of the movement of waves over time, in addition to the wavelength and wave height. There are two methods for observing the direction, but the latter method will be explained first.

観測の手順は、テレビカメラ3から観測する波1までの
距離rを演算してm像画面の縦横の寸法の実物に対する
縮尺を割り出しておき(手順1)、次に下面上の波の形
状、寸法を電子的に計測しく手順2)、画面上の寸法を
前記縮尺を用いて実物の寸法に換算する(手順3)。
The observation procedure is to calculate the distance r from the television camera 3 to the wave 1 to be observed and determine the scale of the vertical and horizontal dimensions of the m-image screen relative to the actual object (step 1). Next, the shape of the wave on the bottom surface, The dimensions are measured electronically (step 2), and the dimensions on the screen are converted to actual dimensions using the scale (step 3).

テレビカメラ3から波1までの距離fは、頂角がθであ
る直角三角形ABCの斜辺として求められ、垂直な辺A
Cの長さ35は、船底36とテレビカメラ3間の高さ寸
法31から左右舷の平均吃水38を差引いて求める。θ
が一定であっても船体2が傾斜すれば垂直な辺の長さ3
5が変化するので、吃水針15.16の差を読み取って
θおよび35の値を修正する。上記の演算操作はすべて
演算装@27によって自動的に行われる。
The distance f from the television camera 3 to the wave 1 is found as the hypotenuse of a right triangle ABC whose apex angle is θ, and the vertical side A
The length 35 of C is determined by subtracting the average water drop 38 on the port and starboard sides from the height dimension 31 between the bottom 36 and the television camera 3. θ
Even if is constant, if the hull 2 tilts, the length of the vertical side will be 3
5 changes, read the difference between the hiccup needles 15 and 16 and correct the values of θ and 35. All the above arithmetic operations are automatically performed by the arithmetic unit @27.

テレビカメラ3から送り出されたアナログ映像信号9は
、ノイズを除去したのちA/D変換装置17を通ってデ
ィレダル信号となり(テレビカメラ3が固体m像デバイ
スである場合はA/D変換の必要はない)、次いでゲー
ト回路18を通って識別回路19に入る。識別回路19
は、前記信号39を成る“しきい値”を境にして上下二
つのグループに分けて値化する。波浪画像22は波間の
映像部分39に較べて明るいので波浪画像はゼロ、波間
は1となって計数回路20に入る。
After removing noise, the analog video signal 9 sent from the television camera 3 passes through the A/D converter 17 and becomes a dired signal (if the television camera 3 is a solid-state m-image device, A/D conversion is not necessary). ), then passes through the gate circuit 18 and enters the identification circuit 19 . Identification circuit 19
The signal 39 is divided into two groups, upper and lower, with a "threshold value" as a boundary, and converted into values. Since the wave image 22 is brighter than the inter-wave image portion 39, the wave image becomes 0 and the wave interval becomes 1, which enters the counting circuit 20.

計数回路20は、水平走査が行われる度毎にゼロおよび
1の信号の数を計測し計測値を記憶しておく。撮影面に
おける水平、垂直方向の画素の配列数および各画素の縦
横の寸法は最初から決まっているので、波浪画像22の
成る水平断面の長さ40および画面内の横方向の位置が
求まり、これらの数値が記憶される。
The counting circuit 20 counts the number of zero and one signals every time a horizontal scan is performed and stores the measured value. Since the number of pixels arrayed in the horizontal and vertical directions on the imaging surface and the vertical and horizontal dimensions of each pixel are determined from the beginning, the length 40 of the horizontal section of the wave image 22 and the horizontal position within the screen are determined, and these The value of is memorized.

かくして、水平走査が波浪画122の上部から下部に向
って順次進行するのに従って波浪画像22の二次元的な
拡がり(第3図および第4図にハツチングを施して示す
)が数値的に求められる。そして画面上で求めた波浪画
像22の形状、寸法を前述した縮尺度に従って拡大し、
実物大の波浪の形状、寸法(波長a、波高すなど)を求
める。
In this way, as the horizontal scan progresses sequentially from the top to the bottom of the wave image 122, the two-dimensional spread of the wave image 22 (shown by hatching in FIGS. 3 and 4) is numerically determined. . Then, the shape and dimensions of the wave image 22 obtained on the screen are enlarged according to the scale scale described above,
Find the shape and dimensions (wavelength a, wave height, etc.) of a real-scale wave.

波向Cを求めるには、波浪の動きを経時的に観測する。To determine the wave direction C, the movement of waves is observed over time.

具体的には成る波浪の形状を代表する点、例えば半波長
の波浪画像の面積中心(重心)24(第4図参照)の移
動を観測するのが便利である。前述したとおり、波浪画
像に相当する画素の水平および垂直方向の分布状況が逐
次計測、記憶されていくので、このプロセスに追尾して
面積中心位置24を演算しておき、面積中心の軌跡25
から波向Cを求める。
Specifically, it is convenient to observe the movement of a point representative of the wave shape, for example, the center of area (center of gravity) 24 (see FIG. 4) of a half-wavelength wave image. As mentioned above, the horizontal and vertical distribution of pixels corresponding to the wave image is sequentially measured and stored, so the area center position 24 is calculated by following this process, and the area center locus 25 is calculated.
Find the wave direction C from

かくして求めた波浪の形状および動きは、モニタ10の
スクリーンにリアルタイムで画像表示され、観測データ
がプリンタ11によって記録用紙に記録される。
The shape and movement of the waves thus determined are displayed as images in real time on the screen of the monitor 10, and the observed data are recorded on recording paper by the printer 11.

次に、第2の波浪観測方法について述べる。Next, a second wave observation method will be described.

この方法は、瞬時的に波浪画像を撮像して波長と波向を
求め、波向は風向、風速計の示度にしたがって推定する
ものである。経時的に波浪の動きを観測する必要がない
ので、テレビカメラは船体に固定されている。Ili像
する時点は何時でもよいが船体が傾斜していない時点を
選ぶのが便利であり、船体両舷に設けた吃水針15.1
6の示度がほぼ等しくなったとき、あるいは船体の傾斜
計32の示度がゼロになった時点でテレビカメラに撮像
間の指令を出すようにすればよい。
This method instantaneously captures a wave image to determine the wavelength and wave direction, and the wave direction is estimated based on the wind direction and anemometer reading. The television camera is fixed to the hull, as there is no need to observe the movement of waves over time. You can take the image at any time, but it is convenient to choose a time when the hull is not tilted.
When the readings of the inclinometers 6 and 6 become almost equal, or when the reading of the inclinometer 32 on the hull becomes zero, a command between imaging can be issued to the television camera.

この方法によると、通常の電子計算機を装備した既存の
船舶にテレビカメラを取り付けるだけで観測態勢が整う
ので応用範囲が広い。
This method has a wide range of applications, as observation can be prepared simply by attaching a television camera to an existing ship equipped with a regular electronic computer.

なお、本発明は前述の実施例にのみ限定されるものでは
なく、例えばテレビカメラはあらゆる種類の撮像管また
はイメージセンサなどを使用してもよく、画像処理装置
は公知の種々の識切回路、長さ測定回路などを組み合わ
せて構成してもよいことなど、その池水発明の要旨を逸
脱しない範囲において種々の変更を加え得ることは勿論
である。
Note that the present invention is not limited to the above-described embodiments; for example, the television camera may use any type of image pickup tube or image sensor, and the image processing device may use various known discrimination circuits, It goes without saying that various changes can be made without departing from the gist of the Ikemizu invention, such as a combination of length measuring circuits and the like.

[発明の効果] 以上に述べたごとく、本発明は次の優れた効果を発揮す
る。
[Effects of the Invention] As described above, the present invention exhibits the following excellent effects.

(1)  ml像装置を用いて波浪を撮像し、°波浪画
像を電子的に画像処理するので、波浪情報を自動的に且
つ正確に把握することができ−る。
(1) Waves are imaged using an ML imaging device, and the wave images are electronically processed, so wave information can be automatically and accurately grasped.

0) 第(1)項の結果、運航の省力化を図ることがで
き、荒天時における従来の波浪観測作業の危険を取り除
くことができる。
0) As a result of item (1), it is possible to save labor during navigation and eliminate the dangers of conventional wave observation work during stormy weather.

(至) 暗視テレビカメラを使用することにより、夜間
でも波浪観測を行うことができる。
(To) Wave observation can be conducted even at night by using night vision television cameras.

0 航海に必要な通常の計測装置および自動化のための
通常の電子計算機を装備した既存船舶に対し、テレビカ
メラを取付けるだけで実用上はぼ満足できる高精度の波
浪観測を行うことができる。
0 It is possible to perform high-precision wave observation that is practically satisfactory by simply attaching a television camera to an existing ship that is equipped with normal measuring equipment necessary for navigation and normal electronic computers for automation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の実施例を示し、第1図は
本装置のブロック線図、第2図は波浪観測要領の説明図
、第3図は電子画像の説明図、第4図は第3図に示す波
浪画像の拡大図である。 図中、1は波、2は船体、3はテレビカメラ、8は画像
処理装置を示す。 特  許  出  願  人 社団法人 日本造船研究協会 特  許  出  願  人 石川島播磨重工業株式会社
1 to 4 show embodiments of the present invention, FIG. 1 is a block diagram of the device, FIG. 2 is an explanatory diagram of wave observation procedures, FIG. 3 is an explanatory diagram of electronic images, and FIG. The figure is an enlarged view of the wave image shown in FIG. 3. In the figure, 1 is a wave, 2 is a ship's body, 3 is a television camera, and 8 is an image processing device. Patent application: Japan Shipbuilding Research Association Patent application: Ishikawajima-Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 1)水面に向けて船体に取り付けた撮像装置と、該撮像
装置が撮像した映像信号を処理し映像中の波浪画像の形
状、寸法を抽出する画像処理装置と、前記撮像装置から
観測する波浪までの距離を推定するためのセンサとを備
えたことを特徴とする波浪観測装置。 2)撮像装置を常に一定方向に向けておくための姿勢制
御装置を備えている特許請求の範囲第1)項に記載の波
浪観測装置。
[Scope of Claims] 1) An imaging device attached to a ship's hull facing the water surface, an image processing device that processes a video signal captured by the imaging device and extracts the shape and size of a wave image in the video, and the imaging device A wave observation device comprising: a sensor for estimating the distance from the device to waves to be observed. 2) The wave observation device according to claim 1, further comprising an attitude control device for always keeping the imaging device oriented in a fixed direction.
JP60097291A 1985-05-08 1985-05-08 Wave observing device Pending JPS61254813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097291A JPS61254813A (en) 1985-05-08 1985-05-08 Wave observing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097291A JPS61254813A (en) 1985-05-08 1985-05-08 Wave observing device

Publications (1)

Publication Number Publication Date
JPS61254813A true JPS61254813A (en) 1986-11-12

Family

ID=14188396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097291A Pending JPS61254813A (en) 1985-05-08 1985-05-08 Wave observing device

Country Status (1)

Country Link
JP (1) JPS61254813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232860A (en) * 2007-03-20 2008-10-02 National Maritime Research Institute Wave monitor for ship
JP2017181413A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Wave measurement device, wave measurement information transmission system and float

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120488A (en) * 1977-03-29 1978-10-20 Ishikawajima Harima Heavy Ind Method of measuring crest distribution of unsteady wave by using stereo camera

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120488A (en) * 1977-03-29 1978-10-20 Ishikawajima Harima Heavy Ind Method of measuring crest distribution of unsteady wave by using stereo camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232860A (en) * 2007-03-20 2008-10-02 National Maritime Research Institute Wave monitor for ship
JP2017181413A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Wave measurement device, wave measurement information transmission system and float

Similar Documents

Publication Publication Date Title
US20060152589A1 (en) Imaging and measurement system
CN112614177B (en) Sea ice thickness identification system and method suitable for ship ice area sailing test
CN111238382B (en) Ship height measuring method and ship height measuring device
CN111076880A (en) Multi-point deflection measuring method of long-span bridge considering camera attitude change
JP3907200B2 (en) Environmental information observation equipment
CN103791892A (en) Shipborne view field adjustable sea level observation device and method
JP5152913B2 (en) Offshore monitoring system and method
JP5680476B2 (en) Method and apparatus for measuring vibration and dimensions of structures by non-contact measurement
CN115717867A (en) Bridge deformation measurement method based on airborne double cameras and target tracking
Leaper et al. Application of photogrammetric methods for locating and tracking cetacean movements at sea
JP3446888B2 (en) Wave measurement system
CN107505611B (en) Real-time correction method for video distance estimation of ship photoelectric reconnaissance equipment
JPS61254813A (en) Wave observing device
CN117092659A (en) System and method for jointly measuring ship height by laser imaging radar and camera
CN115571290B (en) Automatic ship draft detection system and method
JPH075188A (en) Current measuring equipment
CN116400361A (en) Target three-dimensional reconstruction system and method based on sonar detection
RU70983U1 (en) DEVICE FOR MEASURING THICKNESS OF ICE FROM BOARD
KR100957590B1 (en) Aparratus for display omni-directional image with object image
CN211147588U (en) Ship height measuring device
CA3237725A1 (en) Systems and methods for draft calculation
KR101180260B1 (en) Apparatus for mosaicking sea floor image using sea floor topography information and method thereof
KR20230106958A (en) Apparatus and method for providing position and orientation information of sea object based on camera
JPH02236420A (en) Method and device for measuring water level
RU2749494C1 (en) Device for tracking the ice situation from the icebreaker