JPS61253349A - Corrosion resistant sintered stainless steel and its manufacture - Google Patents

Corrosion resistant sintered stainless steel and its manufacture

Info

Publication number
JPS61253349A
JPS61253349A JP9278785A JP9278785A JPS61253349A JP S61253349 A JPS61253349 A JP S61253349A JP 9278785 A JP9278785 A JP 9278785A JP 9278785 A JP9278785 A JP 9278785A JP S61253349 A JPS61253349 A JP S61253349A
Authority
JP
Japan
Prior art keywords
stainless steel
sintered
porosity
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278785A
Other languages
Japanese (ja)
Inventor
Hirozo Matsumoto
浩造 松本
Toshie Shiina
椎名 利枝
Shinji Ogino
慎次 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9278785A priority Critical patent/JPS61253349A/en
Publication of JPS61253349A publication Critical patent/JPS61253349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered austenitic stainless steel article having superior corrosion resistance and low porosity by mixing austenitic stainless steel powder with a specified amount of Fe-P powder, compacting the powdery mixture and sintering it in a reducing atmosphere or in vacuum. CONSTITUTION:Austenitic stainless steel powder is mixed with Fe-P powder contg. 25.8% P so that the powdery mixture contains 0.2-1.0wt% P. The powdery mixture is compacted to a prescribed shape and sintered in two steps in an atmosphere to a reducing gas such as hydrogen or in vacuum at 1,000-1,045 deg.C which is below the eutectic point of the Fe-P and at 1,200-1,400 deg.C which is above the eutectic point of the Fe-P. A liq. phase is produced during the sintering by the presence of the Fe-P as a low m.p. alloy, causing thermal shrinkage and a sintered austenitic stainless steel article having superior corrosion resistance and <=7% porosity is obtd.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、耐食性に優れた焼結ステンレス鋼とその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a sintered stainless steel with excellent corrosion resistance and a method for manufacturing the same.

〔従来技術とその問題点〕[Prior art and its problems]

18Cr−8Ni鋼に代表されるオーステナイト系ステ
ンレス鋼は、他の鋼種に比べて耐食性、耐酸性および耐
熱性が相対的に優れているため、硝酸、硫酸、アンモニ
ア合成、尿素、化学繊維、製紙9食品、染色などの各稙
化学工業に広く利用されるばかりでなく、建築、家、麺
厨房用、タービン電気関係。
Austenitic stainless steel, represented by 18Cr-8Ni steel, has relatively superior corrosion resistance, acid resistance, and heat resistance compared to other steel types, so it is used in nitric acid, sulfuric acid, ammonia synthesis, urea, chemical fibers, and paper manufacturing. Not only is it widely used in various chemical industries such as food and dyeing, but also in architecture, houses, noodle kitchens, and turbine electrical applications.

航空機ジェ、トエンジン、自動車、 IIL@、船舶あ
るいは原子炉関係などの方面でも用いられている。
It is also used in areas such as aircraft jets, engines, automobiles, IIL@, ships, and nuclear reactors.

従来、前記用途には専ら溶製材(溶解→鋳造→塑性加工
→熱処理)が使用されてきた。しかし、オーステナイト
系ステンレス鋼は鉄系および鋼糸の金属材料に比べて材
質が粘り、無剛材であるので、切削加工に時間がかかり
刃物の寿茄も短いという欠点を有する。このため、部材
製造のコスト低減、工程の簡素化などの観点から、非削
加工ま ゛たは省切削加工である粉末冶金法によってオ
ーステナイト系ステンレス鋼部品を製造することが望ま
れている。しかしながら、通常の粉末冶金製品には空孔
が存在する例が多い。一般的に部品1部材の機械的g1
度、耐食性は、この空孔の存在によって著しく劣化して
くるので、空孔はできる限り少ないことが好ましい。こ
の空孔量を少なくする方法としては以下の2点が考えら
れている。
Conventionally, ingot materials (melting → casting → plastic working → heat treatment) have been used exclusively for the above-mentioned purposes. However, since austenitic stainless steel is sticky and non-rigid compared to iron-based and steel thread metal materials, it has the disadvantage that it takes time to cut and has a short lifespan. Therefore, from the viewpoint of reducing costs and simplifying the manufacturing process of parts, it is desirable to manufacture austenitic stainless steel parts using powder metallurgy, which requires no machining or machining. However, there are many examples in which pores exist in ordinary powder metallurgy products. In general, the mechanical g1 of a part 1 member
Since the presence of these pores significantly deteriorates the corrosion resistance, it is preferable that the number of pores be as small as possible. The following two methods are considered as methods for reducing the amount of pores.

■主成分となる原料粉末より融点の低い成分を混合添加
して、焼結時に液相を出現せしめ、それによって高密度
化を図る。
(2) Mixing and adding components with a lower melting point than the main raw material powder causes a liquid phase to appear during sintering, thereby increasing the density.

■一旦焼結したものを再圧縮し、再焼結する。■Once sintered, it is recompressed and resintered.

上記■の方法は鉄粉、炭素鋼粉では有効な添加元素が見
いだされているが、オーステナイト系ステンレス鋼合金
粉末に対する有効な成分はまだ十分な検討がなされてい
ない。上記■の方法は、高密度化に効果を発揮するが、
工程が複雑になり経済性に難点を生ずる。
Although effective additive elements have been found for the method (2) above for iron powder and carbon steel powder, the effective ingredients for austenitic stainless steel alloy powder have not yet been sufficiently investigated. The above method ■ is effective in increasing the density, but
The process becomes complicated, causing problems in economic efficiency.

〔発明の目的〕[Purpose of the invention]

この発明は上記に鑑みなされたものであり、非削加工お
よび省切削加工方法である粉末冶金法の特長を活かし、
耐食性に優れた焼結ステンレス鋼とその製造方法を提供
することを目的とする。
This invention was made in view of the above, and takes advantage of the characteristics of powder metallurgy, which is a non-cutting and cutting-saving processing method.
The purpose of the present invention is to provide a sintered stainless steel with excellent corrosion resistance and a method for manufacturing the same.

〔発明の要点〕[Key points of the invention]

この発明は、オーステナイト系ステンレス鋼合金粉末(
Nis〜22%、Cr16〜26%、MoO〜3%。
This invention utilizes austenitic stainless steel alloy powder (
Nis~22%, Cr16~26%, MoO~3%.

Cu O〜2.5%、 Si Q 〜1.5%、M11
0〜2%)を主原料として、成形、焼結のみの工程で空
孔率が7%以下である焼結ステンレス鋼を得るために、
オーステナイト系ステンレス鋼合金粉末に0.2〜1重
量%のリン(P)をフェロリン合金粉末(Fe−P)で
添加混合し、この混合粉末を成形後還元性もしくは真空
雰囲気中にて1000°〜1045℃で仮焼結し、引続
き1200°〜1400℃で焼結することを要旨とする
CuO~2.5%, SiQ~1.5%, M11
In order to obtain sintered stainless steel with a porosity of 7% or less using only molding and sintering as the main raw material (0 to 2%),
Add and mix 0.2 to 1% by weight of phosphorus (P) with ferroline alloy powder (Fe-P) to austenitic stainless steel alloy powder, and after molding, heat the mixed powder at 100° to 1000° in a reducing or vacuum atmosphere. The gist is to perform temporary sintering at 1045°C and then sintering at 1200°C to 1400°C.

本発明者らは、ます液相焼結によって焼結ステンレス東
の高密度化を意図した。このため、オーステナイト系ス
テンレス鋼合金粉末に該合金粉末より低い融点を有する
7エロポロン(Fe−8)。
The present inventors intended to increase the density of sintered stainless steel by liquid phase sintering. For this reason, 7eroporon (Fe-8), which has a lower melting point than the austenitic stainless steel alloy powder, is added to the austenitic stainless steel alloy powder.

フェロアルミ(Fe−AA) 、 7 x C’すy(
Fe−P)。
Ferroaluminum (Fe-AA), 7 x C'sy (
Fe-P).

フェロチタ7 (Fe −Ti )などの共晶合金粉末
を添加混合して、密度上昇忙対する効果を調べた。また
、これと並行して焼結ステンレス鋼の基本的な腐食傾向
の把握を目的として加%硫酸溶液中で分極曲線を求め、
耐食性と空孔率との関係を考察した。
The effect of adding and mixing eutectic alloy powder such as Ferrotita 7 (Fe-Ti) on density increase was investigated. In parallel, we also determined polarization curves in a sulfuric acid solution with the aim of understanding the basic corrosion tendency of sintered stainless steel.
The relationship between corrosion resistance and porosity was discussed.

以上の検討結果より、経験的にオーステナイト系ステン
レス鋼の耐食性の判断の目安とされる加%硫酸溶液中で
の浸食度0.1賜毎は、焼結ステンレス鋼の空孔率が7
%以下であれば満足できること、および成形、焼結のみ
の工程で空孔率7%以下の焼結体を得るには、フェロリ
ン合金粉末の形でリンを0.2〜1%添加混合し、成形
後露点が一切℃以下の水系雰囲気もしくは10  to
rr以下の真空雰囲気で、フェロリンの共晶点(約10
50℃)より低い1000°〜1045℃で焼結し、4
伏きフェロリンの共晶点以上の1200−1400″C
で焼結すれば可能であることを確°認した。
From the above study results, we have found that for every 0.1 degree of corrosion in a % sulfuric acid solution, which is empirically used as a guideline for determining the corrosion resistance of austenitic stainless steel, the porosity of sintered stainless steel is 7.
% or less, and in order to obtain a sintered body with a porosity of 7% or less by only molding and sintering, add and mix 0.2 to 1% phosphorus in the form of ferroline alloy powder, After molding, use an aqueous atmosphere with a dew point below ℃ or 10 to
In a vacuum atmosphere below rr, the eutectic point of ferroline (approximately 10
Sintered at 1000° to 1045°C lower than 50°C, 4
1200-1400″C above the eutectic point of ferroline
It was confirmed that this is possible if sintered with

本発明でリンを赤リンでなくフェロリンの形で添加した
のは、後者の方がリンの偏析がなく液相の発生も均一で
あるからである。また、リンの添加量に関しては0,2
%以下のリンでは液相の発生が少なく焼結体の緻密化が
不十分であること、逆にリンが1%以上になると空孔率
は低下するが液相の発生が多くなりすぎて液相の残留を
招き耐食性を減じ、かつ脆化して実用的でないこと、な
どからリンの添加量は0.2〜1%の範囲であることが
肝要である。
The reason why phosphorus is added in the form of ferroline rather than red phosphorus in the present invention is that the latter causes no segregation of phosphorus and generates a liquid phase more uniformly. Also, regarding the amount of phosphorus added, 0.2
If the phosphorus content is less than 1%, the sintered body will not be sufficiently densified due to the generation of a liquid phase.On the other hand, if the phosphorus content is more than 1%, the porosity will decrease, but too much liquid phase will be generated and the sintered body will not be sufficiently densified. It is important that the amount of phosphorus added is in the range of 0.2 to 1% because it causes residual phases, reduces corrosion resistance, and becomes brittle, making it impractical.

また、焼結工程を2段階としたのは、フェロリンの共晶
点以下の1000°〜1045℃で焼結を行うことによ
りステンレス鋼合金粉末同士の焼結が進行して強固な骨
格を作り、焼結体の収縮が均−罠なって寸法精度の向上
に効果を発揮することが認められたためである。一方、
フェロリンの共晶点以上での焼結温度を1200°〜1
400℃としたのは、1200℃以下ではリンの拡散が
不十分で粒界に偏析し、焼結体の緻密化に寄与せず、ま
た1400″C以上になると高温すぎてCrの蒸発によ
る炉内の損傷。
In addition, the reason why the sintering process is made into two stages is that by performing sintering at a temperature of 1000° to 1045°C, which is below the eutectic point of ferroline, sintering between the stainless steel alloy powders progresses and a strong skeleton is created. This is because it has been recognized that the shrinkage of the sintered body becomes even and effective in improving dimensional accuracy. on the other hand,
The sintering temperature above the eutectic point of ferroline is 1200° to 1
The reason for setting the temperature at 400°C is that at temperatures below 1200°C, phosphorus does not diffuse sufficiently and segregates at grain boundaries, and does not contribute to densification of the sintered body.At temperatures above 1400°C, the temperature is too high and the furnace is damaged due to evaporation of Cr. damage within.

焼結体の組成臂動、焼結体の収縮のばらつきなどの欠点
を発生するのでこれ以下が好ましい。なお、本発明にお
ける混合粉末の成形圧力は2〜7−錯であり、焼結時の
保持時間は0.5〜2時間の範囲であれば発明の目的は
達成可能である。
It is preferable that the amount is less than this range since disadvantages such as composition fluctuation of the sintered body and variation in shrinkage of the sintered body occur. In addition, the object of the invention can be achieved if the compacting pressure of the mixed powder in the present invention is 2-7-complex and the holding time during sintering is in the range of 0.5 to 2 hours.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例に基づいて説明する。本発明で使
用したオーステナイト系ステンレス鋼合合金粉末は、■
福田金属箔粉製のSUS 304 L粉末である。第1
表にその性状を示す。
The present invention will be explained below based on examples. The austenitic stainless steel alloy powder used in the present invention is
It is SUS 304 L powder manufactured by Fukuda Metal Foil Powder. 1st
The properties are shown in the table.

第  1  表 5US304L合金粉末にリンをフェロリン合金粉末(
Fe−25,8%P)で0.0.1.0.15.0.2
0.0.5.0.8゜1.0 、1.2 、1.5%に
なるように添加し、V型ミキサーで混合後、7〜の圧力
で加11’X1oin’の成形体を得た。焼結は5X1
0  torr以下の真空で1000”CxQ、5hか
ら1300℃X1.5hの条件で行った。前記条件で得
た焼結体の空孔率とリン添加量の関係を第1図に示す。
Table 1: Adding phosphorus to US304L alloy powder (ferroline alloy powder)
Fe-25,8%P) 0.0.1.0.15.0.2
0.0.5.0.8゜1.0, 1.2, 1.5%, mixed with a V-type mixer, and then heated at a pressure of 7 to 11' x 1 oin' to form a molded product. Obtained. Sintering is 5X1
The test was carried out under the conditions of 1000''CxQ, 5h to 1300°C for 1.5h in a vacuum of 0 torr or less. The relationship between the porosity of the sintered body obtained under the above conditions and the amount of phosphorus added is shown in FIG.

空孔率はリン添加量くしたがって減少し、0.2%リン
で空孔率が7%以下になる。
The porosity decreases as the amount of phosphorus added increases, and at 0.2% phosphorus, the porosity becomes 7% or less.

リンが0.8 、1.0%では空孔率はほとんど零にな
っている。しかし、リンが1%以上になると空孔率は増
加傾向となり、リンの添加が過剰であることが確認され
る。なお、成形圧力、焼結条件を前記条件より多少変更
しても、空孔率とリン添加蓋の関係はg1図の結果とほ
ぼ同様であった。
When the phosphorus content is 0.8% or 1.0%, the porosity is almost zero. However, when the phosphorus content exceeds 1%, the porosity tends to increase, confirming that the addition of phosphorus is excessive. Incidentally, even if the molding pressure and sintering conditions were slightly changed from the above conditions, the relationship between the porosity and the phosphorus addition cap was almost the same as the results shown in diagram g1.

焼結ステンレス鋼の20%硫酸溶液中での分極曲線の測
定は第2表に示す条件で行った。
The polarization curve of sintered stainless steel in a 20% sulfuric acid solution was measured under the conditions shown in Table 2.

第2表 分極曲線の測定に先豆ち、試料の測定面をエメリー紙(
す600)で乾式研摩し、次にアセトンで超音波洗浄し
た後、十分乾燥した。この後、第2図。
Table 2 Before measuring the polarization curve, place the measurement surface of the sample on emery paper (
After dry polishing with a polishing machine (600), and then ultrasonic cleaning with acetone, it was thoroughly dried. After this, Figure 2.

第3図に示すごとく試料面が10 x 10 xmの試
料IK。
As shown in Figure 3, sample IK has a sample surface of 10 x 10 x m.

リード線2をとりつけ、試料の測定面以外をシリコンシ
ーラント(信越化学展KE45 )3で被覆して分極曲
線の測定に供した。
A lead wire 2 was attached, and the surface of the sample other than the measurement surface was covered with silicone sealant (Shin-Etsu Chemical Exhibition KE45) 3, and the polarization curve was measured.

分極曲線は、本発明に関するリン添加焼結ステンレス鋼
、リンを添加せずに5US304L合金粉末を原料とし
て成形、焼結条件を変えることで空孔率を変化させた焼
結ステンレス鋼およびCr18.3%、Ni9,3%を
含有する808304溶解加工材(固溶化処理材)Kつ
いて測定した。
The polarization curves show phosphorus-added sintered stainless steel according to the present invention, sintered stainless steel with porosity changed by molding and sintering conditions using 5US304L alloy powder without adding phosphorus, and Cr18.3. %, and 808304 melt processed material (solution treated material) K containing 9.3% Ni.

分極曲線の測定例を第4図に示す。第4図より溶解加工
材11.リンを0.8%および0.2%添加した空孔率
が7%以下である焼結ステンレス鋼12 、13は明白
な不働態化域が認められるのに対し、空孔率10%の焼
結ステンレス鋼(5US304L)は空孔の存在によっ
て不働態化していないことを示し、本発明の焼結ステン
レス鋼とその製造方法が耐食性の向上に有効であること
を裏付けている。
An example of measuring the polarization curve is shown in FIG. From Figure 4, melt processed material 11. Sintered stainless steels 12 and 13 with 0.8% and 0.2% phosphorus addition and with a porosity of 7% or less show a clear passivation region, whereas sintered stainless steels with a porosity of 10% This shows that the sintered stainless steel (5US304L) is not passivated due to the presence of pores, which confirms that the sintered stainless steel of the present invention and its manufacturing method are effective in improving corrosion resistance.

不発明にかかわる検討結果で得られた焼結ステンレス鋼
の空孔率に対して、不働態化保持電流密度(不働態化し
ていない試料は+0.1〜0.9 VVs SCEの範
囲のプラト一部の最低電流密度)をプロ、トするとfs
5図のようになる。空孔率の低下とともに電流密度が低
下し、耐食性は向上することを示している。モして空孔
率7%以下で10  Affl  以下の電流密度にな
る。この電流密度lQ  Am  について下記方法で
腐食速IfL(侵食度)を求めると、その値は0.07
7賜乍となり、通常オーステナイト系ステンレス鋼の耐
食性の目安となる0、1fir年以下を満足するものと
なる。分極曲線と腐食速度の関係は次の通りである。す
なわち、腐食は金属表面での電気化学反応であるから、
外部から電位を強制的Kかけて電子の授受を電流計で計
り、腐食速度を推測することができる。硫酸溶液中でス
テンレス鋼は Fe−+Fe  −)−3e   ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
1)として溶は出し、還元反応として 2H”+26−→H2・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(2)などの反
応が考えられる。したがってステンレス鋼が不働態化し
ていれば、i、(不働態化保持電流密度)が腐食速尻の
パラメータとなる。ステンレス鋼の溶は出しが(1)式
の反応によるとした場合、i 、=10  km  の
ときの腐食速度Vは(3)式で得られる。
With respect to the porosity of sintered stainless steel obtained in the study results related to non-invention, the passivation holding current density (unpassivated sample is +0.1 to 0.9 VVs SCE range plateau) fs
It will look like Figure 5. This shows that as the porosity decreases, the current density decreases and the corrosion resistance improves. When the porosity is 7% or less, the current density becomes 10 Affl or less. When the corrosion rate IfL (corrosion degree) is calculated using the method below for this current density lQ Am, the value is 0.07.
7, which satisfies the corrosion resistance of 0.1 fir years or less, which is a standard for the corrosion resistance of austenitic stainless steel. The relationship between polarization curve and corrosion rate is as follows. In other words, since corrosion is an electrochemical reaction on the metal surface,
The corrosion rate can be estimated by applying an external potential of K and measuring the exchange of electrons with an ammeter. In sulfuric acid solution, stainless steel is Fe-+Fe-)-3e...
・・・・・・・・・・・・・・・・・・・・・・・・(
As 1), the elution is taken out, and as a reduction reaction, 2H"+26-→H2...
Possible reactions include (2). Therefore, if stainless steel is passivated, i, (passivation holding current density) becomes a parameter for the corrosion rate. If stainless steel is melted by the reaction of formula (1), the corrosion rate V when i = 10 km is obtained by formula (3).

ここで、M : Feのグラムill、e:Feの密度
Here, M: grams of Fe, e: density of Fe.

n : Feのイオン価数、F:ファラデイ定数である
n: Fe ionic valence, F: Faraday constant.

したがって、 V=0.077愼1年 以上の検討経緯より、焼結ステンレス鋼の耐食性を溶解
加工材のそれと同等のものにするKは、20%硫酸溶液
中で求めた不働態化保持電流か10Am−”  以下で
あることが必要であり、この値は空孔率が7%以下であ
れば満足でき、そして成形。
Therefore, V = 0.077 Based on more than a year of research, the K that makes the corrosion resistance of sintered stainless steel equivalent to that of melt-processed materials is the passivation holding current determined in a 20% sulfuric acid solution. 10 Am-'' or less, and this value can be satisfied if the porosity is 7% or less, and molding is possible.

焼結のみの工程であるならば、オーステナイト系子テン
レス鋼合金粉末に0.2〜1,0%のリンをフェロリン
合金粉末として添加すれば7%以下の空孔率を達成でき
ることが明らかである。
If the process involves only sintering, it is clear that a porosity of 7% or less can be achieved by adding 0.2 to 1.0% phosphorus as ferroline alloy powder to the austenitic stainless steel alloy powder. .

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明はオーステナイト系ステンレ
ス鋼合金粉末に0.2〜1%のリンをフェロリン合金粉
末で添加混合し、成形後、焼結に工夫をすることにより
、成形、焼結の工程のみで空孔率7%以下の焼結体を得
ることができ、耐食性が溶解加工材とほぼ同等の焼結ス
テンレス鋼の提供が可能となる。また、本発明の方法は
成形、焼結のみで耐食性に優れた部材の製造ができ、非
削加工、省切削加工が可能となるため、コスト低減にも
寄与するものである。
As described above, the present invention adds and mixes 0.2 to 1% phosphorus with ferroline alloy powder to austenitic stainless steel alloy powder, and by devising the sintering process after forming, the process of forming and sintering is improved. It is possible to obtain a sintered body with a porosity of 7% or less by using only sintered stainless steel, and it is possible to provide sintered stainless steel whose corrosion resistance is almost the same as that of the melt-processed material. In addition, the method of the present invention can produce a member with excellent corrosion resistance only by molding and sintering, and enables non-machining and cutting machining, which also contributes to cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

81図は焼結ステンレス鋼の空孔率とリン添加量の関係
を示すグラフ、第2図、第3図はそれぞれ分極曲線に供
した試料極の形状を示す正面図および側断面図、第4図
は焼結ステンレス鋼の分極曲線の測定例を示すグラフ、
第5図は焼結ステンレス鋼の空孔率と不働態化保持電流
の関係を示すグラフである。 1:試料、2:リード線、3ニジ−ラント、4ニガラス
管、11 : 5US304溶解加工材の分極曲線、1
2 : 0.8%リン添加焼結ステンレス鋼の分極曲線
、13 : 0.2%リン添加焼結ステンレス鋼の分極
曲線、14:焼結ステンレス鋼(SUS304L)の分
極曲線。 リンノトカロ1【 (重11 z) 才1r¥3 E/v  y、s  scε 才4図
Figure 81 is a graph showing the relationship between the porosity of sintered stainless steel and the amount of phosphorus added, Figures 2 and 3 are a front view and side sectional view respectively showing the shape of the sample pole subjected to the polarization curve, and Figure 4. The figure is a graph showing an example of measuring the polarization curve of sintered stainless steel.
FIG. 5 is a graph showing the relationship between porosity of sintered stainless steel and passivation holding current. 1: Sample, 2: Lead wire, 3 Nizi-lant, 4 Niglass tube, 11: Polarization curve of 5US304 melt processed material, 1
2: Polarization curve of 0.8% phosphorus-added sintered stainless steel, 13: Polarization curve of 0.2% phosphorus-added sintered stainless steel, 14: Polarization curve of sintered stainless steel (SUS304L). Rin no Tokaro 1 [ (ju 11 z) Sai 1r ¥3 E/v y, s scε Age 4 figure

Claims (1)

【特許請求の範囲】 1)オーステナイト系ステンレス鋼合金粉末を主原料と
する焼結ステンレス鋼において、焼結後の空孔率が7%
以下であることを特徴とする耐食性焼結ステンレス鋼。 2)オーステナイト系ステンレス鋼合金粉末に0.2〜
1.0重量%のリンをフェロリン合金粉末として添加混
合し、該混合粉末を成形後還元性もしくは真空雰囲気中
にて1000°〜1045℃で焼結し、引続き1200
°〜1400℃で焼結することを特徴とする耐食性焼結
ステンレス鋼の製造方法。
[Claims] 1) Sintered stainless steel whose main raw material is austenitic stainless steel alloy powder, with a porosity of 7% after sintering.
A corrosion-resistant sintered stainless steel characterized by: 2) 0.2 to austenitic stainless steel alloy powder
1.0% by weight of phosphorus is added and mixed as ferroline alloy powder, and after molding, the mixed powder is sintered at 1000° to 1045°C in a reducing or vacuum atmosphere, and then sintered at 1000° to 1045°C.
A method for producing corrosion-resistant sintered stainless steel, characterized by sintering at a temperature of ~1400°C.
JP9278785A 1985-04-30 1985-04-30 Corrosion resistant sintered stainless steel and its manufacture Pending JPS61253349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278785A JPS61253349A (en) 1985-04-30 1985-04-30 Corrosion resistant sintered stainless steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278785A JPS61253349A (en) 1985-04-30 1985-04-30 Corrosion resistant sintered stainless steel and its manufacture

Publications (1)

Publication Number Publication Date
JPS61253349A true JPS61253349A (en) 1986-11-11

Family

ID=14064129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278785A Pending JPS61253349A (en) 1985-04-30 1985-04-30 Corrosion resistant sintered stainless steel and its manufacture

Country Status (1)

Country Link
JP (1) JPS61253349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000207A1 (en) * 1988-06-27 1990-01-11 Kawasaki Steel Corporation Sintered alloy steel with excellent corrosion resistance and process for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000207A1 (en) * 1988-06-27 1990-01-11 Kawasaki Steel Corporation Sintered alloy steel with excellent corrosion resistance and process for its production
JPH02138435A (en) * 1988-06-27 1990-05-28 Kawasaki Steel Corp Sintered alloy steel having excellent corrosion resistance and its manufacture
US5108492A (en) * 1988-06-27 1992-04-28 Kawasaki Steel Corporation Corrosion-resistant sintered alloy steels and method for making same

Similar Documents

Publication Publication Date Title
Fujii et al. Oxide Structures Produced on Iron‐Chromium Alloys by a Dissociative Mechanism
CN101124058B (en) Stainless steel powder
JP7018315B2 (en) Ferrite alloy
Bautista et al. Application of EIS to the study of corrosion behaviour of sintered ferritic stainless steels before and after high-temperature exposure
US4722826A (en) Production of water atomized powder metallurgy products
Paschoal et al. Phase Eaquilibria in the Quaternary Molybdenum-Ruthenium-Rhodium-Palladium System
Otero et al. A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel
EP0363047B1 (en) A method of producing nitrogen strengthened alloys
US2765227A (en) Titanium carbide composite material
JPS61253349A (en) Corrosion resistant sintered stainless steel and its manufacture
CA1288620C (en) Process and composition for improved corrosion resistance
Urrutibeaskoa et al. Metallographic changes during sintering of grade M high speed steels in industrial atmosphere and vacuum
CA1094362A (en) Method of manufacturing sintered steel for components
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH02107703A (en) Composition for injection molding
JP2726140B2 (en) High toughness tungsten sintered alloy
JPH11181541A (en) Production of stainless steel sintered body
bin Suleiman@ Ahmad et al. Solvent debinding of inconel 718 fabricated via metal injection molding
JPH09202934A (en) Production of stainless steel sintered body
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH0379703A (en) Manufacture of stainless steel sintered product and stainless steel powder for injection molding
JPH09202950A (en) Austenitic stainless steel sintered compact and its production
JPH0625713A (en) Method for sintering cr-base heat-resistant alloy powder
JPH10287901A (en) Production of stainless sintered body
JPS5957960A (en) Manufacture of fiber reinforced silicon carbide sintered bo-dy