JPH09202950A - Austenitic stainless steel sintered compact and its production - Google Patents

Austenitic stainless steel sintered compact and its production

Info

Publication number
JPH09202950A
JPH09202950A JP3280496A JP3280496A JPH09202950A JP H09202950 A JPH09202950 A JP H09202950A JP 3280496 A JP3280496 A JP 3280496A JP 3280496 A JP3280496 A JP 3280496A JP H09202950 A JPH09202950 A JP H09202950A
Authority
JP
Japan
Prior art keywords
sintered body
stainless steel
sintering
temperature
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280496A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osako
敏行 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3280496A priority Critical patent/JPH09202950A/en
Publication of JPH09202950A publication Critical patent/JPH09202950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an austenitic stainless steel sintered compact excellent in corrosion resistance and to provide a method for economically producing the same. SOLUTION: In a stainless steel sintered compact contg., by weight, 16 to 20% chromium and 7 to 15% nickel or furthermore contg. 2 to 4% molybdenum, and the balance substantial iron, a layer having 1% porosity is applied to the surface of the sintered compact by >=10μm thickness. It is sintered in the temp. range in which ferrite is present in a hydrogen stream and is thereafter held in the temp. range in which the phase is formed into an austenite single one, by which the layer having <=1% porosity is applied to the surface of the sintered compact by >=10μm thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐孔食性に優れて
いるオーステナイトステンレス鋼焼結体および該焼結体
を経済的に得ることができるオーステナイトステンレス
鋼焼結体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an austenitic stainless steel sintered body having excellent pitting corrosion resistance and a method for producing the austenitic stainless steel sintered body which can economically obtain the sintered body. .

【0002】[0002]

【従来の技術】粉末冶金法による焼結部品は、最終製品
形状に近い形状が得られ、機械加工の工程を大幅に省略
できる。粉末冶金法で所望の部品形状を得るには、従来
から用いられている圧粉法のほかに、有機物と金属粉末
とを混合し、射出成形法により複雑な形状の製品を得る
方法も実用化され、近年その需要が高まっている。しか
して、オーステナイトステンレス鋼は優れた耐食性、特
に耐孔食性を有するのでこれらの焼結部品の用途に広く
用いられている。
2. Description of the Related Art Sintered parts produced by powder metallurgy have a shape close to that of the final product, and the machining process can be largely omitted. In order to obtain the desired part shape by the powder metallurgy method, in addition to the conventionally used powder pressing method, a method of mixing an organic substance and a metal powder to obtain a product having a complicated shape by injection molding is also put into practical use. In recent years, the demand has been increasing. Thus, austenitic stainless steel has excellent corrosion resistance, especially pitting corrosion resistance, and is therefore widely used in the applications of these sintered parts.

【0003】しかしながら、粉末冶金法で得られる焼結
体の密度は、溶製法によって得られる部品の90〜95
%程度であり、焼結体内部には気孔が存在している。こ
の気孔は、孔食発生の起点として働くのでオーステナイ
トステンレス鋼焼結体は、溶製材に比べて孔食発生電位
は低く耐食性が劣る。このような焼結部品を用いると使
用環境によっては、孔食を起こし、甚だしい場合には貫
通孔による漏洩事故を起こす可能性すらある。このよう
な事故を防ぐためには、焼結体の密度を溶製材と同等に
上げる必要があり、焼結体中の気孔を減少させ、密度を
上げるためには、焼結温度を上げることが考えられる。
完全緻密化を行う方法としては、熱間静水圧プレス法な
どがあり、工具や超耐熱材料では実用化されている。
However, the density of the sintered body obtained by the powder metallurgy method is 90 to 95 that of the parts obtained by the melting method.
%, And pores exist inside the sintered body. Since the pores act as a starting point of pitting corrosion generation, the austenitic stainless steel sintered body has a lower pitting corrosion generation potential and inferior corrosion resistance as compared with the ingot. If such a sintered component is used, pitting corrosion may occur depending on the use environment, and in a serious case, a leakage accident due to the through hole may occur. In order to prevent such an accident, it is necessary to raise the density of the sintered body to the same level as that of the ingot, and in order to reduce the pores in the sintered body and increase the density, it is considered to raise the sintering temperature. To be
As a method for complete densification, there is a hot isostatic pressing method and the like, which has been put to practical use in tools and super heat resistant materials.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、融点直
下の温度で焼結を行っても、焼結体密度はたかだか97
%程度であり、耐食性を大きく改善することはできな
い。またこの方法は、温度制御に大きな困難と危険とを
生じるという問題があり、さらに、熱間静水圧プレス法
は、コストが高く、一般のオーステナイトステンレス鋼
に適用することは経済的に困難であるという問題があ
る。
However, even if sintering is performed at a temperature just below the melting point, the density of the sintered body is at most 97.
%, And the corrosion resistance cannot be greatly improved. Further, this method has a problem that it causes great difficulty and danger in temperature control, and further, the hot isostatic pressing method is high in cost and economically difficult to apply to general austenitic stainless steel. There is a problem.

【0005】前記のように、焼結部品の耐食性は、気孔
の存在、すなわち焼結体の密度の影響を受けるが、耐食
性に寄与するのは、最表面の化学的組成および気孔や結
晶粒度などの微視的構造である。
As described above, the corrosion resistance of sintered parts is affected by the presence of pores, that is, the density of the sintered body, but the chemical composition of the outermost surface and the pores and grain sizes contribute to the corrosion resistance. Is a microscopic structure of.

【0006】本発明は、耐食性に優れているオーステナ
イトステンレス鋼焼結体およびその経済的な製造方法を
提供することを目的とするものである。
An object of the present invention is to provide an austenitic stainless steel sintered body having excellent corrosion resistance and an economical manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記問題を
解決して、前記目的を達成するために研究を重ねた結
果、オーステナイトステンレス鋼焼結体の表面に特定厚
さの緻密層を設けることにより、また特定温度で焼結や
加熱保持を行うことによって目的を達し得ることを見出
して、本発明を完成するに至った。すなわち、本発明の
第1の実施態様は、16〜20重量%のクロムと、7〜
15重量%のニッケルを含み、残部が実質的に鉄からな
るステンレス鋼焼結体において、気孔率が1%以下であ
る層を焼結体表面に10μm以上の厚みで有してなるオ
ーステナイトステンレス鋼焼結体を特徴とし、また第2
の実施態様は、16〜20重量%のクロムと、7〜15
重量%のニッケルと、2〜4重量%のモリブデンを含
み、残部が実質的に鉄からなるステンレス鋼焼結体にお
いて、気孔率が1%以下である層を焼結体表面に10μ
m以上の厚みで有してなるオーステナイトステンレス鋼
焼結体を特徴とし、さらに第3の実施態様は、水素気流
中でフェライトが存在する温度域において焼結を行った
後に、オーステナイト単相となる温度域に保持すること
によって、気孔率が1%以下である層を焼結体表面に1
0μm以上の厚みで設けるオーステナイトステンレス鋼
焼結体の製造方法を特徴とするものである。
The present inventor has carried out research to solve the above problems and achieve the above objects, and as a result, formed a dense layer of a specific thickness on the surface of an austenitic stainless steel sintered body. The present invention has been completed by finding that the object can be achieved by providing it, or by performing sintering or heating and holding at a specific temperature. That is, the first embodiment of the present invention comprises 16 to 20% by weight of chromium and 7 to
In a stainless steel sintered body containing 15% by weight of nickel and the balance substantially consisting of iron, an austenitic stainless steel having a layer having a porosity of 1% or less with a thickness of 10 μm or more on the surface of the sintered body. Characterized by a sintered body, and second
Embodiments of 16-20% by weight of chromium, and 7-15
In a stainless steel sintered body containing nickel of 2% by weight and molybdenum of 2 to 4% by weight, and the balance being substantially iron, a layer having a porosity of 1% or less was formed on the surface of the sintered body in an amount of 10 μm.
The third embodiment is characterized by an austenitic stainless steel sintered body having a thickness of m or more. Further, the third embodiment becomes an austenite single phase after sintering in a temperature range where ferrite exists in a hydrogen stream. By maintaining the temperature range, a layer having a porosity of 1% or less can be formed on the surface of the sintered body.
The method is characterized by a method for producing an austenitic stainless steel sintered body having a thickness of 0 μm or more.

【0008】[0008]

【発明の実施の形態】焼結部品の耐食性は、まず化学組
成によって決まるものである。すなわち、クロムは、鉄
中に16重量%以上含有すると、表面に緻密な不動態皮
膜を形成して耐食性を大きく向上させる。クロムは、そ
の含有量が高いほど耐食性に優れているが、コストが上
昇するとともに、クロム含有量が20重量%を超える
と、クロムに富むシグマ相が析出するために析出相近傍
のクロム濃度が低下し、孔食発生の起点となる。クロム
は、またフェライト安定化元素であり、クロム量ととも
に耐孔食性に優れているオーステナイト相が生成しにく
くなる。そこで、ニッケルを7〜15重量%添加するこ
とによってオーステナイト相を得ることができるが、ニ
ッケルを15重量%を超えて添加してもオーステナイト
相の安定度および耐食性は変わらない。モリブデンは、
鉄中に固溶してさらに耐孔食性を増加させるが、その添
加量が2重量%未満では、耐孔食性を向上させる効果が
得られず、4重量%を超えるとフェライト相やシグマ相
が析出する。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion resistance of a sintered part is first determined by its chemical composition. That is, when chromium is contained in iron in an amount of 16% by weight or more, a dense passivation film is formed on the surface and the corrosion resistance is greatly improved. Chromium is more excellent in corrosion resistance as the content thereof is higher, but as the cost increases, and when the chromium content exceeds 20% by weight, a chromium-rich sigma phase precipitates, so that the chromium concentration in the vicinity of the precipitation phase increases. It becomes a starting point of occurrence of pitting corrosion. Chromium is also a ferrite stabilizing element, and it becomes difficult to form an austenite phase having excellent pitting corrosion resistance together with the amount of chromium. Therefore, an austenite phase can be obtained by adding nickel in an amount of 7 to 15% by weight, but the stability and corrosion resistance of the austenite phase do not change even if nickel is added in an amount of more than 15% by weight. Molybdenum
Although it forms a solid solution in iron to further increase pitting corrosion resistance, if the addition amount is less than 2% by weight, the effect of improving pitting corrosion resistance cannot be obtained, and if it exceeds 4% by weight, ferrite phase and sigma phase are formed. To deposit.

【0009】これらの焼結部品の原料として用いられる
金属粉末は、数種の金属粉末を混合し、所望の組成を得
ることもできるが、近年は、水や不活性ガスを用いたア
トマイズ法が普及しており、組成も自由に変えられ、数
十μm程度の粒度の粉末を安価に入手することができ
る。
The metal powder used as a raw material for these sintered parts can be obtained by mixing several kinds of metal powders to obtain a desired composition. In recent years, however, an atomizing method using water or an inert gas has been used. It is widespread, its composition can be freely changed, and powder having a particle size of about several tens of μm can be obtained at low cost.

【0010】粉末の成形は、金型プレスを用いた圧粉成
形、バインダと混合して射出成形を行う粉末射出成形な
どいずれの方法を用いてもよいが、圧粉成形は三次元の
複雑形状品の成形は困難であり、粉末射出成形は、焼結
前に加熱または溶媒抽出などによってバインダを除去す
る必要がある。成形方法は、製品形状によって選択する
ものである。
The powder may be molded by any method such as powder molding using a die press, powder injection molding in which a binder is mixed and injection molding is performed, but powder molding is a three-dimensional complex shape. Molding of articles is difficult, and powder injection molding requires removal of the binder by heating or solvent extraction before sintering. The molding method is selected according to the product shape.

【0011】オーステナイトステンレス鋼焼結体は組成
により異なり1250〜1350℃で焼結される。焼結
雰囲気は、真空または還元雰囲気が用いられるが、クロ
ムは、蒸気圧が高いので、真空中で焼結を行う場合に
は、クロムの揮散を抑制する対策が必要となる。焼結体
の密度は、一般に90〜95%程度であるが、焼結を1
250℃以上の水素中で行うことにより表面に気孔率が
1%以下の緻密な層(以下、「緻密層」という)が生じ
る。この層の厚みは、焼結温度、時間とともに増すが、
例えば、1350℃、2時間焼結でも6μm程度であ
る。焼結体表面は、一般に平滑ではなく、また異物が付
着しているために、そのままで機械部品として用いられ
ることはほとんどなく、ブラストその他の研磨が行われ
る。この時表面層が数μm程度除去されるので、前記程
度の厚さでは、緻密層はほとんど残らないものである。
したがって、最終製品として高い耐食性を得るために
は、焼結体表面の緻密層は、10μm以上が必要であ
る。10μmの表面緻密層を得るためには、水素雰囲気
中で1350℃で4時間以上の焼結を行う必要がある。
この緻密層は、厚いほど信頼性は高まるが、成長速度は
放物線則に従うので、例えば、2倍の厚みを得るために
は焼結時間を4倍にする必要があるので、製造は可能で
あるが経済的ではない。
The austenitic stainless steel sintered body varies depending on the composition and is sintered at 1250 to 1350 ° C. A vacuum or a reducing atmosphere is used as the sintering atmosphere, but since chromium has a high vapor pressure, it is necessary to take measures to suppress the vaporization of chromium when sintering is performed in vacuum. The density of the sintered body is generally about 90 to 95%,
By performing the treatment in hydrogen at 250 ° C. or higher, a dense layer having a porosity of 1% or less (hereinafter referred to as “dense layer”) is formed on the surface. The thickness of this layer increases with sintering temperature and time,
For example, even at 1350 ° C. for 2 hours, it is about 6 μm. Since the surface of the sintered body is generally not smooth and foreign matter is attached, it is rarely used as it is as a machine part, and blasting or other polishing is performed. At this time, since the surface layer is removed by about several μm, the dense layer hardly remains with the above thickness.
Therefore, in order to obtain high corrosion resistance as a final product, the dense layer on the surface of the sintered body needs to be 10 μm or more. In order to obtain a surface dense layer of 10 μm, it is necessary to perform sintering at 1350 ° C. for 4 hours or more in a hydrogen atmosphere.
The denser the layer, the more reliable it is, but the growth rate follows the parabolic law, and therefore, the sintering time needs to be quadrupled in order to obtain the doubled thickness, so that the dense layer can be manufactured. Is not economical.

【0012】ステンレス鋼は、その組成と温度とによっ
て存在する相が異なるものである。フェライト相が出現
する高温で焼結を行うと、表面緻密層の形成速度は大き
くなるが、これは、フェライト相中の拡散速度がオース
テナイト相中の拡散速度よりも大きいためと考えられ
る。しかしながら、フェライトが存在する温度で焼結を
行うと、焼結体中にフェライト相や冷却速度によってシ
グマ相が残留する。これらの相は、クロムに富むので、
クロムが焼結体中に存在すると、その周囲のクロム濃度
が低下して孔食発生の起点となって耐食性を低下させ
る。そこで、フェライト相の存在する温度で焼結を行
い、表面に10μm以上の厚みの緻密層を形成した後に
温度を下げ、オーステナイト単相域で保持することによ
って、フェライト相をなくして耐食性の低下を防止する
ことができたものである。しかし緻密層を30μmを超
えて形成しても耐食性の低下の防止効果に関して差が認
められない。
Stainless steel has different phases depending on its composition and temperature. When sintering is performed at a high temperature at which a ferrite phase appears, the formation rate of the surface dense layer increases, which is presumably because the diffusion rate in the ferrite phase is higher than the diffusion rate in the austenite phase. However, if sintering is performed at a temperature at which ferrite exists, the sigma phase remains in the sintered body due to the ferrite phase and the cooling rate. Since these phases are rich in chromium,
When chromium is present in the sintered body, the concentration of chromium around the sintered body lowers, which serves as a starting point for the occurrence of pitting corrosion and reduces corrosion resistance. Therefore, sintering is performed at a temperature in which a ferrite phase is present, a dense layer having a thickness of 10 μm or more is formed on the surface, and then the temperature is lowered to maintain the temperature in the austenite single-phase region, thereby eliminating the ferrite phase and reducing corrosion resistance. It was something that could be prevented. However, even if the dense layer is formed to have a thickness of more than 30 μm, there is no difference in the effect of preventing deterioration of corrosion resistance.

【0013】フェライト相が存在する温度での緻密層形
成速度はオーステナイト温度域に較べて数倍大きいの
で、オーステナイト温度域での保持時間を加えても同一
厚みの緻密層を得るために必要な焼結時間は、オーステ
ナイト温度域単独で焼結を行う場合よりも短縮すること
ができる。特に、緻密層厚みを大きくしようとする場合
に有利である。
Since the formation rate of the dense layer at the temperature where the ferrite phase exists is several times higher than that in the austenite temperature range, even if the holding time in the austenite temperature range is added, it is necessary to obtain the dense layer having the same thickness. The setting time can be shortened as compared with the case where sintering is performed in the austenite temperature range alone. This is particularly advantageous when increasing the thickness of the dense layer.

【0014】フェライト相が出現する温度は、合金の組
成によって異なるので、焼結温度および保持時間は、粉
末の組成に従って決める必要がある。焼結時間は、得よ
うとする緻密層の厚みによって決まる。保持時間は、一
般には、1時間程度で十分であるが、炉内の均熱性や試
料の大きさなどによって適宜決める必要がある。このよ
うにして得られた焼結体は、前記のように表面研磨など
の後処理を施した後にも十分な緻密層を残していて使用
することができる。
Since the temperature at which the ferrite phase appears differs depending on the composition of the alloy, the sintering temperature and the holding time must be determined according to the composition of the powder. The sintering time depends on the thickness of the dense layer to be obtained. Generally, a holding time of about 1 hour is sufficient, but it is necessary to appropriately determine the holding time depending on the soaking property in the furnace and the size of the sample. The sintered body thus obtained can be used with a sufficient dense layer left after the post-treatment such as surface polishing as described above.

【0015】[0015]

【実施例】次に、本発明の実施例を、比較例とともに以
下に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0016】実施例1:下記する表1に示すような組成
の水アトマイズステンレス鋼粉末1を使用して、ワック
ス基バインダと混合し、射出成形法によつて仕上がり寸
法が8mm×4mm×30mmの試験片を製作した。こ
れを窒素中350℃で脱脂後、水素中1350℃で4時
間焼結して焼結体を得た。得られた焼結体をブラスト研
磨仕上げせずに、密封容器中に試料を挿入し、試料高さ
の1/2まで人工汗を容器中に入れ、25℃で24時間
浸漬した後、目視によって腐食の有無を調べた。また、
試料表面の緻密層厚みは、試料切片を光学顕微鏡観察に
よって測定した。これらの結果を下記する表2に示す。
Example 1 Water atomized stainless steel powder 1 having a composition as shown in Table 1 below was mixed with a wax-based binder, and a finished dimension of 8 mm × 4 mm × 30 mm was obtained by an injection molding method. A test piece was manufactured. This was degreased in nitrogen at 350 ° C. and then sintered in hydrogen at 1350 ° C. for 4 hours to obtain a sintered body. The sinter obtained was not blast-polished, the sample was inserted into a sealed container, artificial sweat was placed in the container up to 1/2 of the sample height, and the sample was immersed at 25 ° C. for 24 hours and then visually examined. The presence or absence of corrosion was examined. Also,
The dense layer thickness of the sample surface was measured by observing the sample section with an optical microscope. The results are shown in Table 2 below.

【0017】実施例2:実施例1と同様に処理して得ら
れた焼結体の一部をブラスト研磨仕上げした以外は、実
施例1と同様にして諸試験を行った。これらの結果を表
2に示す。
Example 2 Various tests were conducted in the same manner as in Example 1 except that a part of the sintered body obtained by the same treatment as in Example 1 was blast-polished. Table 2 shows the results.

【0018】実施例3:表1に示すような組成の水アト
マイズステンレス鋼粉末2を使用した以外は、実施例1
と同様に処理し、得られた焼結体について、人工汗中の
浸漬温度を50℃とし、実施例1と同様にして諸試験を
行った。これらの結果を表2に示す。
Example 3 Example 1 except that water atomized stainless steel powder 2 having the composition shown in Table 1 was used.
The resulting sintered body was treated in the same manner as above, and various tests were conducted in the same manner as in Example 1 except that the immersion temperature in artificial sweat was 50 ° C. Table 2 shows the results.

【0019】実施例4:水アトマイズステンレス鋼粉末
2を使用し、焼結時間を8時間とした以外は、実施例1
と同様に処理し、得られた焼結体の一部をブラスト研磨
仕上げせずに、人工汗浸漬中の温度を50℃とし、実施
例1と同様にして諸試験を行った。これらの結果を表2
に示す。
Example 4 Example 1 except that water atomized stainless steel powder 2 was used and the sintering time was 8 hours.
Various tests were conducted in the same manner as in Example 1 except that a part of the obtained sintered body was treated by the same manner as in 1. and the temperature during immersion in artificial sweat was 50 ° C. without blasting and polishing. Table 2 shows these results.
Shown in

【0020】実施例5:表1に示すような組成の水アト
マイズステンレス鋼粉末3を使用した以外は、実施例1
と同様に処理し、得られた焼結体の一部をブラスト研磨
仕上げせずに、人工汗浸漬中の温度を50℃とし、実施
例1と同様にして諸試験を行った。これらの結果を表2
に示す。
Example 5: Example 1 except that water atomized stainless steel powder 3 having the composition shown in Table 1 was used.
Various tests were conducted in the same manner as in Example 1 except that a part of the obtained sintered body was treated by the same manner as in 1. and the temperature during immersion in artificial sweat was 50 ° C. without blasting and polishing. Table 2 shows these results.
Shown in

【0021】実施例6:水アトマイズステンレス鋼粉末
3を使用し、焼結温度を1300℃、焼結時間を12時
間とした以外は、実施例1と同様に処理し、得られた焼
結体をブラスト研磨仕上げせずに、人工汗浸漬中の温度
を50℃とし、実施例1と同様にして諸試験を行った。
これらの結果を表2に示す。
Example 6 A sintered body obtained by the same process as in Example 1 except that the water atomized stainless steel powder 3 was used, the sintering temperature was 1300 ° C., and the sintering time was 12 hours. Was subjected to various tests in the same manner as in Example 1, except that the temperature during immersion in artificial sweat was set to 50 ° C. without blasting and polishing.
Table 2 shows the results.

【0022】実施例7:水アトマイズステンレス鋼粉末
3を使用し、焼結時間を4時間とした以外は、実施例1
と同様に処理し、得られた焼結体をブラスト研磨仕上げ
せずに、人工汗浸漬中の温度を50℃とし、実施例1と
同様にして諸試験を行った。これらの結果を表2に示
す。
Example 7 Example 1 except that water atomized stainless steel powder 3 was used and the sintering time was 4 hours.
In the same manner as in Example 1, various tests were performed in the same manner as in Example 1 except that the obtained sintered body was not blast-polished and the temperature during immersion in artificial sweat was 50 ° C. Table 2 shows the results.

【0023】実施例8:水アトマイズステンレス鋼粉末
3を使用して、焼結時間を16時間とした以外は、実施
例1と同様に処理し、得られた焼結体の一部をブラスト
研磨仕上げした後、人工汗浸漬中の温度を50℃とし、
実施例1と同様にして諸試験を行った。これらの結果を
表2に示す。
Example 8: The same treatment as in Example 1 was carried out except that the water atomized stainless steel powder 3 was used and the sintering time was 16 hours, and a part of the obtained sintered body was blast-polished. After finishing, set the temperature during immersion in artificial sweat to 50 ° C,
Various tests were conducted in the same manner as in Example 1. Table 2 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】比較例1:水アトマイズステンレス鋼粉末
1を使用し、焼結時間を2時間とした以外は、実施例1
と同様に処理し、得られた焼結体をブラスト研磨仕上げ
せずに、実施例1と同様にして諸試験を行った。これら
の結果を下記する表3に示す。
Comparative Example 1: Example 1 except that water atomized stainless steel powder 1 was used and the sintering time was 2 hours.
Various tests were performed in the same manner as in Example 1 except that the obtained sintered body was treated in the same manner as in 1. The results are shown in Table 3 below.

【0027】比較例2:水アトマイズステンレス鋼粉末
1を使用し、比較例1と同様に処理し、得られた焼結体
の一部をブラスト研磨仕上げした後、実施例1と同様に
諸試験を行い、これらの結果を表3に示す。
Comparative Example 2: Water atomized stainless steel powder 1 was used, treated in the same manner as in Comparative Example 1, a part of the obtained sintered body was blast-polished, and then various tests were conducted in the same manner as in Example 1. The results are shown in Table 3.

【0028】比較例3:水アトマイズステンレス鋼粉末
2を使用し、焼結温度を1280℃とした以外は、比較
例1と同様に処理し、得られた焼結体の一部をブラスト
研磨仕上げせずに、人工汗浸漬中の温度を50℃とし、
実施例1と同様にして諸試験を行い、これらの結果を表
3に示す。
Comparative Example 3: Water atomized stainless steel powder 2 was used and the same treatment as in Comparative Example 1 was carried out except that the sintering temperature was 1280 ° C., and a part of the obtained sintered body was blast-polished. The temperature during immersion in artificial sweat at 50 ° C without
Various tests were conducted in the same manner as in Example 1, and these results are shown in Table 3.

【0029】比較例4:水アトマイズステンレス鋼粉末
2を使用し、比較例1と同様に処理し、得られた焼結体
の一部をブラスト研磨仕上げした後、人工汗浸漬中の温
度を50℃として実施例1と同様にして諸試験を行っ
た。これらの結果を表3に示す。
Comparative Example 4: Water atomized stainless steel powder 2 was used, treated in the same manner as in Comparative Example 1, a part of the obtained sintered body was blast-polished, and then the temperature during immersion in artificial sweat was 50. Various tests were conducted in the same manner as in Example 1 at a temperature of ° C. Table 3 shows the results.

【0030】比較例5:水アトマイズステンレス鋼粉末
3を使用し、焼結温度を1300℃、焼結時間を4時間
とした以外は、比較例1と同様に処理し、得られた焼結
体をブラスト研磨仕上げせずに、人工汗浸漬中の温度を
50℃とし、実施例1と同様にして諸試験を行った。こ
れらの結果を表3に示す。
Comparative Example 5: A sintered body obtained by the same treatment as Comparative Example 1 except that the water atomized stainless steel powder 3 was used, the sintering temperature was 1300 ° C., and the sintering time was 4 hours. Was subjected to various tests in the same manner as in Example 1, except that the temperature during immersion in artificial sweat was set to 50 ° C. without blasting and polishing. Table 3 shows the results.

【0031】比較例6:水アトマイズステンレス鋼粉末
3を使用し、比較例1と同様に処理し、得られた焼結体
の一部をブラスト研磨仕上げした後、人工汗浸漬中の温
度を50℃として実施例1と同様にして諸試験を行っ
た。これらの結果を表3に示す。
Comparative Example 6: Water atomized stainless steel powder 3 was used, treated in the same manner as in Comparative Example 1, a part of the obtained sintered body was blast-polished, and then the temperature during immersion in artificial sweat was 50. Various tests were conducted in the same manner as in Example 1 at a temperature of ° C. Table 3 shows the results.

【0032】比較例7:18.2重量%クロム、8.0
重量%ニッケルを含有する溶製材について、得られた焼
結体の一部をブラスト研磨仕上げせずに、実施例1と同
様にして諸試験を行った。これらの結果を表3に示す。
Comparative Example 7: 18.2% by weight chromium, 8.0
With respect to the ingot material containing nickel by weight, various tests were carried out in the same manner as in Example 1 without blast-polishing a part of the obtained sintered body. Table 3 shows the results.

【0033】比較例8:18.2重量%クロム、8.0
重量%ニッケルを含有する溶製材について、その一部を
ブラスト研磨仕上げした後、実施例1と同様にして諸試
験を行った。これらの結果を表3に示す。
Comparative Example 8: 18.2% by weight chromium, 8.0
A part of the ingot material containing nickel by weight was blast-polished, and then various tests were conducted in the same manner as in Example 1. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】これらから、本発明による試料は、いずれ
も人工汗浸漬による腐食は発生していない。また、溶製
材も腐食は見られない。これに対して、比較例焼結体で
は、焼結温度、焼結時間および研磨によって表面に緻密
層が生じていないか、厚みが10μm未満であり、孔食
も生じていることが分かる。
From the above, none of the samples according to the present invention is corroded by immersion in artificial sweat. No corrosion is observed in the ingot. On the other hand, in the comparative example sintered body, it is understood that the dense layer is not formed on the surface due to the sintering temperature, the sintering time, and the polishing, or the thickness is less than 10 μm, and the pitting corrosion is also generated.

【0036】実施例9:下記する表4に示すような組成
の水アトマイズステンレス鋼粉末4を使用して、ワック
ス基バインダと混合し、射出成形法によつて仕上がり寸
法が8mm×4mm×30mmの試験片を製作した。こ
れを窒素中350℃で脱脂後、水素中1400℃で2時
間焼結した後、1350℃に1時間保持して焼結体を得
た。得られた焼結体をブラスト研磨仕上げした後、密封
容器中に試料を挿入し、試料高さの1/2まで人工汗を
容器中に入れ、25℃で24時間浸漬した後、目視によ
って腐食の有無を調べた。また、試料表面の緻密層厚み
は、試料切片を光学顕微鏡観察によって測定した。これ
らの結果を下記する表5に示す。
Example 9: Water atomized stainless steel powder 4 having the composition shown in Table 4 below was mixed with a wax-based binder, and the finished dimensions were 8 mm × 4 mm × 30 mm by injection molding. A test piece was manufactured. This was degreased in nitrogen at 350 ° C., sintered in hydrogen at 1400 ° C. for 2 hours, and then held at 1350 ° C. for 1 hour to obtain a sintered body. After blasting and polishing the obtained sintered body, insert the sample into a sealed container, put artificial sweat up to 1/2 of the sample height in the container, immerse it at 25 ° C for 24 hours, and then visually corrode it. Was checked for. The dense layer thickness on the sample surface was measured by observing the sample section with an optical microscope. The results are shown in Table 5 below.

【0037】実施例10:水アトマイズステンレス鋼粉
末4を使用して、焼結後の保持時間を2時間とした以外
は、実施例9と同様に処理し、得られた焼結体につい
て、実施例9と同様にして諸試験を行った。これらの結
果を表5に示す。
Example 10: Using the water atomized stainless steel powder 4, the same treatment as in Example 9 was carried out except that the holding time after sintering was 2 hours. Various tests were conducted in the same manner as in Example 9. Table 5 shows the results.

【0038】実施例11:表4に示すような組成の水ア
トマイズステンレス鋼粉末5を使用し、焼結後の保持時
間を2時間とした以外は、実施例9と同様に処理し、得
られた焼結体について、人工汗浸漬温度を50℃とし、
実施例9と同様にて諸試験を行った。これらの結果を表
5に示す。
Example 11: Obtained by treating in the same manner as in Example 9 except that water atomized stainless steel powder 5 having the composition shown in Table 4 was used and the holding time after sintering was 2 hours. For the sintered body, the artificial sweat immersion temperature was set to 50 ° C,
Various tests were conducted in the same manner as in Example 9. Table 5 shows the results.

【0039】実施例12:水アトマイズステンレス鋼粉
末5を使用し、焼結時間を4時間とした以外は、実施例
9と同様に処理して得られた焼結体について、人工汗浸
漬温度を50℃とし、実施例9と同様にて諸試験を行っ
た。これらの結果を表5に示す。
Example 12: A water-atomized stainless steel powder 5 was used and the sintering time was set to 4 hours, but the sintered body obtained by the same treatment as in Example 9 was subjected to artificial sweat immersion temperature. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 5 shows the results.

【0040】実施例13:水アトマイズステンレス鋼粉
末5を使用して、焼結時間を1時間とした以外は実施例
9と同様に処理し、得られた焼結体について、人工汗浸
漬温度を50℃とし、実施例9と同様にて諸試験を行っ
た。これらの結果を表5に示す。
Example 13: A water-atomized stainless steel powder 5 was used and treated in the same manner as in Example 9 except that the sintering time was 1 hour. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 5 shows the results.

【0041】実施例14:水アトマイズステンレス鋼粉
末5を使用し、焼結温度を1380℃とした以外は、実
施例9と同様に処理し、得られた焼結体について、人工
汗浸漬温度を50℃とし、実施例9と同様にて諸試験を
行った。これらの結果を表5に示す。
Example 14: A water-atomized stainless steel powder 5 was used and the sintering temperature was 1380 ° C. The same procedure as in Example 9 was carried out. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 5 shows the results.

【0042】実施例15:水アトマイズステンレス鋼粉
末5を使用して、焼結時間を4時間とし、保持温度を1
300℃とした以外は、実施例9と同様に処理し、得ら
れた焼結体について、人工汗浸漬温度を50℃とし、実
施例9と同様にて諸試験を行った。これらの結果を表5
に示す。
Example 15: Using water atomized stainless steel powder 5, the sintering time was 4 hours, and the holding temperature was 1.
The same treatment as in Example 9 was carried out except that the temperature was changed to 300 ° C., and the various tests were carried out in the same manner as in Example 9 with the artificial sweat immersion temperature set to 50 ° C. for the obtained sintered body. Table 5 shows these results.
Shown in

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】比較例9:水アトマイズステンレス鋼粉末
4を使用して、焼結温度1350℃で2時間焼結し、そ
の後の保持処理を行わなかった以外は、実施例9と同様
に処理し、得られた焼結体について、人工汗浸漬温度を
25℃とし、実施例9と同様にて諸試験を行った。これ
らの結果を下記する表6に示す。
Comparative Example 9: The same process as in Example 9 was carried out except that water atomized stainless steel powder 4 was used for sintering at a sintering temperature of 1350 ° C. for 2 hours and the subsequent holding treatment was not carried out. Various tests were carried out on the obtained sintered body in the same manner as in Example 9 except that the artificial sweat immersion temperature was set to 25 ° C. The results are shown in Table 6 below.

【0046】比較例10:水アトマイズステンレス鋼粉
末4を使用して、焼結温度1400℃で4時間焼結処理
した以外は、比較例9と同様に処理し、得られた焼結体
について、人工汗浸漬温度を25℃とし、実施例9と同
様にて諸試験を行った。これらの結果を表6に示す。
Comparative Example 10: A sintered body obtained by the same treatment as in Comparative Example 9 except that the water atomized stainless steel powder 4 was used and the sintering treatment was performed at a sintering temperature of 1400 ° C. for 4 hours. Various tests were conducted in the same manner as in Example 9 with the artificial sweat immersion temperature set to 25 ° C. Table 6 shows the results.

【0047】比較例11:水アトマイズステンレス鋼粉
末5を使用して、焼結温度1280℃で2時間焼結処理
した以外は、比較例9と同様に処理し、得られた焼結体
について、人工汗浸漬温度を50℃とし、実施例9と同
様にて諸試験を行った。これらの結果を表6に示す。
Comparative Example 11: A sintered body obtained by the same treatment as in Comparative Example 9 except that the water atomized stainless steel powder 5 was used and the sintering treatment was performed at a sintering temperature of 1280 ° C. for 2 hours. Various tests were conducted in the same manner as in Example 9 with the artificial sweat immersion temperature set to 50 ° C. Table 6 shows the results.

【0048】比較例12:水アトマイズステンレス鋼粉
末5を使用し、焼結温度を1400℃とした以外は、比
較例9と同様に処理し、得られた焼結体について、人工
汗浸漬温度を50℃とし、実施例9と同様にて諸試験を
行った。これらの結果を表6に示す。
Comparative Example 12: A water-atomized stainless steel powder 5 was used and the sintering temperature was 1400 ° C., and the same treatment as in Comparative Example 9 was carried out. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 6 shows the results.

【0049】比較例13:水アトマイズステンレス鋼粉
末5を使用し、焼結時間を3時間とした以外は、比較例
9と同様に処理し、得られた焼結体について、人工汗浸
漬温度を50℃とし、実施例9と同様にて諸試験を行っ
た。これらの結果を表6に示す。
Comparative Example 13: A water-atomized stainless steel powder 5 was used and the sintering time was 3 hours. The same treatment as in Comparative Example 9 was carried out. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 6 shows the results.

【0050】比較例14:水アトマイズステンレス鋼粉
末5を使用し、焼結時間を8時間とした以外は、比較例
9と同様に処理し、得られた焼結体について、人工汗浸
漬温度を50℃とし、実施例9と同様にて諸試験を行っ
た。これらの結果を表6に示す。
Comparative Example 14: A water-atomized stainless steel powder 5 was used and the sintering time was 8 hours, and the same treatment as in Comparative Example 9 was carried out. Various tests were conducted in the same manner as in Example 9 at 50 ° C. Table 6 shows the results.

【0051】比較例15:水アトマイズステンレス鋼粉
末5を使用して、焼結温度1300℃で8時間焼結処理
した以外は、比較例9と同様に処理し、得られた焼結体
について、人工汗浸漬温度を50℃とし、実施例9と同
様にて諸試験を行った。これらの結果を表6に示す。
Comparative Example 15: A sintered body obtained by the same process as in Comparative Example 9 except that the water atomized stainless steel powder 5 was used and sintered at a sintering temperature of 1300 ° C. for 8 hours. Various tests were conducted in the same manner as in Example 9 with the artificial sweat immersion temperature set to 50 ° C. Table 6 shows the results.

【0052】比較例16:水アトマイズステンレス鋼粉
末5を使用して、焼結温度1350℃で15時間焼結処
理した以外は、比較例9と同様に処理し、得られた焼結
体について、人工汗浸漬温度を50℃とし、実施例9と
同様にて諸試験を行った。これらの結果を表6に示す。
Comparative Example 16: A sintered body obtained by the same process as in Comparative Example 9 except that the water atomized stainless steel powder 5 was used and the sintering process was performed at a sintering temperature of 1350 ° C. for 15 hours. Various tests were conducted in the same manner as in Example 9 with the artificial sweat immersion temperature set to 50 ° C. Table 6 shows the results.

【0053】[0053]

【表6】 [Table 6]

【0054】これらの結果から、本発明により、138
0〜1400℃で1〜4時間焼結を行うことによって、
焼結体表面に、10μm以上の緻密層を形成したこと、
2時間の焼結で約10μm、4時間焼結で20μm以上
の緻密層が得られていること、その後1300〜135
0℃で1〜2時間保持することによってフェライト相の
残留しないオーステナイト単相焼結体が得られているこ
と、およびこれらはいずれの試料でも人工汗浸漬による
腐食を発生しておらず、したがって約10μmの緻密層
を得るには合計3時間、20μmの緻密層を得るには合
計5時間であることが分かる。これは、実施例1〜8に
示す方法よりも短時間であり、本発明の製造方法が優れ
ていることが分かる。これに対して、オーステナイト温
度域である1280〜1350℃で焼結を行った比較例
9、11、13では、3時間までの焼結では、いずれも
10μmの緻密層は得られず、しかも、いずれも孔食を
発生した。また、1400℃で焼結を行った比較例1
0、12では、10μm以上の緻密層が形成されたがフ
ェライト相が残留し、人工汗浸漬試験ではやはり孔食を
発生した。オーステナイト温度域で焼結を行って10μ
m以上の緻密層を得るためには比較例14(実施例4に
相当する製法によるもので、この製法では本発明製品の
ような焼結体を得るためには長時間を要することを示す
例として比較例としてある)に示すように4時間以上、
20μm以上を得るには比較例16に示すように16時
間程度の焼結が必要であることなどが分かる。
From these results, according to the present invention, 138
By performing sintering at 0 to 1400 ° C. for 1 to 4 hours,
Forming a dense layer of 10 μm or more on the surface of the sintered body,
Sintering for 2 hours yields a dense layer of about 10 μm, and sintering for 4 hours yields a dense layer of 20 μm or more.
By holding at 0 ° C. for 1 to 2 hours, an austenite single-phase sintered body in which a ferrite phase did not remain was obtained, and in any of these samples, corrosion due to artificial sweat immersion did not occur, and therefore, about 1 hour. It can be seen that it takes 3 hours in total to obtain a dense layer of 10 μm and 5 hours in total to obtain a dense layer of 20 μm. This is a shorter time than the methods shown in Examples 1 to 8, and it can be seen that the manufacturing method of the present invention is superior. On the other hand, in Comparative Examples 9, 11, and 13 which were sintered at 1280 to 1350 ° C., which is the austenite temperature range, a dense layer of 10 μm could not be obtained by sintering for up to 3 hours, and Both of them caused pitting corrosion. Comparative Example 1 in which sintering was performed at 1400 ° C
In Nos. 0 and 12, a dense layer of 10 μm or more was formed, but the ferrite phase remained, and pitting corrosion still occurred in the artificial sweat immersion test. 10μ after sintering in austenite temperature range
In order to obtain a dense layer of m or more, a comparative example 14 (manufacturing method corresponding to Example 4 is used, and this manufacturing method shows that it takes a long time to obtain a sintered body such as the product of the present invention. As a comparative example), 4 hours or more,
As shown in Comparative Example 16, it can be seen that sintering for about 16 hours is required to obtain 20 μm or more.

【0055】以上のように、本発明によれば、焼結体は
耐孔食性に優れており、このような焼結体を短時間で製
造し得ることが分かる。
As described above, according to the present invention, the sintered body is excellent in pitting corrosion resistance, and it is understood that such a sintered body can be produced in a short time.

【0056】[0056]

【発明の効果】本発明は、オーステナイトステンレス鋼
焼結体の表面に特定厚さの緻密層を設けることにより、
また、特定温度で焼結や加熱保持を行う製法であるか
ら、耐孔食性に優れた焼結体が得られ、単相のオーステ
ナイトステンレス鋼焼結体を経済的に製造し得るもので
あって顕著な効果が認められる。
The present invention provides a dense layer having a specific thickness on the surface of an austenitic stainless steel sintered body,
Further, since it is a manufacturing method in which sintering and heating are held at a specific temperature, a sintered body having excellent pitting corrosion resistance can be obtained, and a single-phase austenitic stainless steel sintered body can be economically manufactured. A remarkable effect is recognized.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 16〜20重量%のクロムと、7〜15
重量%のニッケルを含み、残部が実質的に鉄からなるス
テンレス鋼焼結体において、気孔率が1%以下である層
を焼結体表面に10μm以上の厚みで有してなることを
特徴とするオーステナイトステンレス鋼焼結体。
1. 16-20% by weight chromium and 7-15
In a stainless steel sintered body containing nickel by weight and the balance substantially consisting of iron, a layer having a porosity of 1% or less is formed on the surface of the sintered body in a thickness of 10 μm or more. Austenitic stainless steel sintered body.
【請求項2】 16〜20重量%のクロムと、7〜15
重量%のニッケルと、2〜4重量%のモリブデンを含
み、残部が実質的に鉄からなるステンレス鋼焼結体にお
いて、気孔率が1%以下である層を焼結体表面に10μ
m以上の厚みで有してなることを特徴とするオーステナ
イトステンレス鋼焼結体。
2. 16-20% by weight of chromium and 7-15
In a stainless steel sintered body containing nickel of 2% by weight and molybdenum of 2 to 4% by weight, and the balance being substantially iron, a layer having a porosity of 1% or less was formed on the surface of the sintered body in an amount of 10 μm.
An austenitic stainless steel sintered body having a thickness of m or more.
【請求項3】 水素気流中でフェライトが存在する温度
域において焼結を行った後に、オーステナイト単相とな
る温度域に保持することによって、気孔率が1%以下で
ある層を焼結体表面に10μm以上の厚みで設けること
を特徴とするオーステナイトステンレス鋼焼結体の製造
方法。
3. A layer having a porosity of 1% or less is formed on the surface of a sintered body by performing sintering in a temperature range where ferrite is present in a hydrogen stream and then maintaining the temperature range where an austenite single phase is obtained. The method for producing an austenitic stainless steel sintered body is characterized in that it is provided with a thickness of 10 μm or more.
JP3280496A 1996-01-26 1996-01-26 Austenitic stainless steel sintered compact and its production Pending JPH09202950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280496A JPH09202950A (en) 1996-01-26 1996-01-26 Austenitic stainless steel sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280496A JPH09202950A (en) 1996-01-26 1996-01-26 Austenitic stainless steel sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH09202950A true JPH09202950A (en) 1997-08-05

Family

ID=12369035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280496A Pending JPH09202950A (en) 1996-01-26 1996-01-26 Austenitic stainless steel sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH09202950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094564A (en) * 2017-11-17 2019-06-20 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Sintering method of austenite stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094564A (en) * 2017-11-17 2019-06-20 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Sintering method of austenite stainless steel

Similar Documents

Publication Publication Date Title
CA1138170A (en) Method for the production of precision shapes
JP4080133B2 (en) High density nonmagnetic alloy and method for producing the same
US4104782A (en) Method for consolidating precision shapes
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
ES2808207T3 (en) Iron-based powders for powder injection molding
CN108546889B (en) Stainless steel material and preparation method thereof
CN108374132B (en) Powder for manufacturing Nb-containing corrosion-resistant stainless steel by laser additive manufacturing
US4722826A (en) Production of water atomized powder metallurgy products
JPH02138435A (en) Sintered alloy steel having excellent corrosion resistance and its manufacture
CN113502428B (en) Method for preparing high-nitrogen nickel-free austenitic stainless steel and product thereof
US4431605A (en) Metallurgical process
EP0363047A1 (en) A method of producing nitrogen strengthened alloys
CN106319512A (en) Double-phase metal-based composite coating resistant to corrosion and high-temperature oxidization and preparation method thereof
Irrinki et al. Laser powder bed fusion
JPH09202950A (en) Austenitic stainless steel sintered compact and its production
CA1288620C (en) Process and composition for improved corrosion resistance
JP2001524886A (en) Titanium-based carbonitride alloy with nitrided surface area
GB1590953A (en) Making articles from metallic powder
US4306907A (en) Age hardened beryllium alloy and cermets
Uzunsoy et al. Microstructural evolution an dmechanical properties of Rapidsteel 2.0
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
bin Suleiman@ Ahmad et al. Solvent debinding of inconel 718 fabricated via metal injection molding
JPH01176066A (en) Ion-nitrided cermet tip and production thereof
JPH07100629A (en) Production of high-density material
JP3135555B2 (en) High speed tool steel sintered body