JPS6139458A - Fuel cell and manufacture thereof - Google Patents

Fuel cell and manufacture thereof

Info

Publication number
JPS6139458A
JPS6139458A JP59160537A JP16053784A JPS6139458A JP S6139458 A JPS6139458 A JP S6139458A JP 59160537 A JP59160537 A JP 59160537A JP 16053784 A JP16053784 A JP 16053784A JP S6139458 A JPS6139458 A JP S6139458A
Authority
JP
Japan
Prior art keywords
resistant
electrolyte
fuel cell
fluid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59160537A
Other languages
Japanese (ja)
Inventor
Ikuichi Moriyama
盛山 郁一
Nobuyoshi Umiga
信好 海賀
Tomohiro Mikogami
御子神 ▲?▼公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59160537A priority Critical patent/JPS6139458A/en
Publication of JPS6139458A publication Critical patent/JPS6139458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent a fluid from leaking as well as to aim at improvements in the prolongation of service lide in a cell and its reliability, by superposing two types of heat resistant and electrolyte-proof fluorocarbon resin films different in a fusing point each, on a side end part in parallel with a fluid flow passage of a ribbed electrode, while heating these films and pressing them inside upon fusion. CONSTITUTION:First a film of heat resistant and electrolyte-proof first fluorocarbon resin 20 different in a fusing point each is put between in a U-shaped form into a side end part in parallel with grooves 7 and 8 of a ribbed electrode 19, and heated and pressed in upon fusion, then an impregnation layer is formed up. Next, a film of heat resistant and electrolyte-proof second fluorocarbon resin 21 having a higher fusing point T2 than the first fluorocarbon resin 20 is also put between thereinto, and heated and pressed in upon fusion, then an impregnation layer is formed up whereby a double-layered end seal layer is constituted. With this constitution, characteristics of each film coexists within one, thus a fluid leakage from the electrode side is preventable from occurring with certainty.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は長期間に渡シ安定した性能を有し、寿命の長期
化ならびに信頼性の向上を図シ得るようにした燃料電池
およびその製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a fuel cell that has stable performance over a long period of time, has a long service life, and has improved reliability, and a method for manufacturing the same. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的−r4
曾−に変換する装置として燃料電池が知られている。こ
の燃料電池は通常、電解質を挾んで一対の多孔質電極を
配置するとともに、一方の゛電極である燃料極の背面に
水素等の流体燃料を接触させ、また他方の電極である酸
化剤極の背面に酸素等の流体酸化剤を接触させ、このと
きに起る電気化学反応を利用して、上記電極間から電気
エネルギーを取シ出すようにしたものであシ、前記燃料
と酸化剤が供給されている限シ高い変換効率で電気エネ
ルギーを取シ出すことができるものである。
Conventionally, the energy possessed by fuel was directly converted into electricity -r4
A fuel cell is known as a device for converting energy into energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and a fluid fuel such as hydrogen is brought into contact with the back of one of the fuel electrodes, and the other electrode, the oxidizer electrode, is placed in contact with the back of the fuel electrode. A fluid oxidizing agent such as oxygen is brought into contact with the back surface, and the electrochemical reaction that occurs at this time is utilized to extract electrical energy from between the electrodes.The fuel and oxidizing agent are supplied. Electrical energy can be extracted with the highest conversion efficiency possible.

ところで上記の原理に基づく、特にリン酸を電解質とし
た燃料電池の単位セルは通常第3図(、)又は(b)に
示すように構成されておシ、またこの単位セルを複数個
積層することによって第4図に示すように燃料電池装置
全体を構成している。
By the way, the unit cell of a fuel cell based on the above principle, especially using phosphoric acid as an electrolyte, is usually constructed as shown in FIG. As a result, the entire fuel cell device is constructed as shown in FIG.

すなわち、第3図(&)において、単位セルは電解質を
含浸した電解質層(以下、マトリックスと称する)1を
境にして、両側に多孔質体で形成され触媒が付加されて
いる電極2,3(通常炭素材から成る)を配置し、さら
に両電極2゜3のマトリ、クラ1と背面にそれぞれリブ
4゜5の付いたプレート6(一般はクラファイトと熱硬
化性樹脂の混合結着体から構成される。以後、インタコ
ネクタと称する。)を配置している。上記インタコネク
タ6の各電極2,3側に位置する面には、それぞれリブ
4,5によって互いに直行するような向きに溝7,8が
複数本規則的に平行に設けてアシ、これらの溝7,8に
はそれぞれ流体燃料および流体酸化剤の流通路を構成す
る。またインタコネクタ6の反対側の面にも同様にリブ
4,5によって互いに直行するような向きに隣接する単
位セルにおける流体燃料および流体酸化剤の流通路に供
される溝7.8が形成されている。このようにマトリッ
クス1、電極2,3およびインタコネクタ6を゛積層し
、この状態でインタコネクタ6の谷溝78の両端開口だ
けを残して各積層端面部を気密にシールして単位セルを
構成している。
That is, in FIG. 3 (&), a unit cell has an electrolyte layer (hereinafter referred to as a matrix) 1 impregnated with an electrolyte as a boundary, and electrodes 2 and 3 formed of a porous material and having a catalyst added on both sides. (usually made of carbon material), and a plate 6 (generally made of a mixed bond of graphite and thermosetting resin) with ribs 4.5 on each of the matrices 1 and 4. (hereinafter referred to as interconnectors) are arranged. On the surface of the interconnector 6 located on the side of each electrode 2, 3, a plurality of grooves 7, 8 are regularly provided in parallel in directions perpendicular to each other by ribs 4, 5, respectively. 7 and 8 constitute flow paths for fluid fuel and fluid oxidizer, respectively. Further, on the opposite surface of the interconnector 6, grooves 7.8 are similarly formed by the ribs 4 and 5, and the grooves 7.8 serve as flow paths for the fluid fuel and the fluid oxidizer in the adjacent unit cells in a direction perpendicular to each other. ing. In this way, the matrix 1, electrodes 2, 3, and interconnector 6 are stacked, and in this state, the end faces of each stack are hermetically sealed, leaving only the openings at both ends of the grooves 78 of the interconnector 6, to form a unit cell. are doing.

第3図(、)のように構成された単位セルは複数個積層
され、第4図に示すようにこの積層体の一つの対向する
端面の一方に燃料供給口9を有したマニホルド10と、
他方に燃料排出口11とを有したマニホルド12とが当
てがわれ、また、他の対向する端面に酸化剤供給口13
を有したマニホルド14と他方に酸化剤排出口15を有
したマニホルド16とが当てがわれ、これらマニホルド
10,12,14.16がボルト等で締付けられて気密
保持され、これによって燃料電池装置17が構成されて
いる。したがって、この燃料電池装置17によると、燃
料供給口9から流体燃料を供給すると、この燃料は各単
位セルの流通路である複数の溝7を分流して多孔性の電
極2の背面に接しながら流れ、その後燃料排出口11か
ら排出される。また酸化剤供給口13から流体酸化剤を
供給すると、この酸化剤は各単位セルの流通路である複
数の溝8を分流して多孔性の電極3の背面に接触しなが
ら流れ、その後酸化剤排出口15から排出されることに
なる。流体燃料と流体酸化剤はそれぞれ拡散によって多
孔性の電極2,3内に供給され燃料電池としての電気エ
ネルギーを発生する。なお図では出力端子は省略してい
る。
A plurality of unit cells configured as shown in FIG. 3(,) are stacked, and as shown in FIG. 4, a manifold 10 having a fuel supply port 9 on one of the opposing end faces of the stacked body,
A manifold 12 having a fuel discharge port 11 is applied to the other end, and an oxidizer supply port 13 is applied to the other opposing end face.
A manifold 14 having an oxidant discharge port 15 on the other side and a manifold 16 having an oxidizing agent outlet 15 on the other side are fitted, and these manifolds 10, 12, 14, 16 are tightened with bolts or the like to maintain airtightness. is configured. Therefore, according to this fuel cell device 17, when fluid fuel is supplied from the fuel supply port 9, this fuel flows through the plurality of grooves 7, which are the flow paths of each unit cell, and is in contact with the back surface of the porous electrode 2. The fuel flows and is then discharged from the fuel discharge port 11. Furthermore, when a fluid oxidant is supplied from the oxidant supply port 13, the oxidant flows through the plurality of grooves 8, which are the flow paths of each unit cell, and flows while contacting the back surface of the porous electrode 3, and then the oxidant It will be discharged from the discharge port 15. The fluid fuel and the fluid oxidant are supplied into the porous electrodes 2 and 3 by diffusion, respectively, to generate electrical energy as a fuel cell. Note that the output terminal is omitted in the figure.

更に、最近では軽量化の点から改良型として、第3図(
b)に示すように構成された燃料電池単位セルが考えら
れている。第3図(b)において、18はセパレータ、
19はリブ付電極であシ、その他第3図(a)と同じ作
用を示すものは同一符号を付して示しである。すなわち
、第3図(→に示すインタコネクタ6がパレータ18と
リブ4.5に分割構成され、かつそのリブか4,5が電
極2,3と夫々一体化されて、リブ付電極19として構
成されている。
Furthermore, recently, from the point of view of weight reduction, an improved model has been introduced as shown in Fig. 3 (
A fuel cell unit cell configured as shown in b) has been considered. In FIG. 3(b), 18 is a separator;
Reference numeral 19 indicates a ribbed electrode, and other elements having the same functions as those in FIG. 3(a) are designated by the same reference numerals. That is, the interconnector 6 shown in FIG. has been done.

この改良型の特徴は、セパレータ18が流体燃料と流体
酸化剤との混合を防止し、かつ単位セル積層化の集電体
としての役目をしているところにある。またこの改良型
の燃料電池では、第3図(、)に示したインタコネクタ
型のものに比較して重量が約半分に@量化され、かつリ
ブ部が多孔質であシ、マトリックス層からあふれ出たリ
ン酸を吸収し、またマトリックス層のリン酸が減少する
と吸蔵しているリン酸を再度補給するいわゆる“リデー
バ機「を有している。すなわち、リブ付電極19は流体
燃料および流体酸化剤の反応流体が夫々触媒層へ到達す
るために十分な反応流体の透過性を有しておシ、導電性
・熱伝導性ともによくかつ積層加重に耐える強度を兼ね
備えている。
The feature of this improved type is that the separator 18 prevents mixing of the fluid fuel and the fluid oxidizer, and also serves as a current collector for unit cell stacking. In addition, this improved type of fuel cell has a weight that is about half that of the interconnector type shown in Figure 3 (,), and the ribs are porous and overflow from the matrix layer. The ribbed electrode 19 has a so-called "redaver machine" that absorbs the released phosphoric acid and replenishes the stored phosphoric acid when the phosphoric acid in the matrix layer decreases.In other words, the ribbed electrode 19 absorbs fluid fuel and fluid oxidation It has sufficient permeability for reaction fluids to reach the respective catalyst layers, has good electrical conductivity and thermal conductivity, and has strength to withstand stacking loads.

ところで、以上の如き従来の改良型の燃料電池において
は、リブ付電極19の材質が炭素を基材とした黒鉛であ
ることから非常に多孔質であシ、リブ付電極19に供給
された流体燃料および流体酸化剤は、第5図のAにて示
すよりにこれを透過してマトリックス1に達し電気化学
反応を起こすものである。しかし乍ら、上記リブ付電極
19に供給された各流体は、第5図のBにて示すように
リブ付電極19の側面からも透過して漏洩してしまう。
By the way, in the conventional improved fuel cell as described above, since the material of the ribbed electrode 19 is graphite based on carbon, it is extremely porous, and the fluid supplied to the ribbed electrode 19 is The fuel and fluid oxidizer pass through this and reach the matrix 1, as shown at A in FIG. 5, where an electrochemical reaction occurs. However, each fluid supplied to the ribbed electrode 19 also passes through the side surface of the ribbed electrode 19 and leaks, as shown by B in FIG.

そして、この流体漏れが発生すると流体分圧が低下して
各単位セルの電流密度が不均一となシ、電池の発電性能
の低下や劣化を引き起こす原因となる。また、燃料およ
び酸化剤の各流体が漏れることによシ、その混合が生じ
た場合には燃焼反応となフ、安全性の立場からも好まし
いことではない。
When this fluid leakage occurs, the fluid partial pressure decreases and the current density of each unit cell becomes non-uniform, which causes a decrease or deterioration of the power generation performance of the battery. Furthermore, if the fuel and oxidizer fluids leak and their mixture occurs, a combustion reaction may occur, which is not desirable from a safety standpoint.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的はリブ付電極側面からの流体漏れを防止
し長期間にわたシ安定した発電性能を維持しつつ、寿命
の長期化ならびに信頼性の向上を図ることが可能な燃料
電池およびその製造方法を提供することにある。
The present invention was made to solve the above problems, and its purpose is to prevent fluid leakage from the side surface of the ribbed electrode, maintain stable power generation performance over a long period of time, and extend the life of the electrode. It is an object of the present invention to provide a fuel cell and a method for manufacturing the same, which can improve the efficiency and reliability of the fuel cell.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、前述した燃料電
池におけるリブ付電極の流体流通路と平行な側面端部に
、溶融点の異なる耐熱性。
In order to achieve the above object, the present invention provides heat resistance having different melting points at the side end portion of the ribbed electrode parallel to the fluid flow path in the fuel cell described above.

耐電解性の2種類のフッ素系樹脂のフィルムを重ね合わ
せ、これを加熱溶融圧入することにより、リブ付電極の
側面端部をシールするようにしたことを特徴とする。
It is characterized in that the side edges of the ribbed electrode are sealed by overlapping two types of electrolytic-resistant fluororesin films and press-fitting them by heating and melting.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

本実施例による燃料電池は、第1図に示すように前述し
たリブ付電極19の溝7゜8と平行な側面端部に、まず
T1なる溶融点を有する耐熱性、耐電解質性の第1のフ
ッ素系樹脂20、例えばテトラ・フルオロエチレン・ヘ
キサフルオロプロピレン共重合体樹脂(以下、FEPと
称する)の厚さ0.025簡のフィルムを一コ”の字形
にはさみ込み、これを60〜70 kg/cyy+の圧
力を加えて290℃で約3時間加熱溶融圧入させて含浸
層を形成し、次いで上記第1のフッ素系樹脂20よりも
高い溶融点T2 (>Tt )を有する耐熱性、耐電解
性の第2の7.素糸樹脂21、例えばノ4−フルオロア
ルコキシ樹脂(以下、Pi”Aと称する)の厚さ0.0
25 msのフィルムを前述同様にはさみ込み、これを
60〜70kg/c1n2の圧力を加えて320℃で約
3時間加熱溶融圧入させて含浸層を形成することにより
、第2図に示すようにE?EP含浸層22とPlt’A
含浸層23とを2層重ね合わせて端部シール層を構成し
ている。なお、各溶融点T1eTzはいずれも燃料電池
運転温度よりも高いものである。
As shown in FIG. 1, the fuel cell according to this embodiment has a heat-resistant and electrolyte-resistant first electrode having a melting point of T1 at the end of the side surface parallel to the groove 7°8 of the ribbed electrode 19 described above. A 0.025-thick film of fluorine-based resin 20, such as tetrafluoroethylene-hexafluoropropylene copolymer resin (hereinafter referred to as FEP), is sandwiched in a U-shape, The impregnated layer is formed by applying a pressure of kg/cyy+ and heating and melting press-fitting at 290° C. for about 3 hours, and then a heat-resistant and resistant material having a melting point T2 (>Tt) higher than that of the first fluororesin 20 is formed. The thickness of the electrolytic second 7. thread resin 21, for example, 4-fluoroalkoxy resin (hereinafter referred to as Pi''A) is 0.0.
A 25 ms film was sandwiched in the same manner as described above, and this was heated and melted and press-fitted at 320°C for about 3 hours under a pressure of 60 to 70 kg/c1n2 to form an impregnated layer, as shown in Figure 2. ? EP impregnated layer 22 and Plt'A
Two layers of the impregnated layer 23 are stacked to form an end seal layer. Note that each melting point T1eTz is higher than the fuel cell operating temperature.

かかる端部シール構成としたリブ付電極19を備えて成
る燃料電池においては、溶融点の低いFEPをリブ付電
極19に深く含浸させることによりてアンカー効果をも
たせ、さらにその外側から耐熱性、耐電解質性のよシ高
いPFAを密着圧入含浸させることによって、FEPの
不良、欠陥部をカバーすることができる。これによシ、
F’EPおよびPFAの各フィルムの特性が共存し、信
頼性の高いリブ付電極19側面の端部シール構造を形成
して、前述したような電極側面からの流体漏れを確実に
防止することが可能となる。
In a fuel cell equipped with a ribbed electrode 19 having such an end seal configuration, an anchor effect is provided by deeply impregnating the ribbed electrode 19 with FEP having a low melting point, and heat resistance and resistance are added from the outside. By press-fitting and impregnating PFA with high electrolytic properties, defects and defects in the FEP can be covered. For this,
The characteristics of the F'EP and PFA films coexist to form a highly reliable edge seal structure on the side surface of the ribbed electrode 19, thereby reliably preventing fluid leakage from the side surface of the electrode as described above. It becomes possible.

その結果、各単位セルの電流密度を均一なものとして、
電池の発電性能を安定に維持しつつ長寿命化を図ること
ができる。また、上記理由から燃料および酸化剤の各流
体が混合して燃焼反応を起こすようなことがなくなシ、
よシ安全なものとして信頼性の向上を図ることができる
As a result, assuming that the current density in each unit cell is uniform,
It is possible to extend the life of the battery while stably maintaining the power generation performance of the battery. In addition, for the above reasons, the fuel and oxidizer fluids do not mix and cause a combustion reaction.
It is possible to improve reliability by making it safer.

尚、上記実施例ではPEPフィルムを含浸した後にPF
Aフィルムを含浸したが、これらの各フィルムを一回の
加熱溶融圧入によって同時に含浸させるようにしてもよ
いものである。
In the above example, after impregnating the PEP film, PF
Although the A film was impregnated, each of these films may be impregnated at the same time by heating and melting press-fitting once.

また、上記実施例では第1.第2のフッ素系樹脂として
夫々FEP、PFkを用いたが、これ以外の樹脂を用い
るようにしてもよいものである。
Further, in the above embodiment, the first. Although FEP and PFk were used as the second fluororesin, other resins may be used.

さらに、上記実施例ではFEP、PFAの各フィルムの
厚さを0.025態としたが、0.01〜0.1閣の範
囲内であればこれに限られるものではない。
Furthermore, although the thickness of each of the FEP and PFA films was set to 0.025 mm in the above example, it is not limited to this as long as it is within the range of 0.01 to 0.1 mm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、リブ付電極の流体
流通路と平行な側面端部に、溶融点の異なる耐熱性、耐
電解質性の2種類のフッ素系樹脂のフィルムを重ね合わ
せ、これを加熱溶融圧入することにより、リブ付電極の
側面端部をシールするようにしたので、リブ付電極側面
からの流体漏れを防止し長期間にわた多安定した発電性
能を維持しつつ、寿命の長期化ならびに信頼性の向上を
図ることが可能な燃料電池およびその製造方法が提供で
きる。
As explained above, according to the present invention, two types of fluororesin films having different melting points, heat resistant and electrolyte resistant, are superimposed on the side edge portion of the ribbed electrode parallel to the fluid flow path. The side edges of the ribbed electrode are sealed by heating and melting and press-fitting the ribbed electrode, thereby preventing fluid leakage from the side of the ribbed electrode and maintaining stable power generation performance over a long period of time. A fuel cell that can last for a long time and have improved reliability and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

゛第1図および第2図は本発明の一実施例を示す構成図
、第3図(a)、(b)は従来の燃料電池の単位セルを
示す分解斜視図、第4図は燃料電池装置全体を示す斜視
図、第5図は従来技術の問題点を説明するための図であ
る。 1・・・マトリックス、7.8・・・溝、1B・・・セ
ミ4レータ、19・・・リブ付電極、20・・・FEP
フィルム、21・・・PFA 74ルム、22・・・F
’EP含浸層、23・・・PFA含浸層。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 (a) (b) 第4図 第5図
゛Figures 1 and 2 are block diagrams showing one embodiment of the present invention, Figures 3 (a) and (b) are exploded perspective views showing unit cells of a conventional fuel cell, and Figure 4 is a diagram showing a unit cell of a conventional fuel cell. FIG. 5, which is a perspective view showing the entire device, is a diagram for explaining the problems of the prior art. 1...Matrix, 7.8...Groove, 1B...Semi-quadrate, 19...Ribbed electrode, 20...FEP
Film, 21...PFA 74 Lum, 22...F
'EP impregnated layer, 23...PFA impregnated layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)流体燃料または流体酸化剤の流体流通路が形成さ
れた多孔質の一対のリブ付電極により電解質層をはさむ
ように配置してなる単位セルを、複数個積層して構成し
た燃料電池において、ある溶融点を有する耐熱性、耐電
解質性の第1のフッ素系樹脂フィルムと、この第1のフ
ッ素系樹脂フィルムよりも高い溶融点を有する耐熱性、
耐電解質性の第2のフッ素系樹脂とを2層に重ね合わせ
ものにより、前記リブ付電極の流体流通路と平行な側面
端部を、第1のフッ素系樹脂が内側となるようにしてシ
ールするようにしたことを特徴とする燃料電池。
(1) In a fuel cell constructed by stacking a plurality of unit cells in which an electrolyte layer is sandwiched between a pair of porous ribbed electrodes in which fluid flow paths for fluid fuel or fluid oxidizer are formed. , a heat-resistant and electrolyte-resistant first fluororesin film having a certain melting point, and a heat-resistant and electrolyte-resistant first fluororesin film having a melting point higher than that of the first fluororesin film;
Seal the side edges of the ribbed electrode parallel to the fluid flow path with a two-layer stack of electrolyte-resistant second fluororesin with the first fluororesin on the inside. A fuel cell characterized by:
(2)第1および第2のフッ素系樹脂としては、テトラ
・フルオロエチレン・ヘキサフルオロプロピレン共重合
体樹脂およびパーフルオロアルコキシ樹脂を夫々用いる
ことを特徴とする特許請求の範囲第(1)項記載の燃料
電池。
(2) As the first and second fluororesins, a tetrafluoroethylene hexafluoropropylene copolymer resin and a perfluoroalkoxy resin are used, respectively, as described in claim (1). fuel cell.
(3)流体燃料または流体酸化剤の流体流通路が形成さ
れた多孔質の一対のリブ付電極により電解質層をはさむ
ように配置してなる単位セルを、複数個積層して構成し
た燃料電池の製造方法において、前記リブ付電極の流体
流通路と平行な側面端部に、内側にある溶融点を有する
耐熱性、耐電解質性の第1のフッ素系樹脂フィルムおよ
びその外側に前記第1のフッ素系樹脂フィルムよりも高
い溶融点を有する耐熱性、耐電解質性の第2のフッ素系
樹脂フィルムを2層に重ね合せ、これを所定の温度、圧
力で加熱溶融圧入することによりシール層を形成するよ
うにしたことを特徴とする燃料電池の製造方法。
(3) A fuel cell constructed by stacking a plurality of unit cells in which an electrolyte layer is sandwiched between a pair of porous ribbed electrodes in which fluid flow paths for fluid fuel or fluid oxidizer are formed. In the manufacturing method, a heat-resistant and electrolyte-resistant first fluororesin film having a melting point is placed on the inner side of the ribbed electrode at a side end parallel to the fluid flow path, and the first fluorine-based resin film is placed on the outside thereof. A sealing layer is formed by overlapping two layers of a heat-resistant, electrolyte-resistant second fluorine-based resin film that has a higher melting point than the fluorine-based resin film, and press-fitting the film by heating and melting it at a predetermined temperature and pressure. A method for manufacturing a fuel cell, characterized in that:
(4)第1および第2のフッ素系樹脂としては、テトラ
・フルオロエチレン・ヘキサフルオロプロピレン共重合
体およびパーフルオロアルコキシ樹脂を夫々用いるよう
にしたことを特徴とする特許請求の範囲第(3)項記載
の燃料電池の製造方法。
(4) Claim (3) characterized in that the first and second fluororesins are a tetrafluoroethylene/hexafluoropropylene copolymer and a perfluoroalkoxy resin, respectively. 2. Method for manufacturing a fuel cell as described in Section 1.
JP59160537A 1984-07-31 1984-07-31 Fuel cell and manufacture thereof Pending JPS6139458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59160537A JPS6139458A (en) 1984-07-31 1984-07-31 Fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59160537A JPS6139458A (en) 1984-07-31 1984-07-31 Fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6139458A true JPS6139458A (en) 1986-02-25

Family

ID=15717118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59160537A Pending JPS6139458A (en) 1984-07-31 1984-07-31 Fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6139458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325701U (en) * 1989-07-24 1991-03-15
EP1418638A2 (en) * 2002-11-07 2004-05-12 Nissan Motor Co., Ltd. Bipolar battery
KR100821033B1 (en) 2007-04-12 2008-04-08 삼성에스디아이 주식회사 Fuel cell stack and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325701U (en) * 1989-07-24 1991-03-15
EP1418638A2 (en) * 2002-11-07 2004-05-12 Nissan Motor Co., Ltd. Bipolar battery
EP1418638A3 (en) * 2002-11-07 2006-12-20 Nissan Motor Co., Ltd. Bipolar battery
KR100821033B1 (en) 2007-04-12 2008-04-08 삼성에스디아이 주식회사 Fuel cell stack and manufacturing method thereof
US8133636B2 (en) 2007-04-12 2012-03-13 Samsung Sdi Co., Ltd. Fuel cell stack and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JP4719771B2 (en) Electrode-membrane-frame assembly for fuel cell and manufacturing method thereof, and polymer electrolyte fuel cell and manufacturing method thereof
US7572539B2 (en) Polymer electrolyte fuel cell
US10056640B2 (en) Bipolar plate for fuel cell, fuel cell and method for producing the bipolar plate
JPWO2012137609A1 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP4599115B2 (en) Polymer electrolyte fuel cell
JP2002260693A (en) High polymer electrolyte fuel cell
JP2002352817A (en) Polymer electrolyte fuel cell
JP4128844B2 (en) Composite separator plate for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JPS6139458A (en) Fuel cell and manufacture thereof
US20230378506A1 (en) Membrane-electrode unit for an electrochemical cell, and method for manufacturing a membrane-electrode unit
JP2009199882A (en) Fuel cell, and fuel cell stack equipped therewith
JP2005174875A (en) Fuel battery and its manufacturing method
JP3838403B2 (en) Phosphoric acid fuel cell
JPS59132572A (en) Fuel cell
JP5341321B2 (en) Electrolyte membrane / electrode structure for polymer electrolyte fuel cells
JPS61133578A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP3496819B2 (en) Polymer electrolyte fuel cell
JPS61114476A (en) Fuel cell
JP2005259465A (en) Polymer electrolyte fuel cell
JPS61173465A (en) Fuel cell
JPS61147461A (en) Manufacture of fuel cell
JPS6273572A (en) Fuel cell