JPS6125402B2 - - Google Patents

Info

Publication number
JPS6125402B2
JPS6125402B2 JP1653079A JP1653079A JPS6125402B2 JP S6125402 B2 JPS6125402 B2 JP S6125402B2 JP 1653079 A JP1653079 A JP 1653079A JP 1653079 A JP1653079 A JP 1653079A JP S6125402 B2 JPS6125402 B2 JP S6125402B2
Authority
JP
Japan
Prior art keywords
scraping
crystals
draft tube
circulation
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1653079A
Other languages
Japanese (ja)
Other versions
JPS55109403A (en
Inventor
Minoru Morita
Nobuo Tazaki
Ryoji Sugamya
Kazuto Nakamaru
Keizo Takegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP1653079A priority Critical patent/JPS55109403A/en
Publication of JPS55109403A publication Critical patent/JPS55109403A/en
Publication of JPS6125402B2 publication Critical patent/JPS6125402B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は掻取式循環式晶析機に係る。[Detailed description of the invention] The present invention relates to a scraping type circulation crystallizer.

従来の晶析操作において通常行われている方法
は断熱冷却、冷媒吹込みによる直接冷却及びジヤ
ケツト、熱交換器等を利用する間接冷却法、蒸発
濃縮法、塩析法等が主なものである。これらの方
式はその結晶の特性、前後プロセスとの関係、経
済性等を考え合せ最適な方法が取られている。結
晶操作において重要な点の一つは結晶品質、晶析
後の分離操作の容易さ等に影響を与える結晶の粒
度である。前述のように種々晶析法はあるが物性
その他の要因から間接冷却が最適とされる物質も
非常に多い。しかしこの間接冷却方式は種々利点
があるが、逆に冷却面に結晶が付着しそれにより
伝熱係数が低下し操業性が悪化するという欠点は
避け難い。従つて冷却面をスクレパーで掻取るこ
とにより付着結晶の厚みをコントロールし伝熱係
数の低下を防ぐか、回分方式により新しく原液を
供給することにより伝熱面への付着結晶を溶解
し、伝熱係数の回復をはかることにより運転を続
ける方法が行われている。回分方式も処理量が小
さい場合は問題ないが大きくなると操業上の問題
が多く掻取式を採用せざるを得ない。この掻取方
式で問題となつている点はその掻取を主体とする
構造のため内部液の循環流を作ることが難しく、
掻取とは別に撹拌用の羽根を取付て別の駆動装置
にて行つているのが現状であり製作費も高く又、
撹拌用羽根の大きさにも制限があり径の小さい羽
根を高速で回転させる必要性から結晶の機械的破
砕が多く希望する安定した粒度が得られないとい
う問題がある。この問題を解決出来るよう掻取用
のシヤフトと1体となる撹拌羽根を取付け低回転
で大きな内部液の循環が得られるようにし槽内の
過飽和度を均一化出来るようにした掻取循環式晶
析機を発明した。
The main methods commonly used in conventional crystallization operations are adiabatic cooling, direct cooling by blowing refrigerant, indirect cooling using jackets, heat exchangers, etc., evaporation concentration method, salting-out method, etc. . For these methods, the optimum method is selected by taking into account the characteristics of the crystal, the relationship with the preceding and following processes, economic efficiency, etc. One of the important points in crystallization operation is the grain size of the crystal, which affects crystal quality, ease of separation operation after crystallization, etc. As mentioned above, there are various crystallization methods, but there are many substances for which indirect cooling is optimal due to physical properties and other factors. However, although this indirect cooling method has various advantages, it cannot avoid the disadvantage that crystals adhere to the cooling surface, which lowers the heat transfer coefficient and impairs operability. Therefore, either you can control the thickness of the adhering crystals by scraping the cooling surface with a scraper and prevent a drop in the heat transfer coefficient, or you can dissolve the adhering crystals on the heat transfer surface and improve the heat transfer by supplying a new stock solution using a batch method. A method is being used to continue operation by restoring the coefficient. There is no problem with the batch method when the throughput is small, but when the amount is large, there are many operational problems and the scraping method has to be adopted. The problem with this scraping method is that it is difficult to create a circulation flow for the internal liquid because of its structure, which mainly involves scraping.
Currently, stirring blades are attached and a separate drive device is used for scraping, which is expensive to manufacture.
There are also restrictions on the size of the stirring blades, and the need to rotate small-diameter blades at high speeds causes a problem in that the crystals are often mechanically crushed, making it impossible to obtain the desired stable particle size. In order to solve this problem, we have installed a stirring blade that is integrated with the scraping shaft to achieve a large circulation of internal liquid at low rotation speeds, which makes it possible to equalize the degree of supersaturation in the tank. invented an analyzer.

従来の掻取式晶析機では結晶槽内での上下循環
はほとんどなく結晶の成長、核発生のコントロー
ル等良い結晶を作るための条件コントロールが出
来ない状態である。この条件を作るために掻取羽
根とは別の撹拌用羽根を取付け上下循環流を起し
ているのが現状であり、動力的にも製作費上から
も高いものになつている。また別の方法では循環
ポンプによりスラリーを循環し内部スラリーの混
合を行わせているものもある。これらの方式では
槽内スラリーの均一な混合、均一な過飽和度を得
るために撹拌羽根及びポンプのインペラーの回転
数はかなり大きくする必要がありこの羽根による
機械的破砕が非常に大きく粒径の大きい結晶を得
ることを困難にしている。撹拌羽根、及びポンプ
インペラーの回転数と結晶破砕とは比例関係にあ
り、できる限り低速でかつ有効な槽内スラリーの
循環を行うことが望ましいことはよく知られてい
ることである。この相反する条件を満すためには
径の大きい羽根を低速で回転させる必要がある。
上記問題点を解決することを目的として発明した
のが本発明の掻取式循環晶析機である。槽内循環
を十分に行い槽内の過飽和度を均一にし局部的な
過飽和度の極大化による微結晶の発生を防ぐため
に単独に撹拌羽根を取付るのではなく、掻取羽根
を駆動するシヤフトと一体となつて回転するドラ
フトチユーブの外側に槽内循環用の撹拌羽根を取
付け、かつスラリーの旋回流を出来るだけ小さく
し効率の良い上下循環流とするためバツフルが必
要となる。従来掻取型の場合その伝熱面に取付る
ことができないのでバツフルなしで行われてい
た。しかし本発明ではバツフルプレートを上下部
に設けることにより低速で効率良い循環流を得ら
れるようにしたものである。このことにより結晶
の機械的破砕も少なく槽内スラリーの循環に別の
撹拌機の設置が不要となり製作費、ランニングコ
ストを下げることができ又構造が簡単でトラブル
を少くすることができる。
In conventional scraping type crystallizers, there is almost no vertical circulation within the crystallization tank, making it impossible to control conditions for producing good crystals, such as controlling crystal growth and nucleation. In order to create this condition, the current practice is to attach stirring blades separate from the scraping blades to create a vertical circulation flow, which is expensive both in terms of power and production costs. Another method uses a circulation pump to circulate the slurry and mix the internal slurry. In these methods, in order to achieve uniform mixing of the slurry in the tank and a uniform degree of supersaturation, the rotational speed of the stirring blades and pump impeller must be considerably high, and the mechanical crushing by these blades is extremely large, resulting in large particles. This makes it difficult to obtain crystals. It is well known that there is a proportional relationship between the number of revolutions of the stirring blade and pump impeller and crystal crushing, and that it is desirable to circulate the slurry in the tank as effectively as possible at the slowest possible speed. In order to satisfy these contradictory conditions, it is necessary to rotate the blade with a large diameter at a low speed.
The scraping type circulating crystallizer of the present invention was invented with the aim of solving the above problems. In order to ensure sufficient circulation in the tank, uniformize the degree of supersaturation in the tank, and prevent the generation of microcrystals due to local maximization of supersaturation, instead of installing a stirring blade independently, we installed a shaft that drives the scraping blade. A stirring blade for circulation inside the tank is attached to the outside of the draft tube that rotates as a unit, and a baffle is required to minimize the swirling flow of the slurry and create an efficient vertical circulation flow. Conventionally, in the case of the scraped type, it was not possible to attach it to the heat transfer surface, so it was done without a buttful. However, in the present invention, by providing buff-full plates at the upper and lower portions, efficient circulating flow can be obtained at low speed. As a result, the mechanical crushing of crystals is reduced and it is not necessary to install a separate stirrer for circulating the slurry in the tank, thereby reducing production costs and running costs, and the structure is simple and troubles can be reduced.

添付図面を参照しながら本発明を詳細に説明す
る。
The present invention will be described in detail with reference to the accompanying drawings.

晶析槽1の中心に回転自在のシヤフト3が下部
軸受18に支持され駆動装置15によつて回転さ
れる。前記シヤフト3に固定された水平方向のサ
ポートアーム20に縦方向のフラツトバー21が
固定され、該フラツトバー21に掻取羽根5が取
付けられている。前記晶析槽1の外部にジヤケツ
ト2を備えている。前記掻取羽根5は晶析槽1の
内面に付着する結晶を掻取るものである。この掻
取羽根5のサポート20の途中にドラフトチユー
ブ4を設けこのドラフトチユーブ4の外側に内液
又は結晶スラリーを循環させるための撹拌羽根6
が取付けてある。晶析槽の上部及び下部には掻取
羽根5やそのサポートアーム20によつて発生す
る旋回流を上下循環流に効率よく変換出来るよう
上部蓋19より垂設してドラフトチユーブ4の内
側と外側にまたがつてバツフルプレート7が配設
されており、下部底板17にはドラフトチユーブ
4の内側にバツフルプレート8が取付けられてい
る。バツフルプレート7は撹拌によつて生ずる液
の流れに対して、上部部分に凹所を設ける等通過
する液の流れを整える事は好ましい。なお当然の
ことであるが、これらのバツフルプレート7,8
は回転する各部材に当らないようにされている。
原液は供給口11より供給され、外部ジヤケツト
の入口12より導入され出口13から排出される
如く冷媒を通すことにより冷却される。内壁面に
成長してくる結晶は掻取羽根すなわちスクレーパ
5で擾取られ液中に浮遊しスラリー状となる。こ
の結晶スラリーはシヤフト3と一緒に回転するド
ラフトチユーブ4の外側に取付られている撹拌羽
根6により上向の流れを得て図に示す矢印のよう
な循環流となる。この流れ方向は逆にすることも
可能である。このドラフトチユーブの外側に撹拌
羽根を取付ることにより低速回転で大きな循環流
を得ることができる。従つて結晶の破砕も少く内
部の過飽和度を均一にすることができより良い結
晶が得られる。
A rotatable shaft 3 is supported by a lower bearing 18 at the center of the crystallization tank 1 and rotated by a drive device 15 . A vertical flat bar 21 is fixed to a horizontal support arm 20 fixed to the shaft 3, and a scraping blade 5 is attached to the flat bar 21. A jacket 2 is provided outside the crystallization tank 1. The scraping blade 5 is used to scrape off crystals adhering to the inner surface of the crystallization tank 1. A draft tube 4 is provided in the middle of the support 20 of the scraping blade 5, and a stirring blade 6 is provided for circulating the internal liquid or crystal slurry outside the draft tube 4.
is installed. At the upper and lower parts of the crystallization tank, in order to efficiently convert the swirling flow generated by the scraping blade 5 and its support arm 20 into an up-and-down circulation flow, the upper lid 19 is suspended from the upper lid 19, and the inside and outside of the draft tube 4 are installed. A buff-full plate 7 is disposed astride the draft tube 4, and a buff-full plate 8 is attached to the lower bottom plate 17 inside the draft tube 4. It is preferable that the baffle plate 7 has a recess in its upper portion to adjust the flow of the liquid that passes through it, such as by providing a recess in the upper part of the baffle plate 7 to deal with the flow of the liquid caused by stirring. Of course, these Batsuful plates 7 and 8
is prevented from hitting each rotating member.
The stock solution is supplied through the supply port 11, introduced through the inlet 12 of the external jacket, and discharged through the outlet 13, thereby being cooled by passing a refrigerant therethrough. The crystals growing on the inner wall surface are scraped off by scraping blades, ie, scrapers 5, and suspended in the liquid to form a slurry. This crystal slurry obtains an upward flow by a stirring blade 6 attached to the outside of a draft tube 4 that rotates together with the shaft 3, and becomes a circulating flow as shown by the arrow in the figure. This flow direction can also be reversed. By attaching stirring blades to the outside of this draft tube, a large circulating flow can be obtained at low speed rotation. Therefore, crystals are less likely to be crushed, and the degree of supersaturation inside can be made uniform, resulting in better crystals.

掻取羽根5およびそのサポートアーム20等の
抵抗により槽内スラリーの旋回流が起るのでこれ
をできるだけ小さくすることが上下流循環をスム
ーズに効率よく行うために必要である。実験機で
確認した結果では掻取羽根の半径方向の巾は槽径
の3/100以下に押えることが望ましい。又掻取羽
根のサポートアームも出来るだけ抵抗の少い構造
にすることが望ましい。機械的構造上、この旋回
流を完全になくすることは出来ないのでバツフル
7,8を設けることにより上下流に変換し効率良
い循環を一層大きくした。旋回流が主となる混合
状態では冷却面近くで冷却された液が内部に移動
する割合が小さく槽内中心部と冷却面との間に温
度勾配が出来、従つて、冷媒との温度差が冷却面
近くでは小さくなり伝熱速度が下り能力低下を来
す。又槽内の過飽和度も不均一となり微結晶の発
生しやすい状態となる。又結晶も槽下部に沈降し
過飽和母液と結晶との接触が悪くなる。これらの
ことから旋回流を上下流に変えることが重要であ
る。
Since a swirling flow of the slurry in the tank occurs due to the resistance of the scraping blade 5 and its support arm 20, etc., it is necessary to reduce this as much as possible in order to perform upstream and downstream circulation smoothly and efficiently. According to the results confirmed with an experimental machine, it is desirable to keep the width of the scraping blade in the radial direction to 3/100 or less of the tank diameter. It is also desirable that the support arm of the scraping blade has a structure with as little resistance as possible. Due to the mechanical structure, it is not possible to completely eliminate this swirling flow, so by providing buffs 7 and 8, it is converted upstream and downstream to further increase efficient circulation. In a mixing state in which swirling flow is the main flow, the proportion of liquid cooled near the cooling surface moving inside is small, creating a temperature gradient between the center of the tank and the cooling surface, resulting in a temperature difference with the refrigerant. Near the cooling surface, the heat transfer rate decreases and the capacity decreases. Furthermore, the degree of supersaturation within the tank becomes non-uniform, resulting in a state in which microcrystals are likely to occur. In addition, the crystals also settle to the bottom of the tank, resulting in poor contact between the supersaturated mother liquor and the crystals. For these reasons, it is important to change the swirling flow upstream and downstream.

従来の方法では、上下循環流を作るために別の
単独な撹拌機を取付けているが構造上羽根径はド
ラフトチユーブ内径にほぼ等しい程度で本発明の
羽根に比べると回転数が大きくなり結晶破砕の点
から好ましくない。又、取付の方法として従来行
われているものは、下部から循環羽根を入れるか
上部から掻取用シヤフトの内部を通す2重シヤフ
ト構造となつているがいずれも製作費が高く運転
上のトラブルも多く、特に下部から押入する場合
シヤフトシールのトラブルも多い。
In the conventional method, a separate independent stirrer is installed to create a vertical circulation flow, but due to the structure, the diameter of the blade is approximately equal to the inner diameter of the draft tube, and the rotation speed is higher than that of the blade of the present invention, which is difficult to crush crystals. Not desirable from this point of view. In addition, the conventional mounting method is a double shaft structure in which the circulation blade is inserted from the bottom or the inside of the scraping shaft is passed from the top, but both are expensive to manufacture and cause operational problems. There are many problems with the shaft seal, especially when pushing in from the bottom.

結晶スラリーの抜出しは下部ノズル10又は上
部オーバフローノズル14を利用して取出す。大
きな循環流が得られることにより結晶をサスペン
ドすることが可能となり結晶と母液との比重差の
大きくない系についてはオーバーフローノズル1
4を利用しポンプなしで次の工程に送ることが可
能であり、結晶のポンプによる破砕も防ぐことが
でき又設備費、及びランニングコストを下げるこ
とが可能となる。
The crystal slurry is extracted using the lower nozzle 10 or the upper overflow nozzle 14. By obtaining a large circulation flow, it is possible to suspend the crystals, and for systems where the difference in specific gravity between the crystals and the mother liquor is not large, overflow nozzle 1 is used.
4, it is possible to send the crystal to the next step without a pump, it is possible to prevent the crystal from being crushed by the pump, and it is also possible to reduce equipment costs and running costs.

一般に結晶槽内で壁面やシヤフトに付着した結
晶が落下し結晶のブロツクができることがあるが
従来の中央部が低い円錐状では破砕機構を設けて
も一ケ所に集中してブロツクが集るため閉塞のト
ラブルを完全に解消することは困難であつた。し
かし図に示すように中央部が高い円錐状とするこ
とによりブロツクを外側に集め、底板17と掻取
羽根の下部に櫛状の破砕機構9を取付ることによ
りブロツクをほぐすことによりスラリー抜出しの
ブロツクによる閉塞トラブルを解消できるように
した。
Generally, crystals attached to the walls or shaft in a crystallization tank may fall and form crystal blocks, but with the conventional conical shape with a low center, even if a crushing mechanism is installed, the blocks will concentrate in one place and cause blockage. It was difficult to completely eliminate this problem. However, as shown in the figure, by forming a conical shape with a high central part, the blocks are gathered to the outside, and a comb-shaped crushing mechanism 9 is attached to the bottom plate 17 and the lower part of the scraping blade to loosen the blocks, thereby making it easier to extract the slurry. It has been made possible to resolve blockage problems caused by blocks.

本発明の掻取式循環晶析機の一実施例及びその
試験結果を次に説明する。槽径1800mm、槽高3000
mm、シヤフト回転数8乃至25r.p.m、掻取羽根周
速0.75乃至2.35m/s取扱い物質……有機物質の異
性体混合液、結晶比重1.52、母液比重1.34、平均
結晶粒径1.0mm、晶析温度−15乃至−20℃、沈降
速度0.3cm/s 上記条件で行つた結果、掻取羽根の先端速度、
1m/s(シヤフト回転数10r.p.m)に保つた場
合、内部のスラリーは均一混合状態となり安定し
た結晶粒径のものが得られた。掻取羽根の先端速
度を0.75m/s(回転数8r.p.m)とした場合もスラ
リーの濃度分布の差はほとんど見られなかつた。
スラリーの抜出しについても閉塞トラブルもなか
つた。
An embodiment of the scraping-type circulating crystallizer of the present invention and its test results will be described next. Tank diameter 1800mm, tank height 3000
mm, shaft rotation speed 8 to 25 r.pm, scraping blade circumferential speed 0.75 to 2.35 m/s Materials handled: Mixed liquid of isomers of organic substances, crystal specific gravity 1.52, mother liquor specific gravity 1.34, average crystal grain size 1.0 mm, crystal Analysis temperature: -15 to -20℃, sedimentation rate: 0.3cm/s As a result of the above conditions, the tip speed of the scraping blade,
When maintained at 1 m/s (shaft rotation speed 10 r.pm), the internal slurry was in a uniformly mixed state and a stable crystal grain size was obtained. Even when the tip speed of the scraping blade was set to 0.75 m/s (rotation speed: 8 r.pm), there was almost no difference in the concentration distribution of the slurry.
There were no blockage problems when extracting the slurry.

従来の晶析槽に比べ本発明の掻取式循環晶析機
は次のような有利がある。
The scraping type circulating crystallizer of the present invention has the following advantages over conventional crystallizers.

(1) 従来の掻取式に比べ内部のスラリー循環が低
回転で得られる。
(1) Compared to the conventional scraping type, internal slurry circulation can be achieved at lower rotation speeds.

(2) 低速回転で循環できるので結晶の機械的破砕
が少ない。
(2) Since it can be circulated at low speed, there is less mechanical crushing of crystals.

(3) 構造がシングルシヤフトであり簡単なので製
作費が安い。
(3) The structure is simple and has a single shaft, so the manufacturing cost is low.

(4) 単一の駆動装置でよく、動力が少ないので運
転費が安い。
(4) Only a single drive unit is required, and operating costs are low because the amount of power is small.

(5) シングルシヤフトなので保守が容易である。(5) Single shaft makes maintenance easy.

(6) 循環を行うための下部駆動撹拌に比べ軸封の
トラブルがない。
(6) There are no problems with shaft seals compared to bottom-driven agitation for circulation.

(7) 結晶ブロツクを壁側に集め破砕の機構を有す
るのでスラリー抜出しのトラブルがない。
(7) Since it has a crushing mechanism that collects crystal blocks on the wall side, there is no problem with slurry extraction.

(8) 低速回転で十分な内部スラリー循環が出来る
ので内液の過飽和度が均一で安定するので良質
な安定した結晶が得られる。
(8) Low speed rotation allows sufficient internal slurry circulation, making the supersaturation level of the internal liquid uniform and stable, resulting in high quality and stable crystals.

本発明の掻取式循環晶析機は以上の有利性を持
つていることから次の分野への応用ができる。
Since the scraping type circulating crystallizer of the present invention has the above advantages, it can be applied to the following fields.

(1) 今まで冷却掻取のみで行われていた晶析系に
はすべて応用でき結晶を従来より大きく良質な
ものにできる。
(1) It can be applied to all crystallization systems that were conventionally performed only by cooling and scraping, and the crystals can be made larger and of better quality than before.

(2) 従来掻取循環を行つていた晶析系に応用でき
従来のものより結晶の機械的破砕を少くできよ
り良い結晶が得られる。
(2) It can be applied to crystallization systems that conventionally used scraping circulation, and it is possible to reduce mechanical crushing of crystals and obtain better crystals than in conventional systems.

(3) 従来掻取式でも行えたが内部循環が不十分な
ため良質な結晶が得られず内部循環を得るため
断熱冷却方式や蒸発方式等で行われている晶析
系に応用できスチーム、動力等の省エネルギー
に役立つ。
(3) Conventionally, the scraping method could be used, but good quality crystals could not be obtained due to insufficient internal circulation, so steam, Helps save energy such as power.

(4) 前記(3)と同じ理由で特に熱的に敏感な物質で
ありながら低温蒸発方式断熱冷却方式等を採用
している晶析系に応用でき、又、大気圧下の操
作が可能であることから省エネルギー及び製作
費の減少に役立つ。
(4) For the same reason as (3) above, it can be applied to crystallization systems that use low-temperature evaporation or adiabatic cooling methods, even though it is a particularly thermally sensitive substance, and can be operated under atmospheric pressure. Therefore, it is useful for energy saving and reduction of production costs.

以上のような有利性、応用性において本発明の
掻取式循環晶析機は従来のものよりすぐれてい
る。
The scraping type circulating crystallizer of the present invention is superior to conventional ones in terms of the advantages and applicability described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の掻取循環式晶析機の縦断面
図、第2図は第1図の線−における断面図、
第3図は第1図の線−における断面図であ
る。 1……晶析槽、2……ジヤケツト、3……シヤ
フト、4……ドラフトチユーブ、5……掻取羽
根、6……撹拌羽根、7……バツフル、8……バ
ツフル、9……破砕機構、10……下部ノズル、
11……供給口、12……冷媒入口、13……冷
媒出口、14……オーバフローノズル、15……
駆動装置、16……グランドパツキング、17…
…底板、18……下部軸受、19……上部蓋、2
0……サポートアーム、21……フラツトバー。
FIG. 1 is a longitudinal sectional view of the scraping circulation type crystallizer of the present invention, FIG. 2 is a sectional view taken along the line - in FIG. 1,
FIG. 3 is a sectional view taken along the line - in FIG. 1. 1... Crystallization tank, 2... Jacket, 3... Shaft, 4... Draft tube, 5... Scraping blade, 6... Stirring blade, 7... Buff full, 8... Buff full, 9... Crushing Mechanism, 10...lower nozzle,
11... Supply port, 12... Refrigerant inlet, 13... Refrigerant outlet, 14... Overflow nozzle, 15...
Drive device, 16... Ground packing, 17...
...Bottom plate, 18...Lower bearing, 19...Top lid, 2
0...Support arm, 21...Flat bar.

Claims (1)

【特許請求の範囲】[Claims] 1 掻取式晶析槽1の内部を回転する掻取機構
3,20,21,5にドラフトチユーブ4を設
け、該ドラフトチユーブの外部に循環流を生せし
めるための撹拌羽根6を取付け前記旋回流を上下
流に変えるため前記晶析槽の上部蓋19及び底板
17から前記掻取機構のサポートアーム20近く
まで前記ドラフトチユーブ4の外側と内側に挿入
されたある曲率をもつたバツフル7,8を具備し
たことを特徴とする掻取循環式晶析機。
1 A draft tube 4 is provided in the scraping mechanism 3, 20, 21, 5 that rotates inside the scraping type crystallization tank 1, and a stirring blade 6 is attached to the draft tube to generate a circulating flow outside the draft tube. In order to change the flow upstream and downstream, buttfuls 7 and 8 with a certain curvature are inserted into the outside and inside of the draft tube 4 from the upper lid 19 and bottom plate 17 of the crystallization tank to near the support arm 20 of the scraping mechanism. A scraping circulation crystallizer characterized by comprising:
JP1653079A 1979-02-15 1979-02-15 Scraping circulation type crystallizing machine Granted JPS55109403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1653079A JPS55109403A (en) 1979-02-15 1979-02-15 Scraping circulation type crystallizing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1653079A JPS55109403A (en) 1979-02-15 1979-02-15 Scraping circulation type crystallizing machine

Publications (2)

Publication Number Publication Date
JPS55109403A JPS55109403A (en) 1980-08-22
JPS6125402B2 true JPS6125402B2 (en) 1986-06-16

Family

ID=11918817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1653079A Granted JPS55109403A (en) 1979-02-15 1979-02-15 Scraping circulation type crystallizing machine

Country Status (1)

Country Link
JP (1) JPS55109403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646258U (en) * 1987-07-01 1989-01-13
JPH0190905U (en) * 1987-12-10 1989-06-15
JPH0416805Y2 (en) * 1986-12-02 1992-04-15
CN105641965A (en) * 2014-12-05 2016-06-08 雍自玲 Crystallization kettle which is safe to use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416805Y2 (en) * 1986-12-02 1992-04-15
JPS646258U (en) * 1987-07-01 1989-01-13
JPH0190905U (en) * 1987-12-10 1989-06-15
CN105641965A (en) * 2014-12-05 2016-06-08 雍自玲 Crystallization kettle which is safe to use

Also Published As

Publication number Publication date
JPS55109403A (en) 1980-08-22

Similar Documents

Publication Publication Date Title
CN108939599B (en) Self-circulation crystallizer and multi-stage continuous crystallization method
CN101810938B (en) Internal circulation crystallizer for crystal slurry
US5423288A (en) Apparatus for producing seed crystals
CN201524442U (en) High-efficient scraping wall type hollow sheet bar cooling continuous crystallizer
JP4081820B2 (en) Crystallizer and crystallization method
CN103949082B (en) A kind of double cold cooling flowing crystallization apparatus
CN105233522A (en) Freezing crystallization device
JPS6125402B2 (en)
US6241954B1 (en) Crystallization method and installation
TW557230B (en) Tank type scraped surface cooling crystallizer
PL173004B1 (en) Method of crystallising a mineral substance and apparatus therefor
CN201182916Y (en) Irrotational impact-flow heat exchange type crystallizer
CN205145656U (en) Crystal scrubber
CN213347837U (en) Crystal-growing type vacuum cooling crystallizer
CN205145654U (en) Freezing crystallization device
CN206081726U (en) Novel high -efficient anticorrosive board -like continuous crystallizer of scraping
CN210874193U (en) Medicine production is with high-efficient crystallization kettle
CN212467186U (en) Efficient wall-scraping type hollow plate cooling continuous crystallizer
JP6541240B2 (en) Modular subunit for suspension crystallization system and suspension crystallization method using the modular subunit
CN208275044U (en) A kind of amino acid continuous process system
CN111494978A (en) Sublimation crystallization combined device for extracting natural caffeine
CN203829690U (en) Double-cold-source cooling and flowing crystallization device
CN219764540U (en) Horizontal crystallizer with crystallization scraping function
JP4293525B2 (en) Method and apparatus for continuous crystallization in sugar production
JP6142185B1 (en) Fine ice making machine