JPS61253766A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61253766A
JPS61253766A JP60094315A JP9431585A JPS61253766A JP S61253766 A JPS61253766 A JP S61253766A JP 60094315 A JP60094315 A JP 60094315A JP 9431585 A JP9431585 A JP 9431585A JP S61253766 A JPS61253766 A JP S61253766A
Authority
JP
Japan
Prior art keywords
plate
fuel cell
cooling
cooling plate
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60094315A
Other languages
Japanese (ja)
Inventor
Toshiaki Seki
関 敏昭
Masamitsu Tsushima
対馬 政光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60094315A priority Critical patent/JPS61253766A/en
Publication of JPS61253766A publication Critical patent/JPS61253766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To produce a fuel cell which has stable performance over a long period by using a cooling plate which is made by superimposing the first plate in which cooling tubes are buried and the second plate upon each other through a fluoride grease and a fluorine-containing resin tape applied to the peripheries of the facing surfaces. CONSTITUTION:A nonpermeable graphite plate 16 with a size of 600X700 is prepared by graphitizing a molded plate, composed of graphite particles and pitch used as a binder, at 2,000 deg.C and then impregnating the graphitized plate with a resin under reduced pressure. Next, after grooves 17 are formed on the plate 16, cooling tubes 13 are buried and fixed in the grooves 17 by the use of a carbonic epoxy conductive adhesive 18. Next, a fluoride grease 19 is applied to the periphery of the upper surface of the plate 16 and a raw PTFE tape 20 used as a fluorine-containing resin tape is placed on the periphery. After that, an over plate 21 is superimposed on the plate 16, thereby making a cooling plate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特に集電及び冷却機能を有す
るプレートの構成を改良した燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell having an improved structure of plates having current collecting and cooling functions.

〔発明の技術的背景〕[Technical background of the invention]

従来、燃料の有している化学的エネJレギーを直接電気
的エネルギーに変換する装置として燃料電池(以下、単
に電池と称する)が知られて6sる。
Conventionally, fuel cells (hereinafter simply referred to as batteries) have been known as devices that directly convert chemical energy contained in fuel into electrical energy.

この電池は通常、電解質層を挟んで一対の多孔質の電極
を配置するとともに、一方の電極の背面に水素ガスを供
給する燃料ガスを接触させ、また他方の電極の背面に酸
素ガスのような酸化1i11Jガスを接触させ、このと
き起こる電気化学的反応を利用して、両電極間から高い
エネルギーの変換効率で電気エネルギーを取り出すこと
ができるものである。
This battery usually has a pair of porous electrodes with an electrolyte layer in between, and the back of one electrode is contacted with a fuel gas that supplies hydrogen gas, and the back of the other electrode is contacted with a fuel gas that supplies hydrogen gas. By bringing oxidized 1i11J gas into contact and utilizing the electrochemical reaction that occurs at this time, electrical energy can be extracted from between both electrodes with high energy conversion efficiency.

ところで、上記の原理に基づく、特にりん酸(H3PO
4)を電解質とした電池を構成する単位セルは次のよう
に形成される。すなわち、第3図に示すように単位セル
は電解質を含浸した電解質層(以下、マトリックスと称
する)1を境にして、両側に炭素多孔質で形成され夫々
マトリックス1側に触媒層2.2aが付加されている一
対の電極3.3aを配設する。さらに、両電極3゜3a
のマトリックス1との背面側には夫々溝及び凸部となる
リブ4の付いたプレート5(以下、インターコネクタと
称する)を配置する。このインターコネクタ5の各電極
側に位置する面には、夫々リブ4によって互いに直交す
るような向きに夫々溝が複数個互いに平行に形成される
。インターコネクタ5の片側の面の溝7は燃料ガスの流
通路となり、他の側の面の直交する向きに形成された溝
8は酸化剤ガスの流通路となる。このように形成された
インターコネクタ5を介して複数個の単位セルを積層し
てその上下端部に集電板を配設し、さらに絶縁及び締付
部材を当接して一体に締付G−jで電池積層体を形成す
る。
By the way, based on the above principle, especially phosphoric acid (H3PO
A unit cell constituting a battery using 4) as an electrolyte is formed as follows. That is, as shown in FIG. 3, the unit cell is formed of carbon porous material on both sides with an electrolyte layer (hereinafter referred to as matrix) 1 impregnated with an electrolyte as a boundary, and a catalyst layer 2.2a is formed on each side of the matrix 1. An additional pair of electrodes 3.3a is provided. Furthermore, both electrodes 3°3a
A plate 5 (hereinafter referred to as an interconnector) having a rib 4 serving as a groove and a convex portion is disposed on the back side of the matrix 1 . On the surface of the interconnector 5 located on the electrode side, a plurality of parallel grooves are formed by the ribs 4 in directions perpendicular to each other. A groove 7 on one side of the interconnector 5 serves as a flow path for fuel gas, and a groove 8 formed in an orthogonal direction on the other side serves as a flow path for oxidizing gas. A plurality of unit cells are stacked via the interconnector 5 formed in this manner, current collecting plates are arranged at the upper and lower ends thereof, and further, insulating and tightening members are brought into contact and tightened together. A battery stack is formed using j.

そして、第4図に示すようにこの電池積層体の互いに対
向する面に反応ガス供給容器(以下、マニホールドと称
する)を配設する。一方の対向したマニホールド9,9
8によ燃料ガスを供給及び排出し、他方の対向したマニ
ホールド10.10aは酸化剤ガスを供給及び排出し、
上述のインターコネクタ5の夫々の溝に両ガスを夫々流
通、させるこのようにしてインターコネクタ形の電池が
構成される。
Then, as shown in FIG. 4, reaction gas supply containers (hereinafter referred to as manifolds) are arranged on mutually opposing surfaces of this battery stack. One opposing manifold 9,9
8 for supplying and discharging fuel gas, and the other opposed manifold 10.10a supplying and discharging oxidizing gas;
In this way, an interconnector-type battery is constructed in which both gases are made to flow through the respective grooves of the interconnector 5 described above.

他にリブ付電極形の電池がある。この電池番よ第5図に
示すように、′ftJ述のインターコネクタ5をセパレ
ータ11とリブ4とに分割して構成する。
There are other batteries with ribbed electrodes. As shown in FIG. 5, the interconnector 5 described above is divided into a separator 11 and a rib 4.

すなわち、マトリックス1の両側に、触媒層2゜2aを
形成したリブ付電極12,12aを配設して単位セルを
形成する。そして、1ノブ付電極1212aのマトリッ
クス1と接する反対側に、溝78及びリブ4を形成し、
両電極の溝7,8及び1ノブ4け万いに直交する方向に
形I1. サtL テ1/’ 6 ;−トはインターコ
ネクタと同様である。この単位セルを複数個積層する際
に、両ガスの混合を防ぐために゛プレート、すなわち板
状のセパレータ11を介して積層し、前述と同様にして
電池積層体を形成し、この電池積層体にそれぞれマニホ
ールドを取付けてリブ付電極形の電池を構成する。
That is, ribbed electrodes 12, 12a having catalyst layers 2.degree. 2a formed thereon are arranged on both sides of the matrix 1 to form a unit cell. Then, grooves 78 and ribs 4 are formed on the opposite side of the one-knob electrode 1212a that is in contact with the matrix 1,
In the direction perpendicular to the grooves 7, 8 and 1 knob 4 of both electrodes, form I1. SatL te 1/'6;-t is similar to the interconnector. When stacking a plurality of unit cells, they are stacked with a plate, that is, a plate-shaped separator 11 interposed therebetween, to prevent mixing of both gases, and a battery stack is formed in the same manner as described above. A manifold is attached to each to form a ribbed electrode type battery.

上述のように構成されたインターコネクタ形及びリブ付
電極形の電池にあっては、運転時にお(fる単位セル部
分の発熱による温度上昇のために触媒層の劣化などによ
る性能低下が起こる。そこでこれを防止するために、イ
ンターコネクタ形の電池にあっては第6図に示すように
数個の単位セル毎に、インターコネクタ5に冷却管13
が埋め込まれたインターコネクタ形冷却プレート14を
配設する。また、リブ付電極形の電池にあっては第7図
に示すように数個の単位セル毎に、セl<レータ11に
冷却管13が埋め込まれたセパレータ形冷却プレート1
5を配設する。このようにして1、 単位セル内部の発
熱を外部に取り出して電池温度の過度の上昇を防止する
ようにしている。
In the interconnector type and ribbed electrode type batteries configured as described above, performance decreases due to deterioration of the catalyst layer due to temperature rise due to heat generation in the unit cell portion during operation. Therefore, in order to prevent this, in interconnector type batteries, cooling pipes 13 are connected to the interconnector 5 every several unit cells, as shown in FIG.
An interconnector-type cooling plate 14 in which is embedded is provided. In addition, in the case of a ribbed electrode type battery, as shown in FIG.
5 will be placed. In this way, 1. The heat generated inside the unit cell is taken out to the outside to prevent the battery temperature from rising excessively.

〔背景技術の問題点〕[Problems with background technology]

ところで、上述したようなインターコネクタ形及びセパ
レータ形の冷却プレートは、何れも単位セルの積層方向
の高い熱伝導性及び電気伝導性に優れ、また耐りん酸性
、耐熱性並びに寸法安定性などが要求される。このため
一般には、熱硬化性の樹脂と黒鉛粒子を混合成形した板
や、黒鉛板に樹脂を含浸しガスの不浸透化を行なった部
材に、機械加工して冷却管を伝熱性高い物質で埋め込み
、更に同じ部材の合せ板を導電性の高い接着剤で全面接
着貼り合せることにより形成している。
By the way, both the interconnector type and separator type cooling plates described above have excellent thermal conductivity and electrical conductivity in the stacking direction of the unit cells, and are also required to have phosphoric acid resistance, heat resistance, and dimensional stability. be done. For this reason, cooling pipes are generally made of a material with high heat conductivity by machining a plate made of a mixture of thermosetting resin and graphite particles, or a graphite plate impregnated with resin to make it impermeable to gas. It is formed by embedding, and then bonding the entire surface of a laminated board made of the same material with a highly conductive adhesive.

しかしながら、電池の運転は起動・停止のサイクルが繰
返して行なわれるために、これに起因して貼り合せに用
いた接着剤の剥離が必然的に生じ、電気伝導性の低下、
電気伝導部の局在化、また剥離空間からの反応ガスのリ
ーク及び混合による電池の発熱等が生じ、結果的に電池
の効率及び寿命を低下させる原因となる恐れがあった。
However, since battery operation involves repeated startup and shutdown cycles, this inevitably causes the adhesive used for bonding to peel off, resulting in a decrease in electrical conductivity and
Localization of electrically conductive parts, and leakage and mixing of reaction gases from the separation space may cause heat generation in the battery, which may result in a decrease in efficiency and life of the battery.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的とするところは運転の起動・停止サイク
ルに影響されることなく長期的に安定した性能を得るこ
とが可能な長寿命の電池を提供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to provide a long-term, long-term, stable performance that is unaffected by the start-stop cycle of operation. Our goal is to provide long-lasting batteries.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、電解質層を挟ん
で一対の電極を配置すると共に、一方の電極の背面に燃
料ガスをまた他方の電極の背面に酸化剤ガスを夫々流通
させて電気エネルギーを出力する単位セルを形成し、上
記燃料ガスと前記酸化剤ガスの混合を防止するとともに
上記単位セルを電気的に接続する機能を有するプレート
を介して上記単位セルを複数個積層し、かつ冷却管を埋
設した冷却プレートを上記所定個の単位セル毎に配設し
て成る燃料電池において、上記冷却プレートとして、冷
却管を埋設した第1のプレートと第2のプレートとを、
重ね合せ面周囲部にフッ素系グリースおよびフッ素系樹
脂テープを介して重ね合せて形成したものを用いるよう
にしたことを特徴とする。
In order to achieve the above object, the present invention disposes a pair of electrodes with an electrolyte layer in between, and flows fuel gas to the back surface of one electrode and oxidant gas to the back surface of the other electrode to generate electrical energy. A plurality of unit cells are stacked together via a plate having a function of preventing mixing of the fuel gas and the oxidant gas and electrically connecting the unit cells, and cooling the unit cells. In a fuel cell in which a cooling plate with embedded tubes is arranged for each of the predetermined number of unit cells, the cooling plates include a first plate and a second plate with embedded cooling tubes,
It is characterized in that the periphery of the overlapping surfaces is formed by overlapping them with fluorine grease and fluororesin tape interposed therebetween.

〔発明の実施例〕[Embodiments of the invention]

まず本発明の特徴とするところは、前述した冷却プレー
トを、熱硬化性樹脂と黒鉛粒子を混合し成形して得られ
る黒鉛樹脂板、又は黒鉛と結着剤を混合、成形し高温処
理した黒鉛板に樹脂を含浸することによりガスの不浸透
化を図った不浸透黒鉛板に、冷却管理め込み用の溝加工
をして冷却管を伝熱性の高い物質にて埋設し、重ね合せ
面周囲部にフッ素系オイルとフッ素樹脂系粒子を主成分
とするフッ素系グリース、およびフッ素系樹脂テープを
配置し、その上に同質のプレートを重ね合せて形成する
ことにより、電池運転の起動・停止サイクルによる接着
剤の剥離に起因する電気伝導性の低下及び剥離界面から
の反応ガスのリーク混合を防止するようにした点にある
。特に、インターコネクタ形冷却プレートにおいては、
反応ガス流通路を形成した板を上記と同様に処理し、そ
の上に反応ガス流通路を形成した同質のプレートを重ね
合せて冷却プレートを形成するようにしたものである。
First, the characteristics of the present invention are that the above-mentioned cooling plate is made of a graphite resin plate obtained by mixing a thermosetting resin and graphite particles and molding it, or a graphite resin plate obtained by mixing graphite and a binder, molding it, and treating it at high temperature. The impermeable graphite plate is impregnated with resin to make it impermeable to gas, and grooves are cut for cooling management, and cooling pipes are embedded in a material with high heat conductivity, and the area around the overlapping surfaces is By placing a fluorine-based grease whose main ingredients are fluorine-based oil and fluororesin particles and a fluorine-based resin tape on the part, and forming a plate of the same quality on top of it, the start/stop cycle of battery operation can be easily controlled. The present invention is designed to prevent a decrease in electrical conductivity due to peeling of the adhesive and to prevent leakage and mixing of reactive gases from the peeled interface. In particular, for interconnector type cooling plates,
A cooling plate is formed by processing a plate with reactive gas flow passages formed thereon in the same manner as described above, and overlapping a plate of the same quality on which a reaction gas flow passage is formed.

以下、本発明を図面に示す具体的な一実施例に基づいて
説明する。第1図は、本発明による冷却プレートの構成
例を分解斜視図にて示したものである。図において、黒
鉛粒子をピッチを結着剤として成形したものを2000
’Cで黒鉛化処理し、減圧下で樹脂を含浸した600X
700口の不浸透黒鉛板16に冷却管埋込用溝17形成
する。次に、冷却管13をカーボンエポキシ導電接着剤
18を用いて上記冷即管理込用溝17に埋め込み硬化固
定させる。そして、その周囲部に図示の如く下表に示す
組成をもつフッ素系グリース19を塗布処理すると共に
、フッ素系樹脂テープとしてPTFE(7)生テープ(
12履幅−0,1長さ)20を配置し、さらにこの上に
上部プレート21を重ね合せることにより冷却プレート
を形成する。
The present invention will be described below based on a specific embodiment shown in the drawings. FIG. 1 is an exploded perspective view showing an example of the configuration of a cooling plate according to the present invention. In the figure, the graphite particles molded using pitch as a binder are 2000
600X graphitized with 'C and impregnated with resin under reduced pressure
Grooves 17 for embedding cooling pipes are formed in a 700-hole impermeable graphite plate 16. Next, the cooling pipe 13 is embedded in the cooling immediate management groove 17 using a carbon epoxy conductive adhesive 18 and hardened and fixed. Then, as shown in the figure, a fluorine-based grease 19 having the composition shown in the table below is applied to the surrounding area, and a raw PTFE (7) tape (
12 (width - 0, 1 length) 20 are arranged, and an upper plate 21 is superimposed thereon to form a cooling plate.

第2図に、かかる冷却プレートの断面図を示している。FIG. 2 shows a cross-sectional view of such a cooling plate.

〔表〕〔table〕

次に、本実施例による冷却プレートを電池運転の起動・
停止を模擬して、常温から180’Cでのヒートサイク
ル試験を行ない冷却プレートの電気伝導度の変化を調べ
た。なお、この場合締付は圧力は2、OKg / ci
で行なった。また参考のために、銀エポキシ接着による
従来の冷却プレートの試験結果を併せて第8図に示した
。図にお6sで、横軸はヒートサイクル回数、縦軸は本
実施例による冷却プレートの初期の電気抵抗を1とした
ときのそれぞれの比を示している。図から、本実施例に
よる冷却プレートの電気抵抗Aはヒートサイクルにより
ほとんど変化しないのに対し、従来の接着冷却プレート
は電気抵抗日が増大していくことがわかる。
Next, the cooling plate according to this example was used for starting battery operation.
Simulating a shutdown, a heat cycle test was conducted from room temperature to 180'C to examine changes in the electrical conductivity of the cooling plate. In this case, the tightening pressure is 2, OKg/ci
I did it. For reference, test results of a conventional cooling plate bonded with silver epoxy are also shown in FIG. 6s in the figure, the horizontal axis shows the number of heat cycles, and the vertical axis shows the respective ratios when the initial electrical resistance of the cooling plate according to this embodiment is set to 1. From the figure, it can be seen that the electrical resistance A of the cooling plate according to this embodiment hardly changes due to heat cycles, whereas the electrical resistance of the conventional adhesive cooling plate increases.

一方、冷却プレート貼り併せ面のガスリークについて調
べた。この場合、対向する2端面に同時に圧力をかけて
、直交する2端面からのリーク量を求めその結果を第9
図に示した。図において、横軸はヒートサイクル数、縦
軸は差圧100履A情ときの単位直交面長(ym )当
り1時間のリーク量(−)を示している。図中Aは本実
施例による冷却プレートの結果を示したもので、リーク
量は0.025〜0.030m1’/hrs+100履
A7とヒートサイクルにより変化はほとんど認められな
かった。これに対し、図中8の従来の冷却プレートハ、
初期的にも0.08ae/hrgloosA9と本実施
例の冷却プレートよりも高い値を示しており、ヒートサ
イクルにより更にリーク量が増大することがわかる。
On the other hand, we investigated gas leaks from the surface where the cooling plates were attached. In this case, pressure is applied to the two opposing end surfaces at the same time, and the amount of leakage from the two orthogonal end surfaces is determined and the result is
Shown in the figure. In the figure, the horizontal axis shows the number of heat cycles, and the vertical axis shows the leakage amount (-) per unit orthogonal surface length (ym) per hour when the differential pressure is 100 mlA. A in the figure shows the results of the cooling plate according to this example, and the leakage amount was 0.025 to 0.030 m1'/hrs+100 shoes A7, and almost no change was observed due to the heat cycle. In contrast, the conventional cooling plate 8 in the figure
Even at the initial stage, it shows a value of 0.08 ae/hrgloosA9, which is higher than that of the cooling plate of this example, and it can be seen that the amount of leakage further increases with heat cycling.

かくして、本実施例の冷却プレートを組み込んだ電池に
よれば、従来のような接着剤を用いた貼り合せ冷却プレ
ートに比して電気伝導度の低下が少ないために、運転に
よる冷却プレートの合せ界面のオーム損の増大はなく、
また熱抵抗の増大による冷却効率の低下がなく、結果的
に高い一定した発電効率を得ることができる。また、反
応ガスの冷却プレート重ね合せ面からのリーク及び混合
も少なく、電池触媒上での燃焼による発熱も少なく、結
果的に過熱による電解液の飛散減少も少なくなり長期間
にわたって安定した運転を行なうことができる。
Thus, according to the battery incorporating the cooling plate of this example, the electrical conductivity decreases less than that of the conventional cooling plate bonded using an adhesive, so that the bonding interface of the cooling plate due to operation does not deteriorate. There is no increase in ohmic loss,
Furthermore, there is no decrease in cooling efficiency due to an increase in thermal resistance, and as a result, a high and constant power generation efficiency can be obtained. In addition, there is less leakage and mixing of reactant gas from the overlapping surfaces of the cooling plates, less heat generation due to combustion on the battery catalyst, and as a result less scattering of the electrolyte due to overheating, resulting in stable operation over a long period of time. be able to.

尚、上記実施例ではフッ素系グリースとしてフッ素化オ
イルとパーフロロアルコキシ樹脂(PFA)の粒子との
混合物について述べたが、混合粒子はPTFEの粒子で
もよく、またPTFE、PFAの混合粒子でもよい。更
には、炭化ケイ素等の耐りん酸性の粒子と上記フッ素系
粒子との混合物についても上述と同様な効果が得られる
ものである。
In the above embodiment, a mixture of fluorinated oil and perfluoroalkoxy resin (PFA) particles was described as the fluorinated grease, but the mixed particles may be PTFE particles or mixed particles of PTFE and PFA. Furthermore, the same effect as described above can be obtained with a mixture of phosphoric acid-resistant particles such as silicon carbide and the above-mentioned fluorine-based particles.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、電解質層を゛挟ん
で一対の電極を配置すると共に、一方の電極の背面に燃
料ガスをまた他方の電極の背面に酸化剤ガスを夫々流通
させて電気エネルギーを出力する単位セルを形成し、上
記燃料ガスと前記酸化剤ガスの混合を防止するとともに
上記単位セルを電気的に接続する機能を有するプレート
を介して上記単位セルを複数個積層し、かつ冷却管を埋
設した冷却プレートを上記所定個の単位セル毎に配設し
て成る燃料電池において、上記冷却プレートとして、冷
却管を埋設した第1のプレートと第2のプレートとを、
重ね合せ面周囲部にフッ素系グリースおよびフッ素系樹
脂テープを介して重ね合せて形成したものを用いて溝成
するようにしたので、運転の起動・停止サイクルに影響
されることなく長期的に安定した性能を得ることが可能
な長寿命の極めて信頼性の高い電池が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a pair of electrodes are arranged with an electrolyte layer in between, and a fuel gas is supplied to the back surface of one electrode, and an oxidizing gas is supplied to the rear surface of the other electrode. A plurality of unit cells are connected through a plate having a function of forming a unit cell that outputs electrical energy by circulating each unit cell, preventing mixing of the fuel gas and the oxidizing gas, and electrically connecting the unit cells. In a fuel cell in which cooling plates are individually stacked and have cooling pipes buried in each of the predetermined unit cells, the cooling plates include a first plate and a second plate in which cooling pipes are buried. of,
The grooves are formed around the overlapping surfaces using fluorine-based grease and fluororesin tape, which are overlapped to form a groove, so it is stable over a long period of time without being affected by the start-stop cycle of operation. It is possible to provide a long-life, extremely reliable battery that can achieve high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による冷却プレートを示す分
解斜視図、第2図は同実施例による冷却プレートを示す
断面図、第3図は電池の単位セルを示す分解斜視図、第
4図は同単位セルを組み込んだ電池を示す斜視図、第5
図は電池の単位セルを示す分解斜視図、第6図は冷却プ
レートと単位セルを示す分解斜視図、第7図は冷却プレ
ートと単位セルを示す分解斜視図、第8図及び第9図は
本発明の詳細な説明するための特性図である。 14・・・インターコネクタ形冷却プレート、15・・
・セパレータ形冷却プレート、16・・・黒鉛板、19
・・・フッ素系グリース、20・・・PTFEの生テー
プ、21・・・上部プレート。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 ; 第4図 A 第5図 第6図 V 第7図 第8図 ヒートサイグツし数   □ 第9図
FIG. 1 is an exploded perspective view showing a cooling plate according to an embodiment of the present invention, FIG. 2 is a sectional view showing a cooling plate according to the same embodiment, FIG. 3 is an exploded perspective view showing a unit cell of a battery, and FIG. The figure is a perspective view showing a battery incorporating the same unit cell.
Figure 6 is an exploded perspective view showing the unit cell of the battery, Figure 6 is an exploded perspective view showing the cooling plate and unit cell, Figure 7 is an exploded perspective view showing the cooling plate and unit cell, Figures 8 and 9 are FIG. 3 is a characteristic diagram for explaining the present invention in detail. 14... Interconnector type cooling plate, 15...
・Separator type cooling plate, 16...Graphite plate, 19
... Fluorine grease, 20... PTFE raw tape, 21... Upper plate. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3; Figure 4 A Figure 5 Figure 6 V Figure 7 Figure 8 Number of heat tests □ Figure 9

Claims (7)

【特許請求の範囲】[Claims] (1)電解質層を挟んで一対の電極を配置すると共に、
一方の電極の背面に燃料ガスをまた他方の電極の背面に
酸化剤ガスを夫々流通させて電気エネルギーを出力する
単位セルを形成し、前記燃料ガスと前記酸化剤ガスの混
合を防止するとともに前記単位セルを電気的に接続する
機能を有するプレートを介して前記単位セルを複数個積
層し、かつ冷却管を埋設した冷却プレートを前記所定個
の単位セル毎に配設して成る燃料電池において、前記冷
却プレートとして、冷却管を埋設した第1のプレートと
第2のプレートとを、重ね合せ面周囲部にフッ素系グリ
ースおよびフッ素系樹脂テープを介して重ね合せて形成
したものを用いるようにしたことを特徴とする燃料電池
(1) Arranging a pair of electrodes with an electrolyte layer in between,
A unit cell that outputs electrical energy is formed by flowing a fuel gas to the back surface of one electrode and an oxidant gas to the back surface of the other electrode, thereby preventing mixing of the fuel gas and the oxidizing gas, and preventing the mixing of the fuel gas and the oxidizing gas. A fuel cell in which a plurality of unit cells are stacked via plates having a function of electrically connecting the unit cells, and a cooling plate in which a cooling pipe is embedded is arranged for each predetermined number of unit cells, The cooling plate is formed by overlapping a first plate and a second plate in which cooling pipes are embedded with fluorine-based grease and fluorine-based resin tape interposed in the periphery of the overlapping surfaces. A fuel cell characterized by:
(2)フッ素系グリースはフッ素化オイルを溶媒とする
ことを特徴とする特許請求の範囲第(1)項記載の燃料
電池。
(2) The fuel cell according to claim (1), wherein the fluorinated grease uses fluorinated oil as a solvent.
(3)フッ素系グリースは増稠剤として、テトラフルオ
ロエチレン又はパーフロロアルコキシ樹脂粒子の少なく
ともいずれか一種類を含むことを特徴とする特許請求の
範囲第(1)項記載の燃料電池。
(3) The fuel cell according to claim (1), wherein the fluorine-based grease contains at least one of tetrafluoroethylene and perfluoroalkoxy resin particles as a thickener.
(4)フッ素系グリースは増稠剤として、テトラフロオ
ロエチレン粒子又はパーフロロアルコキシ樹脂粒子の少
なくともいずれか一種類と、シリコンサーバイト又は酸
化チタン又は酸化ジルコニウム粒子の少なくともいずれ
か一種類とを含むことを特徴とする特許請求の範囲第(
1)項記載の燃料電池。
(4) The fluorine-based grease contains, as a thickener, at least one of tetrafluoroethylene particles or perfluoroalkoxy resin particles, and at least one of silicon servite, titanium oxide, or zirconium oxide particles. Claim No. 1 characterized in that (
The fuel cell described in section 1).
(5)冷却プレートは、燃料ガス及び酸化剤ガスの流通
路となる溝が形成されているインタコネクタ形冷却プレ
ートであることを特徴とする特許請求の範囲第(1)項
記載の燃料電池。
(5) The fuel cell according to claim (1), wherein the cooling plate is an interconnector-type cooling plate in which grooves are formed to serve as flow paths for fuel gas and oxidizing gas.
(6)冷却プレートはセパレータ形冷却プレートである
ことを特徴とする特許請求の範囲第(1)項記載の燃料
電池。
(6) The fuel cell according to claim (1), wherein the cooling plate is a separator type cooling plate.
(7)フッ素系樹脂テープは、テトラフロオロエチレン
又はパーフロロアルコキシ樹脂からなることを特徴とす
る特許請求の範囲第(1)項記載の燃料電池。
(7) The fuel cell according to claim (1), wherein the fluororesin tape is made of tetrafluoroethylene or perfluoroalkoxy resin.
JP60094315A 1985-05-01 1985-05-01 Fuel cell Pending JPS61253766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094315A JPS61253766A (en) 1985-05-01 1985-05-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094315A JPS61253766A (en) 1985-05-01 1985-05-01 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61253766A true JPS61253766A (en) 1986-11-11

Family

ID=14106838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094315A Pending JPS61253766A (en) 1985-05-01 1985-05-01 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61253766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232271A (en) * 1987-03-20 1988-09-28 Toshiba Corp Manufacture of cooling plate for fuel cell of fused carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232271A (en) * 1987-03-20 1988-09-28 Toshiba Corp Manufacture of cooling plate for fuel cell of fused carbonate

Similar Documents

Publication Publication Date Title
US5922485A (en) Solid polymer electrolyte fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
US7390586B2 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
JP2001283893A (en) Solid polymer fuel cell stack
JP3555215B2 (en) Method of manufacturing fuel cell and flow path forming member used therein
US7862954B2 (en) Fuel cell
JPS61253766A (en) Fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JPH0258740B2 (en)
KR102119912B1 (en) Fuel cell having condensate water eliminating part and method for manufacturing the same
JPS61253765A (en) Fuel cell
JP2012109074A (en) Fuel cell system
JPS6398965A (en) Fuel cell
JPS63128562A (en) Fuel cell
JPS59132572A (en) Fuel cell
JPS6398964A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JPS6095863A (en) Fuel cell
JPS6139458A (en) Fuel cell and manufacture thereof
KR20170063225A (en) Fuel cell stack
JPS62229767A (en) Fuel cell
JPH0696781A (en) Solid polymer electrolytic fuel cell
JPS63128563A (en) Fuel cell
JPS58112267A (en) Fuel cell