JP4293525B2 - Method and apparatus for continuous crystallization in sugar production - Google Patents

Method and apparatus for continuous crystallization in sugar production Download PDF

Info

Publication number
JP4293525B2
JP4293525B2 JP2003172063A JP2003172063A JP4293525B2 JP 4293525 B2 JP4293525 B2 JP 4293525B2 JP 2003172063 A JP2003172063 A JP 2003172063A JP 2003172063 A JP2003172063 A JP 2003172063A JP 4293525 B2 JP4293525 B2 JP 4293525B2
Authority
JP
Japan
Prior art keywords
crystal
slurry
crystals
particle size
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003172063A
Other languages
Japanese (ja)
Other versions
JP2005006520A (en
JP2005006520A5 (en
Inventor
一穂 田中
敬三 竹上
雅人 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2003172063A priority Critical patent/JP4293525B2/en
Publication of JP2005006520A publication Critical patent/JP2005006520A/en
Publication of JP2005006520A5 publication Critical patent/JP2005006520A5/ja
Application granted granted Critical
Publication of JP4293525B2 publication Critical patent/JP4293525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粒径約1000μm以上の大粒径の砂糖を連続的に晶出させうる方法及び装置に関するものである。
【0002】
【従来の技術】
砂糖工場にて使用されている結晶缶は古くから採用されているバッチ式煎糖缶(例えば非特許文献1)で、通常はこの結晶缶を複数本設置して各種の製品・回収用結晶を焚き分けていた。現在の砂糖工場でもこの形態は変わらず、特に国内の精製糖工場では多数の糖種をエンドユーザーの注文に応じて煎糖計画を組み立て、複数の結晶缶に振り分けて焚き分ける事を行っている。
【非特許文献1】
鴨田稔著「3.13製糖」、<工場操作シリーズ>改訂・晶析、化学工業社、1974年2月1日初版、P172−173
【0003】
【発明が解決しようとする課題】
双目糖(特に中双糖)のような特殊糖で生産量の少ない糖種でバッチ式の結晶缶を用いた場合、所定の粒度まで成長させるのに通常2〜4回の煎糖・分離・乾燥といった一連の操作を繰り返す必要があるため、生産量に対して設備の効率が悪くエネルギー効率も悪い。一方、海外の大規模な原糖(甘庶糖)工場においては、既に30年前より連続結晶缶が採用され始めており、多数の工場にて実際に稼働している。しかしながら連続結晶缶が採用されているのはC糖(回収糖)が大部分であり、結晶粒径は250μと小さい。従って、現在採用されている方式を、そのまま双目糖のような大粒径の砂糖結晶製造に適用した場合には、缶内での充分な白下循環が確保できず、結晶沈降・堆積による偽晶発生量の増大・結晶成長速度の低下・配管閉塞等の問題発生が予測される。またバッチ式と比較し連続式では粒度分布の広がりは避けられず、歩留低下の課題が残る。
【0004】
そこで本発明の主たる課題は、連続操作での生産を可能となし、生産効率・エネルギー効率の改善を図りながら、連続化による砂糖結晶の粒度分布拡大を防止し、歩留を保つことにある。
【0005】
【課題を解決するための手段】
上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
複数基の結晶缶を用い、種晶及び過飽和蔗糖溶液からなる結晶スラリーを上流側の結晶缶から下流側の結晶缶へ移しつつ、各結晶缶にて結晶を成長させる連続晶析方法であって、
缶内に結晶スラリーの循環流を形成するプロペラを一つまたは複数有するプロペラ型結晶缶に結晶スラリーを供給し、最初の結晶成長を行った後、
この結晶スラリーを3室以上の隔室を備えた横型多段結晶缶に供給し、結晶の成長度合いに応じて上流側の隔室から下流側の隔室へ結晶スラリーを順次移行させつつ、各隔室内で結晶を成長させ、
前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーから粒度分級により微細結晶を抜き出し、
平均粒径450μmの種晶を、前記プロペラ型結晶缶による最初の結晶成長で平均粒径1500μm以上に成長させ、前記横型多段結晶缶による結晶成長で平均粒径2300μm以上に成長させる、ことを特徴とする製糖における連続晶析方法。
【0006】
(作用効果)
通常双目糖を製造する場合、種晶として450〜550μmの結晶が使われる。この粒度から製品である2300μmの結晶まで成長させる操作を1つの結晶缶で行うためには、相当大きな結晶缶が必要となり、液循環の不均一性など新たな問題が発生する。この場合、例えば特開平5−277000号公報等に開示されるように、晶析操作を複数基の結晶缶により段階的に行うことで、過大な結晶缶による問題は回避できる。
【0007】
しかし、それらは結晶缶の大きさに起因する問題は回避できるものの、それ以上の質的な改善を図れるものではなく、偽晶発生による問題については改善の余地がある。すなわち、発生した偽晶は分離除去が困難であり、この点が改善すべき課題として残されていたのである。
【0008】
この課題に対して、本願発明では敢えて、少なくとも最初の結晶成長を、プロペラ型結晶缶を用いて行う。プロペラ型結晶缶は、完全混合型の結晶缶であり、缶内撹拌強度を均一にできるため結晶の粒度分布を揃える事ができ、偽晶発生を非常に効果的に抑えることができるものであり、本発明ではこれを敢えて最初の結晶成長に用いることで、偽晶発生を可能な限り抑え、粒度分布の均一化およびそれによる歩留まり低下の防止を図ろうとするものである。
前述のとおり、本発明では、最初の結晶成長をプロペラ型結晶缶により行うことで、初期段階の偽晶発生を効果的に抑えることができる。しかし、これにより結晶がある程度まで成長すると、今度は結晶の破砕による核発生が起こり易くなり、未破砕結晶が大きく成長していることもあいまって、均一な粒度分布を得難くなる。かといって、プロペラ型以外の結晶缶を用いると、白下循環が不十分となり、偽晶発生量の増大等により、均一な粒度分布を得難くなる。
【0009】
これに対して、一段目である程度まで成長させた結晶を、3室以上の隔室を備えた横型多段結晶缶を用いて成長させる。横型多段結晶缶を用いると、結晶の缶内滞留時間を均一にできる、隔室毎に晶析条件を最適化できる等により、偽晶の自然発生および結晶破砕による核発生を効果的に抑止できる。よって、プロペラ型結晶缶によって効率良く且つ偽晶発生を抑制しつつ最初の結晶成長を行い、その後の結晶成長を、偽晶発生および結晶破砕をできる限り抑制しつつ行うことで、より均一な粒度分布の大粒結晶を得ることができるようになる。
【0010】
本発明では、前述のとおり最初の結晶缶を敢えてプロペラ型結晶缶とすることにより偽晶の発生・増大を抑制できるものであるが、本請求項4記載のように、適宜の段階で結晶スラリーから晶析系外へ偽晶等の微細結晶を抜き出す操作を行うことにより、晶析操作の連続性を担保しながらも、より効果的に、偽晶量増大の抑制等を図ることができる。
【0011】
<請求項記載の発明>
前記抜き出した微細結晶を、過飽和蔗糖溶液及び温水と混合し糖度調整により完全に溶解させたのち、この溶液を前記抜き出した位置またはその上流側若しくは下流側に戻す操作を行う、請求項記載の製糖における連続晶析方法。
【0012】
(作用効果)
このように、微細結晶を晶析経路外に抜き出し、それを再溶解して晶析経路内に戻すことにより、晶析操作の連続性を担保しながらも、より効果的に、偽晶等の増大の抑制、結晶成長速度低下防止、配管閉塞等の問題を抑制できるとともに、微細結晶の抜き出しによる歩留まり低減を防止できる。
【0013】
<請求項記載の発明>
前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーの粘度及び糖度を測定し、この測定結果に応じて、測定位置またはその上流側もしくは下流側にて結晶スラリーに温水を添加することにより結晶スラリー中の微細結晶を溶解させる、請求項1または2に記載の製糖における連続晶析方法。
【0014】
(作用効果)
本発明では、前述のとおり最初の結晶缶を敢えてプロペラ型結晶缶とすることにより偽晶の発生・増大を抑制できるものであるが、本請求項6記載のように結晶スラリーの粘度及び糖度のオンライン測定結果に応じて結晶スラリー中の微細結晶を溶解させることにより、晶析操作の連続性を担保しながらも偽晶等の増大及びそれに伴う諸問題を更に抑制することができる。
【0015】
<請求項記載の発明>
複数基の結晶缶を備え、種晶及び過飽和蔗糖溶液からなる結晶スラリーを上流側の結晶缶から下流側の結晶缶へ移しつつ、各結晶缶にて結晶を成長させるように構成した連続晶析装置であって、
最初の結晶成長を行う結晶缶が、缶内に結晶スラリーの循環流を形成するプロペラを一つまたは複数有するプロペラ型結晶缶であり、
前記プロペラ型結晶缶から得られた結晶スラリーが供給されるのが3室以上の隔室を備えた横型多段結晶缶であり、
結晶の成長度合いに応じて上流側の隔室から下流側の隔室へ結晶スラリーを順次移行させつつ、各隔室内で結晶を成長させ、
前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーから粒度分級により微細結晶を抜き出し、
平均粒径450μmの種晶を、前記プロペラ型結晶缶による最初の結晶成長で平均粒径1500μm以上に成長させ、前記横型多段結晶缶による結晶成長で平均粒径2300μm以上に成長させるように構成されている、ことを特徴とする製糖における連続晶析装置。
【0016】
(作用効果)
請求項1記載の発明と同様の作用効果が奏せられる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しつつ詳説する。
図1は、本発明に係る連続晶析方法を実施するための設備例を示したものである。符号1は、結晶スラリーの供給部を示しており、本例では主に蔗糖溶液FLの貯留槽2および混合槽3とから構成されている。貯留槽2内に供給され一時的に貯留された蔗糖溶液FLは必要量がポンプ等の圧送装置P1により抜き出され混合槽3に対して連続的に供給される。混合槽3内に供給された蔗糖溶液FLには、所定量の種晶が連続的に供給されるとともに、攪拌装置3sにより攪拌され、所定の混合比の結晶スラリーが連続的に生成される。本発明では、他の結晶スラリーの生成方法を採ることもできる。
【0018】
得られた結晶スラリーは、次いで、ポンプ等の圧送装置P2により混合槽3から抜き出され、プロペラ型結晶缶10に供給される。またこの結晶スラリーの供給とともに、貯留槽2に貯留されている蔗糖溶液FLも圧送装置P1により抜き出され、プロペラ型結晶缶10に供給される。本発明に用いるプロペラ型結晶缶10としては、缶内に結晶スラリーの循環流を形成するプロペラ11を一つまたは複数有するものであれば特に限定されないが、例えば本出願人が開発したDP(ダブルプロペラ)型晶出機のように、プロペラ11A,11Bを複数用いて缶内のスラリー濃度をより均一にし、デッドスペースを減少させた又は実質的に無くしたものが好ましい。このDP型晶出機10は図1および図2に示されており、結晶缶10の液面よりも上側の部分が蒸発室12とされ、この蒸発室12内に吸引口12xが連通され、この吸引口12xを介した蒸発室12内の真空吸引により真空蒸発が可能なように構成される一方で、液面よりも下側には筒状間接熱交換器13が上下方向に沿って支持され、筒状熱交換器13の長手方向中間部に、互いに逆に傾斜された、筒内に位置する内側プロペラ11Aおよび筒外に位置する外側プロペラ11Bが設けられ、これらが一体的に缶外の回転駆動源10Mにより回転駆動されるように構成されたものである。結晶缶10下部のスラリー入口14から供給された結晶スラリーは、例えば図中に矢印で示すように筒状熱交換器13内を上昇し、筒状熱交換器13上端開口から放出されると、今度は筒状熱交換器13外部に回り込み筒状熱交換器13下端開口まで下降した後、筒状熱交換器13内に戻され、その結果、結晶缶10内全体を通る循環流が形成される。他方、熱交換器13には蒸気等の加熱媒体が供給されており、結晶缶10内のスラリーは循環過程で加熱され、沸騰蒸発により結晶スラリーが濃縮される。かくして、過飽和領域が形成され、結晶成長が図られた後、スラリー出口15を介してポンプP3により取り出される。
【0019】
かかるDP型晶出機10は、(イ)缶内のスラリー濃度が均一、(ロ)過飽和を低くできるので偽晶発生が少ない、(ハ)スラリー濃度の均一化により、各循環結晶を均等な過飽和状態下に保持できる、(ニ)沸騰箇所が缶内中心部であるため、内周壁面への結晶付着が少ない、(ホ)過飽和生成部に結晶が存在し、当該部位で直ちに結晶成長が行われ、過飽和の状態に長く保たれないため偽晶が発生し難い、(ヘ)プロペラを低速で回転させることができ、結晶破砕が起こり難く、余分な核が発生し難い、等の利点があり、粒径が大きく、粒度が揃った結晶が得られるものであり、本発明の最初の結晶成長に好適なものである。
【0020】
かかるプロペラ型晶出機10で結晶成長が図られた結晶スラリーは、本例では3室以上の隔室21A〜21Cを備えた横型多段結晶缶20に供給される。本発明では、隔室を有しない他の種類の結晶缶、例えば上述のDP型晶出機を複数直列に接続して利用しても良いが、前述したとおり、横型多段結晶缶20が好適である。また横型多段結晶缶20としては、特公昭58−20278号公報、特公昭58−20279号記載のもの等、公知のものを用いることができるが、特に図1、図3及び図4に示されるものが好適である。
【0021】
すなわち、図示形態の横型多段結晶缶20は、横長結晶缶本体と、缶内下部を長手方向に3つの隔室21A〜21Cに区画する隔壁23,23とを備え、各隔室21A〜21C内の略中央に攪拌羽根24,24…を有する攪拌装置がそれぞれ設けられ、この攪拌羽根24,24…を取り囲むようにカランドリア等の間接(または非接触型)熱交換器25,25…が配置されているものである。間接熱交換器25,25…に対しては、加熱媒体供給路N6を介して蒸気等の加熱媒体が供給されるように構成されている。
【0022】
結晶缶20内における隔壁23の上側部分は仕切られておらず、全隔室21A〜21Cに連通する蒸発室26とされており、この蒸発室26部分に吸引口N11が連通されており、この吸引口N11を介した蒸発室26内の真空吸引により真空蒸発が可能なように構成されている。
【0023】
符号N1は各隔室21A〜21C内の攪拌羽根24の上側にスラリーを供給するスラリー供給路を示し、また符号N2は各隔室内の底部に設けられたスラリー排出路を示しており、プロペラ型結晶缶10で成長処理を終えスラリー出口15より排出された結晶スラリーは、上流側隔室21Aのスラリー供給路N1を介して横型多段結晶缶20内に供給される。上流側隔室21A内に供給された結晶スラリーは、攪拌羽根24により攪拌され、隔室21A内を循環する過程で熱交換器25による加熱により過飽和状態とされ、結晶の成長が図られる。ある程度まで成長した結晶は隔室21A下部に多く存在するようになり、これがスラリー排出路N2を介してポンプP4により結晶スラリーとして抜き出され、次段の、図示例では中間の隔室21B内に対してスラリー供給路N1を介して供給される。以降は上流側隔室21Aにおける場合と同様に、中間隔室21B内、下流側隔室21C内でも順次結晶成長が図られる。かくして、結晶の成長度合いに応じて上流側の隔室21Aから下流側の隔室21Cへ結晶スラリーを順次移行させつつ、各隔室21A〜21C内で結晶を順次成長させ、所定粒径まで成長した結晶を含む結晶スラリーが製造される。
【0024】
ところで、上記の手法でも十分に、偽晶発生や結晶破砕による悪影響を回避しうるが、次の手法を採用するとさらに均一な粒度分布の結晶を製造できるようになる。
【0025】
すなわち、第1の手法は、プロペラ型結晶缶10内およびその下流側にて、結晶スラリーから粒度分級により偽晶・破砕結晶等の微細結晶を抜き出すものである。結晶缶10,20内で粒度分級により微細結晶を抜き出す手法としては、液面近傍に開口する抜出口10X,20Xを介して軽量な微細結晶をスラリーごと抜き出すものを提案する。横型多段結晶缶20への適用例では、図3に示されるように、各隔室21A〜21C内の液面近傍に抜出口20Xが開口している。抜出口20Xの数は結晶缶の大きさ・種類等に応じて適宜定めることができる。ただし、結晶スラリーを循環等するためにプロペラ等の攪拌装置24が設けられていると、液面が波立ち、分級精度が低下する。よって、図示形態のように抜出口20Xを取り囲むように、液面上方から液内のある程度の深さまで延在する擁壁27を設け、スラリーは擁壁27下側から流入するようになし、擁壁27内の液面の波立ちを防止しつつ抜き出しを可能ならしめるのが好ましい。プロペラ型結晶缶10でも同様の構成を採ることができる。図1及び図2に示すプロペラ型結晶缶10では、熱交換器の外側に筒状擁壁16を同軸的に設け、この筒状擁壁と対応する缶内壁面に抜出口10Xを設けた形態が示されており、この場合、ポンプ等の圧送装置P6により抜き出した微細結晶スラリーは過飽和蔗糖溶液の貯留槽2に供給されるようになっている。
【0026】
また、適宜の経路、例えば結晶缶10,20の出側流路(例えばプロペラ型結晶缶10から横型結晶缶20に対する結晶スラリー供給経路)に液体サイクロン、シックナー、デカンター等の粒度分級装置を介在させることでも、微細結晶の抜き出しは可能である。
【0027】
また、これらの第1の手法により抜き出した微細結晶は晶析系外へ抜き出し、種晶の原料もしくは他の用途に用いたり、場合によっては廃棄したりしても良いが、歩留まり向上を図るために、過飽和蔗糖溶液及び温水と混合し糖度調整により完全に溶解させたのち、この溶液を抜き出し位置またはその上流側若しくは下流側に戻す操作を行うのが望ましい。このため、図1に示す形態では、溶解槽30を設け、この溶解槽30に対して、横型多段結晶缶20から抜き出した微細結晶を含むスラリーを供給するとともに、過飽和蔗糖溶液FL及び温水を供給し、微細結晶の完全溶解および糖度調整を図った後に、これを抜出位置である横型多段結晶缶20に対してポンプ等の圧送装置P7により返送供給するように構成している。なお、図示形態の溶解槽30では溶解促進のための攪拌装置31を設けるとともに、温度調整のために、加熱ジャケット等の間接熱交換器32を設け、これに温水等の加熱媒体を供給するように構成している。
【0028】
他方、上記第1の手法は微細結晶を結晶スラリーの主経路から抜き出すものであるが、第2の手法として、主経路の所定位置、例えばプロペラ型結晶缶10内および横型多段結晶缶20内で、計測装置mにより結晶スラリーの粘度及び糖度を測定し、この測定結果に応じて、測定位置であるプロペラ型結晶缶10内および横型多段結晶缶20内またはその上流側もしくは下流側の主経路内に添加路を介して温水を添加することにより結晶スラリー中の微細結晶を溶解させる手法も提案する。この第2の手法では、微細結晶以外の結晶も僅かに溶解するため、少しでも大粒の結晶を製造する場合には向いていないが、微細結晶の抜き出しを行わずに、主経路内で微細結晶を溶解させるため、図示例のような溶解槽30等の付帯設備が少なくて済む利点がある。
【0029】
(その他)
(a)本発明は基本的に結晶粒子の粒径に限定されないが、特に、平均粒径450μmの種晶を、プロペラ型結晶缶による最初の結晶成長で平均粒径1500μm以上に成長させ、横型多段結晶缶による結晶成長で平均粒径2300μm以上に成長させるようにすると、粒度分布が非常に均一な結晶が得られるため好ましい。
【0030】
(b)上記横型多段結晶缶例20における結晶スラリーの隔室21A〜21C間の移動は、ポンプ等の圧送装置P4,P5を用いて缶外を経由して行っているが、圧送装置を用いずにスラリーが隔壁23を越えて移動する溢流形態を採用したり、圧送装置を用いるが缶内を経由して行う形態を採用することもできる。
【0031】
【実施例】
(前提実験1)
図1に示す形態でDP型晶出機のみによる連続晶析実験を行った。蔗糖溶液に結晶平均粒径450μの種結晶を30wt%となるように加え、種晶スラリーを調製した。この種晶スラリーと固形分濃度67wt%の蔗糖溶液とをDP型晶出機に供給し、真空蒸発を行い固形分濃度74wt%まで濃縮を行った。真空度を100〜150mmHgとしたのち、種晶スラリー及び糖液の供給、微細結晶の抜出及び結晶スラリーの排出を開始した。稼働時間は連続18時間であった。この間のDP内の温度は60〜65℃、糖度Bxは74.0〜76.0であった。出口での結晶は平均粒径1500μm、CV値0.30、スラリー濃度30wt%となった。またこの実験における結晶の滞留時間は6Hrであった。
【0032】
(前提実験2)
図1に示す形態で横型多段結晶缶のみによる連続晶析実験を行った。固形分濃度73.8wt%、温度58℃に調製した飽和液に結晶平均粒径1500μの種結晶を30wt%になるように加え、種晶スラリーを調製した。この種晶スラリーと固形分濃度67wt%の蔗糖溶液とを横型多段結晶缶に供給し、真空蒸発を行い固形分濃度74wt%まで濃縮を行った。真空度を100〜150mmHgとしたのち、種晶スラリー及び各室への糖液の供給、各隔室間の移送及び微細結晶の抜出を開始した。稼働時間は連続18時間であった。横型多段結晶缶は外部より液内部が目視できる構造となっており、偽晶発生を確認した場合、稼働時間中に随時差水をして溶解させた。この間の横型多段結晶缶内の温度は60〜65℃、Bxは74.0〜76.0であった。出口での結晶は平均粒径2350μm、CV値0.32、スラリー濃度30wt%となった。
【0033】
(本実験)
図1に示す、種晶スラリーをDP結晶缶に供給し、DP結晶缶から抜き出したスラリーを横型多段結晶缶に供給する設備例にて連続晶析実験を行った。各結晶缶における条件は実施例1,2と同一条件であった。出口における結晶は平均粒径2200μm、CV値0.35、スラリー濃度30wtとなった。
【0034】
【発明の効果】
以上のとおり、本発明によれば、連続操作での生産を可能となし、生産効率・エネルギー効率の改善を図りながら、連続化による砂糖結晶の粒度分布拡大を防止し、歩留を保つことができるようにある。
【図面の簡単な説明】
【図1】 本発明に係る連続晶析設備例を示すフロー図である。
【図2】 プロペラ型結晶缶の例を示す斜視図である。
【図3】 横型多段結晶缶の縦断面図である。
【図4】 横型多段結晶缶の横断面図である。
【符号の説明】
10…プロペラ型結晶缶、20…横型多段結晶缶。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus capable of continuously crystallizing a large particle size sugar having a particle size of about 1000 μm or more.
[0002]
[Prior art]
Crystal cans used in sugar factories are batch-type sucrose cans (eg, Non-Patent Document 1) that have been used for a long time. Usually, multiple crystal cans are installed to collect various products and crystals for recovery. It was divided. This form does not change even in the current sugar factory, especially in the domestic refined sugar factory, a large number of sugar types are assembled according to the order of the end user, and the sucrose plan is divided and distributed to multiple crystal cans. .
[Non-Patent Document 1]
“3.13 Sugar Production” by Kaoru Kamota, <Factory Operation Series> Revised and Crystallized, Chemical Industry Co., Ltd., February 1, 1974, first edition, P172-173
[0003]
[Problems to be solved by the invention]
When using batch type crystal cans with special sugars such as dinosaccharides (especially medium disaccharides) and low-yield sugar seeds, usually 2 to 4 times of sucrose / separation to grow to the specified particle size・ Since it is necessary to repeat a series of operations such as drying, the efficiency of the equipment is low and the energy efficiency is low with respect to the production volume. On the other hand, large-scale raw sugar (cane sugar) factories overseas have already begun using continuous crystal cans 30 years ago and are actually operating in many factories. However, most of the continuous crystal cans are C sugar (recovered sugar) and the crystal grain size is as small as 250μ. Therefore, when the currently adopted method is applied as it is to the production of sugar crystals with a large particle size, such as dime sugar, sufficient under-white circulation in the can cannot be secured, resulting in crystal sedimentation / deposition. Problems such as an increase in the amount of pseudo crystals generated, a decrease in crystal growth rate, and blockage of piping are expected. In addition, compared with the batch method, the particle size distribution is inevitably widened in the continuous method, and the problem of yield reduction remains.
[0004]
Therefore, the main problem of the present invention is to enable continuous production and to prevent the expansion of the size distribution of sugar crystals due to the continuous process while improving the production efficiency and energy efficiency, and to maintain the yield.
[0005]
[Means for Solving the Problems]
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A continuous crystallization method in which a plurality of crystal cans are used, and a crystal slurry comprising a seed crystal and a supersaturated sucrose solution is transferred from an upstream crystal can to a downstream crystal can, and crystals are grown in each crystal can. ,
After supplying the crystal slurry to a propeller type crystal can having one or more propellers that form a circulating flow of crystal slurry in the can and performing the first crystal growth,
The crystal slurry is supplied to a horizontal multistage crystal can having three or more compartments, and the crystal slurry is sequentially transferred from the upstream compartment to the downstream compartment according to the degree of crystal growth, and Grow crystals in the room,
Fine crystals are extracted from the crystal slurry by particle size classification in the propeller type crystal can and downstream thereof,
A seed crystal having an average particle size of 450 μm is grown to an average particle size of 1500 μm or more by initial crystal growth using the propeller-type crystal can, and is grown to an average particle size of 2300 μm or more by crystal growth using the horizontal multistage crystal can. A continuous crystallization method in sugar production.
[0006]
(Function and effect)
Usually, when producing dime sugar, crystals of 450 to 550 μm are used as seed crystals. In order to perform an operation for growing from this particle size to a product of 2300 μm crystals with a single crystal can, a considerably large crystal can is required, and new problems such as non-uniformity of liquid circulation occur. In this case, as disclosed in, for example, Japanese Patent Application Laid-Open No. 5-277000, the problem due to an excessive crystal can can be avoided by performing the crystallization operation stepwise with a plurality of crystal cans.
[0007]
However, they can avoid the problem caused by the size of the crystal can, but cannot improve the quality further, and there is room for improvement regarding the problem caused by the generation of pseudo crystals. That is, the generated pseudo crystals are difficult to separate and remove, and this point remains as a problem to be improved.
[0008]
With respect to this problem, the present invention dares to perform at least initial crystal growth using a propeller-type crystal can. Propeller-type crystal cans are fully mixed crystal cans, which can make the stirring intensity uniform in the cans, so that the crystal grain size distribution can be made uniform, and the generation of pseudo crystals can be suppressed very effectively. In the present invention, this is intentionally used for the first crystal growth to suppress the generation of pseudo crystals as much as possible, to make the particle size distribution uniform and prevent the yield from being lowered.
As described above, in the present invention, the initial crystal growth is performed by the propeller type crystal can, so that the generation of pseudo crystals at the initial stage can be effectively suppressed. However, if the crystal grows to a certain extent by this, nucleation due to the crushing of the crystal is likely to occur, and it is difficult to obtain a uniform particle size distribution due to the large growth of the uncrushed crystal. However, when a crystal can other than the propeller type is used, circulation under white becomes insufficient, and it becomes difficult to obtain a uniform particle size distribution due to an increase in the amount of pseudo crystals generated.
[0009]
On the other hand, a crystal grown to a certain degree in the first stage is grown using a horizontal multistage crystal can having three or more compartments. Using horizontal multistage crystal cans, the residence time of crystals in the can can be made uniform, and crystallization conditions can be optimized for each compartment. . Therefore, the first crystal growth is efficiently performed with the propeller type crystal can while suppressing the generation of pseudo crystals, and the subsequent crystal growth is performed while suppressing the generation of pseudo crystals and crystal crushing as much as possible. Large crystals with a distribution can be obtained.
[0010]
In the present invention, as described above, the generation and increase of pseudo crystals can be suppressed by deliberately using the first crystal can as a propeller type crystal can. However, as described in claim 4, the crystal slurry can be obtained at an appropriate stage. By performing the operation of extracting fine crystals such as pseudo crystals from the crystallization system out of the crystallization system, it is possible to more effectively suppress the increase in the amount of pseudo crystals while ensuring the continuity of the crystallization operation.
[0011]
<Invention of Claim 2 >
The withdrawn fine crystals, after complete dissolution the sugar content adjusted by mixing a supersaturated sucrose solution and hot water, the solution performs the withdrawn position or the upstream side or back downstream operate, according to claim 1, wherein Continuous crystallization method in sugar production.
[0012]
(Function and effect)
In this way, by pulling out the fine crystal out of the crystallization path, re-dissolving it and returning it into the crystallization path, while ensuring the continuity of the crystallization operation, more effectively, such as pseudo crystals It is possible to suppress problems such as suppression of increase, prevention of decrease in crystal growth rate, and blockage of piping, and reduction of yield due to extraction of fine crystals.
[0013]
<Invention of Claim 3 >
By measuring the viscosity and sugar content of the crystal slurry in the propeller type crystal can and downstream thereof, depending on the measurement result, by adding warm water to the crystal slurry at the measurement position or upstream or downstream thereof The continuous crystallization method in sugar production according to claim 1 or 2 , wherein fine crystals in the crystal slurry are dissolved.
[0014]
(Function and effect)
In the present invention, as described above, the generation and increase of pseudo crystals can be suppressed by darely using the first crystal can as a propeller type crystal can. However, as described in claim 6, the viscosity and sugar content of the crystal slurry can be suppressed. By dissolving the fine crystals in the crystal slurry according to the on-line measurement results, it is possible to further suppress the increase of pseudo crystals and the problems associated therewith while ensuring the continuity of the crystallization operation.
[0015]
<Invention of Claim 4 >
Continuous crystallization with multiple crystal cans, configured to grow crystals in each crystal can while transferring the crystal slurry consisting of seed crystals and supersaturated sucrose solution from the upstream crystal can to the downstream crystal can A device,
The crystal can for initial crystal growth is a propeller type crystal can having one or more propellers that form a circulating flow of crystal slurry in the can.
The crystal slurry obtained from the propeller-type crystal can is a horizontal multi-stage crystal can having three or more compartments,
According to the degree of crystal growth, while the crystal slurry is sequentially transferred from the upstream compartment to the downstream compartment, crystals are grown in each compartment,
Fine crystals are extracted from the crystal slurry by particle size classification in the propeller type crystal can and downstream thereof,
A seed crystal having an average particle size of 450 μm is grown to an average particle size of 1500 μm or more by initial crystal growth using the propeller type crystal can, and is grown to an average particle size of 2300 μm or more by crystal growth using the horizontal multistage crystal can. and it has a continuous crystallizer in a sugar, characterized in that.
[0016]
(Function and effect)
The same effect as that of the first aspect of the invention can be achieved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of equipment for carrying out the continuous crystallization method according to the present invention. Reference numeral 1 denotes a crystal slurry supply unit, which is mainly composed of a storage tank 2 and a mixing tank 3 for the sucrose solution FL in this example. A necessary amount of the sucrose solution FL supplied and temporarily stored in the storage tank 2 is extracted by a pumping device P1 such as a pump and continuously supplied to the mixing tank 3. A predetermined amount of seed crystals is continuously supplied to the sucrose solution FL supplied into the mixing tank 3 and is stirred by the stirring device 3s to continuously generate crystal slurry having a predetermined mixing ratio. In this invention, the production | generation method of another crystal slurry can also be taken.
[0018]
The obtained crystal slurry is then extracted from the mixing tank 3 by a pumping device P2 such as a pump and supplied to the propeller type crystal can 10. Along with the supply of the crystal slurry, the sucrose solution FL stored in the storage tank 2 is extracted by the pressure feeding device P 1 and supplied to the propeller-type crystal can 10. The propeller type crystal can 10 used in the present invention is not particularly limited as long as it has one or a plurality of propellers 11 that form a circulating flow of crystal slurry in the can. For example, DP (double double) developed by the present applicant is used. As in the case of a propeller type crystallizer, it is preferable to use a plurality of propellers 11A and 11B to make the slurry concentration in the can more uniform and to reduce or substantially eliminate dead space. This DP type crystallizer 10 is shown in FIG. 1 and FIG. 2, a portion above the liquid surface of the crystal can 10 is an evaporation chamber 12, and a suction port 12 x communicates with the evaporation chamber 12. While configured to be capable of vacuum evaporation by vacuum suction in the evaporation chamber 12 via the suction port 12x, a cylindrical indirect heat exchanger 13 is supported along the vertical direction below the liquid level. An inner propeller 11A located inside the cylinder and an outer propeller 11B located outside the cylinder are provided in the middle portion in the longitudinal direction of the cylindrical heat exchanger 13, and these are integrally attached to the outside of the can. The rotary drive source 10M is configured to be rotationally driven. When the crystal slurry supplied from the slurry inlet 14 at the bottom of the crystal can 10 rises in the cylindrical heat exchanger 13 as indicated by an arrow in the figure and is discharged from the upper end opening of the cylindrical heat exchanger 13, for example, This time, after wrapping outside the cylindrical heat exchanger 13 and descending to the lower end opening of the cylindrical heat exchanger 13, it is returned to the cylindrical heat exchanger 13, and as a result, a circulating flow is formed through the entire crystal can 10. The On the other hand, a heating medium such as steam is supplied to the heat exchanger 13, and the slurry in the crystal can 10 is heated in the circulation process, and the crystal slurry is concentrated by boiling evaporation. Thus, after a supersaturated region is formed and crystal growth is achieved, it is taken out by the pump P3 through the slurry outlet 15.
[0019]
The DP type crystallizer 10 has (a) uniform slurry concentration in the can, (b) low pseudosaturation because it can reduce supersaturation, and (c) uniform circulation concentration allows uniform circulation crystals. (D) The boiling point is the central part in the can, so there is little crystal adhesion to the inner wall surface. (E) Crystals are present in the supersaturated part, and crystal growth occurs immediately at that part. Since it is performed and is not kept in a supersaturated state for a long time, pseudo crystals are unlikely to occur, (f) propellers can be rotated at low speed, crystal crushing is unlikely to occur, and extra nuclei are unlikely to be generated. In other words, a crystal having a large particle size and a uniform particle size can be obtained, which is suitable for the first crystal growth of the present invention.
[0020]
In this example, the crystal slurry having undergone crystal growth by the propeller type crystallizer 10 is supplied to a horizontal multistage crystal can 20 having three or more compartments 21A to 21C. In the present invention, other types of crystal cans that do not have compartments, for example, the above-described DP type crystallizers may be connected in series, and as described above, the horizontal multistage crystal can 20 is suitable. is there. As the horizontal multi-stage crystal can 20, known ones such as those described in Japanese Patent Publication No. 58-20278 and Japanese Patent Publication No. 58-20279 can be used, and are particularly shown in FIG. 1, FIG. 3 and FIG. Those are preferred.
[0021]
That is, the illustrated horizontal multi-stage crystal can 20 includes a horizontally long crystal can main body and partition walls 23 and 23 that divide the lower part of the can into three compartments 21A to 21C in the longitudinal direction. Are provided with stirring blades 24, 24..., And indirect (or non-contact type) heat exchangers 25, 25... Such as calandria are disposed so as to surround the stirring blades 24, 24. It is what. A heating medium such as steam is supplied to the indirect heat exchangers 25, 25... Via the heating medium supply path N6.
[0022]
The upper portion of the partition wall 23 in the crystal can 20 is not partitioned, and is an evaporation chamber 26 that communicates with all the compartments 21A to 21C, and a suction port N11 is communicated with the evaporation chamber 26 portion. It is configured such that vacuum evaporation is possible by vacuum suction in the evaporation chamber 26 via the suction port N11.
[0023]
Reference numeral N1 indicates a slurry supply path for supplying the slurry to the upper side of the stirring blades 24 in each of the compartments 21A to 21C, and reference numeral N2 indicates a slurry discharge path provided at the bottom of each of the compartments. The crystal slurry that has been grown in the crystal can 10 and discharged from the slurry outlet 15 is supplied into the horizontal multi-stage crystal can 20 through the slurry supply passage N1 in the upstream compartment 21A. The crystal slurry supplied into the upstream compartment 21A is stirred by the stirring blade 24 and is supersaturated by heating with the heat exchanger 25 in the process of circulating in the compartment 21A, so that crystals grow. A large amount of crystals that have grown to a certain degree are present in the lower part of the compartment 21A, and this is extracted as crystal slurry by the pump P4 through the slurry discharge passage N2, and in the intermediate compartment 21B in the illustrated example in the next stage. On the other hand, it is supplied via the slurry supply path N1. Thereafter, similarly to the case of the upstream compartment 21A, the crystal growth is sequentially performed in the middle compartment 21B and the downstream compartment 21C. Thus, the crystals are sequentially grown in each of the compartments 21A to 21C while the crystal slurry is sequentially transferred from the upstream compartment 21A to the downstream compartment 21C according to the degree of crystal growth, and grown to a predetermined grain size. A crystal slurry containing the prepared crystals is produced.
[0024]
By the way, although the above method can sufficiently avoid the adverse effects caused by the generation of pseudo crystals and the crushing of crystals, the adoption of the following method makes it possible to produce crystals with a more uniform particle size distribution.
[0025]
That is, the first method is to extract fine crystals such as pseudo crystals and crushed crystals from the crystal slurry by particle size classification in the propeller type crystal can 10 and downstream thereof. As a technique for extracting fine crystals by particle size classification in the crystal cans 10 and 20, a method is proposed in which lightweight fine crystals are extracted together with the slurry through outlets 10X and 20X that open near the liquid surface. In the application example to the horizontal multistage crystal can 20, as shown in FIG. 3, the outlet 20 </ b> X opens near the liquid surface in each of the compartments 21 </ b> A to 21 </ b> C. The number of outlets 20X can be appropriately determined according to the size and type of the crystal can. However, when a stirring device 24 such as a propeller is provided to circulate the crystal slurry, the liquid level is rippled and the classification accuracy is lowered. Therefore, as shown in the figure, a retaining wall 27 extending from above the liquid surface to a certain depth in the liquid is provided so as to surround the outlet 20X, so that the slurry flows from the lower side of the retaining wall 27. It is preferable that the liquid 27 in the wall 27 can be drawn out while preventing the liquid surface from undulating. The same configuration can be adopted in the propeller type crystal can 10. In the propeller type crystal can 10 shown in FIGS. 1 and 2, a cylindrical retaining wall 16 is provided coaxially on the outside of the heat exchanger, and an outlet 10X is provided on the inner wall surface of the can corresponding to the cylindrical retaining wall. In this case, the fine crystal slurry extracted by the pumping device P6 such as a pump is supplied to the reservoir 2 of the supersaturated sucrose solution.
[0026]
In addition, a particle size classifier such as a liquid cyclone, a thickener, a decanter or the like is interposed in an appropriate path, for example, an outlet side flow path of the crystal cans 10 and 20 (for example, a crystal slurry supply path from the propeller type crystal can 10 to the horizontal type crystal can 20). Even so, it is possible to extract fine crystals.
[0027]
In addition, the fine crystals extracted by these first methods may be extracted out of the crystallization system and used for seed crystal raw materials or other applications, or may be discarded in some cases, but in order to improve the yield. Further, after mixing with a supersaturated sucrose solution and warm water and completely dissolving by adjusting the sugar content, it is desirable to carry out an operation of returning the solution to the extraction position or its upstream side or downstream side. Therefore, in the embodiment shown in FIG. 1, a dissolution tank 30 is provided, and a slurry containing fine crystals extracted from the horizontal multistage crystal can 20 is supplied to the dissolution tank 30, and a supersaturated sucrose solution FL and hot water are supplied. After the fine crystals are completely dissolved and the sugar content is adjusted, the fine crystals are returned and supplied to the horizontal multi-stage crystal can 20 at the extraction position by a pumping device P7 such as a pump. In addition, in the dissolution tank 30 shown in the figure, a stirring device 31 for promoting dissolution is provided, and an indirect heat exchanger 32 such as a heating jacket is provided for temperature adjustment, and a heating medium such as hot water is supplied thereto. It is configured.
[0028]
On the other hand, the first method is to extract fine crystals from the main path of the crystal slurry. As the second method, a predetermined position of the main path, for example, in the propeller type crystal can 10 and the horizontal multistage crystal can 20 is used. The viscosity and sugar content of the crystal slurry are measured by the measuring device m, and in the propeller-type crystal can 10 and the horizontal multi-stage crystal can 20 which are measurement positions, or in the main path on the upstream side or the downstream side according to the measurement result Also proposed is a method of dissolving fine crystals in the crystal slurry by adding warm water to the crystal through an addition path. In this second method, since crystals other than the fine crystals are slightly dissolved, it is not suitable for producing a large crystal as much as possible. However, the fine crystal is not extracted in the main path without extracting the fine crystal. Therefore, there is an advantage that ancillary facilities such as the dissolution tank 30 as shown in the figure are small.
[0029]
(Other)
(A) Although the present invention is basically not limited to the grain size of crystal grains, a seed crystal having an average grain diameter of 450 μm is grown to an average grain diameter of 1500 μm or more by initial crystal growth using a propeller-type crystal can. It is preferable to grow to an average particle size of 2300 μm or more by crystal growth using a multistage crystal can because crystals with a very uniform particle size distribution can be obtained.
[0030]
(B) The movement of the crystal slurry between the compartments 21A to 21C in the horizontal multi-stage crystal can example 20 is performed via the outside of the can using the pumping devices P4 and P5 such as a pump, but the pumping device is used. Alternatively, an overflow form in which the slurry moves beyond the partition wall 23 may be employed, or a form in which the slurry is transferred via the inside of the can may be employed.
[0031]
【Example】
(Preliminary experiment 1)
A continuous crystallization experiment using only the DP type crystallizer was performed in the form shown in FIG. A seed crystal having an average particle diameter of 450 μm was added to the sucrose solution so as to be 30 wt% to prepare a seed crystal slurry. This seed crystal slurry and a sucrose solution having a solid content concentration of 67 wt% were supplied to a DP-type crystallizer, and vacuum evaporation was performed to concentrate to a solid content concentration of 74 wt%. After setting the degree of vacuum to 100 to 150 mmHg, supply of seed crystal slurry and sugar solution, extraction of fine crystals, and discharge of crystal slurry were started. The operating time was 18 consecutive hours. During this time, the temperature in the DP was 60 to 65 ° C., and the sugar content Bx was 74.0 to 76.0. The crystals at the outlet had an average particle size of 1500 μm, a CV value of 0.30, and a slurry concentration of 30 wt%. In this experiment, the residence time of the crystals was 6 hours.
[0032]
(Preliminary experiment 2)
A continuous crystallization experiment using only a horizontal multistage crystal can was performed in the form shown in FIG. A seed crystal slurry was prepared by adding a seed crystal having an average crystal grain size of 1500 μm to 30 wt% to a saturated liquid prepared at a solid content concentration of 73.8 wt% and a temperature of 58 ° C. The seed crystal slurry and a sucrose solution having a solid content concentration of 67 wt% were supplied to a horizontal multi-stage crystal can and vacuum evaporated to concentrate to a solid content concentration of 74 wt%. After the degree of vacuum was set to 100 to 150 mmHg, supply of the seed crystal slurry and the sugar solution to each chamber, transfer between the compartments, and extraction of fine crystals were started. The operating time was 18 consecutive hours. The horizontal multi-stage crystal can has a structure in which the inside of the liquid can be visually observed from the outside. When pseudo-crystal generation was confirmed, water was dissolved at any time during the operation time and dissolved. During this time, the temperature in the horizontal multistage crystal can was 60 to 65 ° C., and Bx was 74.0 to 76.0. The crystal at the outlet had an average particle size of 2350 μm, a CV value of 0.32, and a slurry concentration of 30 wt%.
[0033]
(This experiment)
A continuous crystallization experiment was performed in an example of equipment shown in FIG. 1 in which the seed crystal slurry was supplied to a DP crystal can and the slurry extracted from the DP crystal can was supplied to a horizontal multistage crystal can. The conditions for each crystal can were the same as in Examples 1 and 2. The crystals at the outlet had an average particle size of 2200 μm, a CV value of 0.35, and a slurry concentration of 30 wt.
[0034]
【The invention's effect】
As described above, according to the present invention, production by continuous operation is possible, and while improving production efficiency and energy efficiency, it is possible to prevent an increase in the size distribution of sugar crystals due to continuation and to maintain a yield. As you can.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of a continuous crystallization facility according to the present invention.
FIG. 2 is a perspective view showing an example of a propeller type crystal can.
FIG. 3 is a longitudinal sectional view of a horizontal multi-stage crystal can.
FIG. 4 is a cross-sectional view of a horizontal multistage crystal can.
[Explanation of symbols]
10 ... propeller type crystal cans, 20 ... horizontal multi-stage crystal cans.

Claims (4)

複数基の結晶缶を用い、種晶及び過飽和蔗糖溶液からなる結晶スラリーを上流側の結晶缶から下流側の結晶缶へ移しつつ、各結晶缶にて結晶を成長させる連続晶析方法であって、
缶内に結晶スラリーの循環流を形成するプロペラを一つまたは複数有するプロペラ型結晶缶に結晶スラリーを供給し、最初の結晶成長を行った後、
この結晶スラリーを3室以上の隔室を備えた横型多段結晶缶に供給し、結晶の成長度合いに応じて上流側の隔室から下流側の隔室へ結晶スラリーを順次移行させつつ、各隔室内で結晶を成長させ、
前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーから粒度分級により微細結晶を抜き出し、
平均粒径450μmの種晶を、前記プロペラ型結晶缶による最初の結晶成長で平均粒径1500μm以上に成長させ、前記横型多段結晶缶による結晶成長で平均粒径2300μm以上に成長させる、ことを特徴とする製糖における連続晶析方法。
A continuous crystallization method in which a plurality of crystal cans are used, and a crystal slurry comprising a seed crystal and a supersaturated sucrose solution is transferred from an upstream crystal can to a downstream crystal can, and crystals are grown in each crystal can. ,
After supplying the crystal slurry to a propeller type crystal can having one or more propellers that form a circulating flow of crystal slurry in the can and performing the first crystal growth,
The crystal slurry is supplied to a horizontal multistage crystal can having three or more compartments, and the crystal slurry is sequentially transferred from the upstream compartment to the downstream compartment according to the degree of crystal growth, and Grow crystals in the room,
Fine crystals are extracted from the crystal slurry by particle size classification in the propeller type crystal can and downstream thereof,
A seed crystal having an average particle size of 450 μm is grown to an average particle size of 1500 μm or more by initial crystal growth using the propeller-type crystal can, and is grown to an average particle size of 2300 μm or more by crystal growth using the horizontal multistage crystal can. A continuous crystallization method in sugar production.
前記抜き出した微細結晶を、過飽和蔗糖溶液及び温水と混合し糖度調整により完全に溶解させたのち、この溶液を前記抜き出した位置またはその上流側若しくは下流側に戻す操作を行う、請求項記載の製糖における連続晶析方法。The withdrawn fine crystals, after complete dissolution the sugar content adjusted by mixing a supersaturated sucrose solution and hot water, the solution performs the withdrawn position or the upstream side or back downstream operate, according to claim 1, wherein Continuous crystallization method in sugar production. 前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーの粘度及び糖度を測定し、この測定結果に応じて、測定位置またはその上流側もしくは下流側にて結晶スラリーに温水を添加することにより結晶スラリー中の微細結晶を溶解させる、請求項1または2に記載の製糖における連続晶析方法。By measuring the viscosity and sugar content of the crystal slurry in the propeller type crystal can and downstream thereof, depending on the measurement result, by adding warm water to the crystal slurry at the measurement position or upstream or downstream thereof The continuous crystallization method in sugar production according to claim 1 or 2 , wherein fine crystals in the crystal slurry are dissolved. 複数基の結晶缶を備え、種晶及び過飽和蔗糖溶液からなる結晶スラリーを上流側の結晶缶から下流側の結晶缶へ移しつつ、各結晶缶にて結晶を成長させるように構成した連続晶析装置であって、
最初の結晶成長を行う結晶缶が、缶内に結晶スラリーの循環流を形成するプロペラを一つまたは複数有するプロペラ型結晶缶であり、
前記プロペラ型結晶缶から得られた結晶スラリーが供給されるのが3室以上の隔室を備えた横型多段結晶缶であり、
結晶の成長度合いに応じて上流側の隔室から下流側の隔室へ結晶スラリーを順次移行させつつ、各隔室内で結晶を成長させ、
前記プロペラ型結晶缶内およびその下流側にて、結晶スラリーから粒度分級により微細結晶を抜き出し、
平均粒径450μmの種晶を、前記プロペラ型結晶缶による最初の結晶成長で平均粒径1500μm以上に成長させ、前記横型多段結晶缶による結晶成長で平均粒径2300μm以上に成長させるように構成されている、ことを特徴とする製糖における連続晶析装置。
Continuous crystallization with multiple crystal cans, configured to grow crystals in each crystal can while transferring the crystal slurry consisting of seed crystals and supersaturated sucrose solution from the upstream crystal can to the downstream crystal can A device,
The crystal can for initial crystal growth is a propeller type crystal can having one or more propellers that form a circulating flow of crystal slurry in the can.
The crystal slurry obtained from the propeller-type crystal can is a horizontal multi-stage crystal can having three or more compartments,
According to the degree of crystal growth, while the crystal slurry is sequentially transferred from the upstream compartment to the downstream compartment, crystals are grown in each compartment,
Fine crystals are extracted from the crystal slurry by particle size classification in the propeller type crystal can and downstream thereof,
A seed crystal having an average particle size of 450 μm is grown to an average particle size of 1500 μm or more by initial crystal growth using the propeller type crystal can, and is grown to an average particle size of 2300 μm or more by crystal growth using the horizontal multistage crystal can. and it has a continuous crystallizer in a sugar, characterized in that.
JP2003172063A 2003-06-17 2003-06-17 Method and apparatus for continuous crystallization in sugar production Expired - Fee Related JP4293525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172063A JP4293525B2 (en) 2003-06-17 2003-06-17 Method and apparatus for continuous crystallization in sugar production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172063A JP4293525B2 (en) 2003-06-17 2003-06-17 Method and apparatus for continuous crystallization in sugar production

Publications (3)

Publication Number Publication Date
JP2005006520A JP2005006520A (en) 2005-01-13
JP2005006520A5 JP2005006520A5 (en) 2006-06-01
JP4293525B2 true JP4293525B2 (en) 2009-07-08

Family

ID=34096332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172063A Expired - Fee Related JP4293525B2 (en) 2003-06-17 2003-06-17 Method and apparatus for continuous crystallization in sugar production

Country Status (1)

Country Link
JP (1) JP4293525B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019004164A (en) 2016-10-28 2019-08-05 Tate & Lyle Ingredients Americas Llc Method for producing allulose crystals.
CN109457059A (en) * 2018-12-12 2019-03-12 中国轻工业南宁设计工程有限公司 Horizontal continuous sugar boiling process intelligence control system
EP4000419A1 (en) 2020-11-23 2022-05-25 Savanna Ingredients GmbH Drying of allulose crystals

Also Published As

Publication number Publication date
JP2005006520A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
CN108939599B (en) Self-circulation crystallizer and multi-stage continuous crystallization method
JPS63269976A (en) Continuous removal of tartar and apparatus therefor
CN205472704U (en) System for glauber&#39;s salt of production lithium hydroxide in -process carries out in succession freezing crystal separation
CN114132950A (en) Method for preparing ammonium chloride by co-production of sodium bicarbonate
CN104769135A (en) Process for refining impure crystallized sucrose
CN108837550B (en) Xylitol vacuum continuous crystallization method and system
US20230159579A1 (en) Crystallization of allulose under reduced pressure
JP4293525B2 (en) Method and apparatus for continuous crystallization in sugar production
US4404038A (en) Process and installation for producing lactose crystals
JP2005006520A5 (en)
JP4837775B2 (en) Improved vertical continuous vacuum kettle
CN110860105A (en) Equipment and method for producing inorganic salt with solubility changing along with temperature by using cooling crystallization
JP6103017B2 (en) Nickel sulfate crystallization equipment and crystallization method
US5209856A (en) Process and device for continuous crystallization of a massecuite
CN212282946U (en) Equipment for producing inorganic salt with solubility changing along with temperature by utilizing cooling crystallization
IL307693A (en) Process for producing 1,1-gpm- and/or 1,6-gps-enriched isomalt compositions
JP7035636B2 (en) Crystallization equipment and crystallization method
EP0121522B1 (en) Method and device for the continuous crystallization of a cooked mass
EP0133062B1 (en) Process for the continuous production of sugar crystals from sugar juices by vacuum evaporation
US2034969A (en) Apparatus for effecting the growth of crystals in vacuo
US4162927A (en) Apparatus for crystallizing sugar solution and mother liquors continuously by evaporation
RU2521420C1 (en) Crystalline white sugar production method
US2363066A (en) Process for producing potassium hydroxide of high purity
JPS6158599A (en) Conntinuous treatment method and apparatus for precipitatingsaccharose
WO2022239026A1 (en) System and method for crystallizing d-allulose from d-allulose solution

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4293525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350