JPS61252842A - Method of controlling main machinery of ship - Google Patents

Method of controlling main machinery of ship

Info

Publication number
JPS61252842A
JPS61252842A JP60093909A JP9390985A JPS61252842A JP S61252842 A JPS61252842 A JP S61252842A JP 60093909 A JP60093909 A JP 60093909A JP 9390985 A JP9390985 A JP 9390985A JP S61252842 A JPS61252842 A JP S61252842A
Authority
JP
Japan
Prior art keywords
speed
fuel consumption
ship
main engine
consumption amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60093909A
Other languages
Japanese (ja)
Other versions
JPH0511211B2 (en
Inventor
Takeshi Taniuchi
谷内 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMASHITA SHIN NIPPON KISEN KK
Original Assignee
YAMASHITA SHIN NIPPON KISEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMASHITA SHIN NIPPON KISEN KK filed Critical YAMASHITA SHIN NIPPON KISEN KK
Priority to JP60093909A priority Critical patent/JPS61252842A/en
Publication of JPS61252842A publication Critical patent/JPS61252842A/en
Publication of JPH0511211B2 publication Critical patent/JPH0511211B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce a fuel consumption amount per one voyage, according to the method wherein a change in a ship speed and a fuel consumption amount per a unit hour are measured, and a main device is controlled so that a difference between a ratio between the change and fuel consumption amount and a desired value is decreased. CONSTITUTION:A RAM is provided with memories X(2) and Y(2), storing preceding measured mean ship speed and mean fuel consumption amount, and memories X(1) and Y(1) storing a present measured value. In a step 35, DELTAY/DELTAX before and after a fine change in speed is determined. In a step 36, it is decided whether DELTAY/DELTAX exceeds a desired dy/ds is or not, and in a step 38, DELTAN is added to Nout outputted to an output port. The number of revolutions of a main machinery is controlled so that DELTAY/DELTAX coincides with a desired value. This enables decrease of a fuel consumption amount per one voyage.

Description

【発明の詳細な説明】 この発明は、−航海あたりの燃料消費量を最小にするた
めの主機制御方法に間する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to: - a main engine control method for minimizing fuel consumption per voyage;

船は航海中、様々の海象に遭遇するが、−航海の平均速
力が同じでも、各海象での速力をいかに選ぶかによって
、−航海の燃料消費量に差が出てくる。従来は、海象が
変化しても主機の出力が略一定になるよう、主機ガバナ
の設定回転数を人間が調節していた。しかし、主機の出
力をたとえ一定に保持できたとしても、そのような制御
が一航海の総燃料消費量を最小にするものとは限らない
A ship encounters a variety of sea conditions during its voyage, and even if the average speed of the voyage is the same, the amount of fuel consumed during the voyage will vary depending on how the speed is chosen in each sea condition. In the past, humans adjusted the set rotation speed of the main engine governor so that the main engine's output remained approximately constant even when sea conditions changed. However, even if the output of the main engine can be held constant, such control does not necessarily minimize the total fuel consumption for one voyage.

この発明は、従来のものとは全く異なった、主機の最適
制御法を提案するものである。
This invention proposes an optimal control method for the main engine that is completely different from conventional methods.

この発明による船舶の主機制御方法は、航海中、ある時
間ごとに、主機の回転数を微小変化させ、その回転数の
変化に伴う船速の変化Δxと単位時間あたりの主機燃料
消費量の変化Δyを計測し、両者の割合Δy/Δxを目
標値と比較し、Δy/Δxが目標値より小さい場合に主
機の回転を上げ、目標値より大きい場合に回転を下げて
、Δy/Δxと目標値の差がなくなるよう、主機を制御
することを特徴とするこの発明の原理を第1図で説明す
る。
The main engine control method of a ship according to the present invention involves minutely changing the rotational speed of the main engine at certain intervals during a voyage, and changing the ship speed Δx and the main engine fuel consumption per unit time due to the change in the rotational speed. Measure Δy, compare the ratio Δy/Δx of both with the target value, increase the rotation of the main engine if Δy/Δx is smaller than the target value, lower the rotation if it is larger than the target value, and adjust the ratio between Δy/Δx and the target value. The principle of this invention, which is characterized by controlling the main engine so as to eliminate the difference in values, will be explained with reference to FIG.

今、海象■、■での速力−燃料消費量(単位時間あたり
)曲線を第1図の曲線■、■とじ、それぞれ フ=f、
<−L> 、 Lj=体χ)で表わされるとする。経済
速力の繕合せを曲線!、■上の点αl N aZとする
と、 (会)、=、、 = (農)7.工2 でなければならない。なぜなら速力の組合せ点で、もし
、 (吾)X”X+シ(皇)−2−7゜ ならば、海象(、■でそれぞれ微小時間Δtだけ、微小
速力Δxを、海象■て減速し、海象■で増速した場合に
、同じ平均速力で、 たけ燃料消費量を減らす事ができ、この組合せは燃料消
費量を最小とする組合せではない。
Now, the speed-fuel consumption (per unit time) curves under sea conditions ■ and ■ are combined with the curves ■ and ■ in Figure 1, respectively, and f = f.
<-L>, Lj=field χ). Curve the adjustment of economic speed! ,■If the point αlN aZ on Must be 2. This is because, at the speed combination point, if (I) If the speed is increased at ■, the fuel consumption can be reduced by an amount at the same average speed, and this combination is not the one that minimizes the fuel consumption.

また、一般に単位時間あたり燃料消費量は速力の三次元
で近似する事ができ、速力が大きくなる程dy/dxが
大きくなり、上記の増速により、とする事ができる。
In addition, in general, the amount of fuel consumed per unit time can be approximated by three dimensions of speed, and as the speed increases, dy/dx increases, which can be achieved by increasing the speed described above.

ただし、上記の方法で、海象■で減速し、海象■で増速
した場合に、平均速力は同じでも、海象r、nでの航走
距離がΔx・Δtだけ、海象■の距離が減少し、海象■
での距離が増加する事になる。−航海の総燃料消費量を
比較した場合に、そのΔx・Δtの積みかざねの分だけ
(dy/dx)を一定した速力と真に燃料消費を最小と
する速力(経済速力)には差があり、その時の総燃料消
費量の差は後に実例をあげている。
However, using the above method, if you decelerate due to sea condition ■ and speed up due to sea condition ■, even though the average speed is the same, the cruising distance under sea conditions r and n will decrease by Δx・Δt, and the distance under sea condition ■ will decrease by Δx・Δt. , marine phenomena■
The distance will increase. - When comparing the total fuel consumption of a voyage, there is a difference between a constant speed (dy/dx) and a speed that truly minimizes fuel consumption (economic speed) by the amount of loading of Δx and Δt. There is an example of the difference in total fuel consumption at that time.

具体的に船の運航点の△y/△Xを求め、それを目標d
y/ dxに等しくする事は次の様に行える。船が港を
出て定常航海の状態に入ったら、定量的、例えは15分
毎に主機回転数Nに微小変化ΔN(例えばO15〜1.
Orpm)を与える。
Specifically, find △y/△X of the ship's operating point and set it as the target d.
Setting it equal to y/dx can be done as follows. When the ship leaves the port and enters the state of steady voyage, quantitatively, for example, minute changes ΔN (for example, O15 to 1.
Orpm).

この場合単位時間あたり燃料消費量は瞬時に変化するが
、船速はある助走期間を経て変化する。
In this case, fuel consumption per unit time changes instantaneously, but ship speed changes after a certain run-up period.

助走期間(例えば10分間)経過後に単位時間あたり燃
料消費量と速力を計測し、微小変化を与える前後の単位
時間あたり燃料消費量差(Δy)と速力差(Δx)によ
りΔy/Δxを求める。
After the run-up period (for example, 10 minutes) has elapsed, the fuel consumption and speed per unit time are measured, and Δy/Δx is determined from the fuel consumption difference (Δy) and speed difference (Δx) per unit time before and after the slight change is made.

もしΔy/Δx〉目標dy/dxならΔNだけ増速し、
(N+ΔN)を新しい目標回転数とすれば・よい。
If Δy/Δx〉target dy/dx, increase speed by ΔN,
It is sufficient if (N+ΔN) is the new target rotation speed.

単位時間あたり燃料消費量および速力の瞬時値はかなり
の範囲で上下するので、助走期間以後、充分な回数だけ
計測し、それらの計測値を平均化する事が必要である。
Since the instantaneous values of fuel consumption and speed per unit time fluctuate over a considerable range, it is necessary to measure them a sufficient number of times after the run-up period and average these measured values.

単位時間あたりの燃料消費量は次の方法により計測可能
である。
Fuel consumption per unit time can be measured by the following method.

■軸馬力計と主機燃費曲線による方法 ■主機回転数と燃料ボンブラックの読みによる方法 ■主機燃料流量計による方法 また、船速は船速計により計測可能である。■Method using shaft horsepower meter and main engine fuel consumption curve ■Method based on reading of main engine rotation speed and fuel bomb rack ■Method using main engine fuel flow meter In addition, ship speed can be measured using a ship speedometer.

次に、このようにdy/dx一定で運航した場合に、経
済速力(総燃料消費量を真に最小とする速力)で運航し
た場合、または出カ一定で、運航した場合と比べて、−
航海の燃料消費量にどれだけの差が生ずるかを計算して
みる。−航海の間に遭遇する海象としてI〜■の5つを
想定し、それぞれの海象における速力−燃料消費量曲線
および航続距離が第2図に示されている。なお、平水で
ある海象■を除き、海象■〜Vの各曲線は零点を通って
いない。これは、船速が零でも、風浪による船の抵抗が
零にはならないためである。
Next, when operating at constant dy/dx in this way, compared to operating at economical speed (speed that truly minimizes total fuel consumption) or operating at constant output, -
Let's calculate how much difference there will be in fuel consumption during the voyage. - Five sea conditions I to (2) are assumed to be encountered during the voyage, and the speed-fuel consumption curve and cruising distance under each sea condition are shown in Figure 2. Note that, except for the sea condition (2), which is flat water, the curves of the sea conditions (2) to (V) do not pass through the zero point. This is because even if the ship's speed is zero, the resistance to the ship due to wind and waves does not become zero.

平均速力は16ノツトと12ノツトの2つの場合を想定
し、それぞれの場合の計算結果が表1と表2に示されて
いる。これらの表からdy/dx一定の運航が従来の出
カ一定の運航より数パーセントだけ然費が少なく、また
、経済速力によって運航した場合とほとんど差がないこ
とがわかる。なお、総燃料消費量は、各海象での出力と
航海時間の積を合計したものである。
The average speed is assumed to be 16 knots and 12 knots, and the calculation results for each case are shown in Tables 1 and 2. From these tables, it can be seen that the natural cost of operation with constant dy/dx is several percent lower than the conventional operation with constant output, and there is almost no difference from the case of operation based on economic speed. Note that the total fuel consumption is the sum of the product of output and voyage time in each sea state.

実船上では、主機出力をあまり大幅に変えることができ
ないことが考えられるので、出力の最大値と最小値の比
を2対lに制限した場合を表11表2に付加しである。
Since it is conceivable that the main engine output cannot be changed significantly on an actual ship, the case where the ratio between the maximum value and the minimum value of the output is limited to 2:1 is added to Table 11 and Table 2.

このような制限を加えると、dy/ dx一定の運航と
経済速力による運航の間の然費の差がより小さくなるこ
とが分かる。
It can be seen that when such a restriction is added, the difference in natural costs between constant dy/dx operation and economic speed operation becomes smaller.

次に、この発明を実施に用いる装置の例を図面に基づい
て説明する。
Next, an example of an apparatus for implementing the present invention will be explained based on the drawings.

第3図は、従来型主機操縦装置の概略図であり、操縦ハ
ンドルlからの回転数設定信号が電圧信号あるいは空気
圧信号にてリレーパネル2に入り、リレーパネル2から
主機ガバナ3へ目標回転数信号として出力される。
FIG. 3 is a schematic diagram of a conventional main engine control system, in which the rotation speed setting signal from the control handle l enters the relay panel 2 as a voltage signal or air pressure signal, and from the relay panel 2 to the main engine governor 3, the rotation speed setting signal is transmitted to the main engine governor 3. Output as a signal.

本装置は、この従来の主機操縦装置の操縦ハンドルlと
リレーパネル2との間に設け、以下の説明では操縦ハン
ドル1よりの回転数設定信号が電圧信号の場合について
述べる。なお、同回転数設定信号が空気圧信号の場合に
は、本装置の回転数設定信号の入力側に空気圧/電圧変
換器を、本装置のリレーパネル2への出力側に電圧/空
気圧変換器を設ける。
This device is installed between the control handle 1 of this conventional main engine control device and the relay panel 2, and in the following explanation, the case where the rotation speed setting signal from the control handle 1 is a voltage signal will be described. If the same rotation speed setting signal is a pneumatic pressure signal, connect a pneumatic pressure/voltage converter to the input side of the rotation speed setting signal of this device, and a voltage/pneumatic pressure converter to the output side of this device to relay panel 2. establish.

第4図は本装置の電子制御回路である。操縦ハンドルよ
りの回転数設定信号aのほか船速計よりの船速信号b、
目標dy/dx設定信号c1主機FO流量計よりの50
ノ毎のパルス信号d、dy/dx制御の0N10FF信
号eが信号a、bはA/D変換器4.5を経て、信号C
−eは直接にインプットボート6へ入力される。インプ
ットボート6はマルチプレクサより構成されており、C
PU8よりの信号線13を介して与えられる選択信号を
受は取って、上記信号a ”−eのうち、CPU8へ出
力する信号を選択する。
FIG. 4 shows the electronic control circuit of this device. In addition to the rotation speed setting signal a from the control handle, the ship speed signal b from the ship speedometer,
Target dy/dx setting signal c1 50 from main engine FO flowmeter
The pulse signal d for each pulse and the 0N10FF signal e under dy/dx control are passed through the A/D converter 4.5, and the signals a and b are converted to the signal C.
-e is directly input to the input port 6. The input boat 6 is composed of a multiplexer, and C
It receives a selection signal applied via the signal line 13 from the PU 8, and selects the signal to be output to the CPU 8 from among the signals a''-e.

10はマイクロコンピュータで、基本的にはCPU8、
RAM?、ROM9より構成されている。ROM9はC
PU8を制御するプログラムが書込まれており、CPt
J8はこのプログラムに従ってインプットボート6より
必要とされる外部データを取込んだり、あるいはRAM
7どの間でデータの授受を行なったりしながら演算処理
し、処理したデータをアウトプットボート■へ出力する
。アウトプットボートはCPU8からのデータ信号をD
/A変換器12へ中継し、D/A変換器12でD/A変
換後、本装置の回転数設定信号fとしてリレーパネル2
へ出力される。
10 is a microcomputer, basically CPU8,
RAM? , ROM9. ROM9 is C
A program to control PU8 is written, and CPt
According to this program, J8 imports necessary external data from input board 6 or stores it in RAM.
7. Performs arithmetic processing while exchanging data between the two, and outputs the processed data to the output port (■). The output port transfers the data signal from CPU8 to D.
/A converter 12, and after D/A conversion by the D/A converter 12, it is sent to the relay panel 2 as the rotation speed setting signal f of this device.
Output to.

マイクロコンピュータ10にはCPU8の時計とRAM
7を利用した次のタイマーが内蔵されており、それぞれ
のタイマーはリセット後の経過時間をCPU8に授受す
る。
The microcomputer 10 has a CPU 8 clock and RAM.
7 is built in, and each timer sends and receives the elapsed time after reset to the CPU 8.

タイマー■ 主機FO流量計よりのパルス信号間隔の計
時用 タイマー■ 微小速度変化を与える間隔の計時用 タイマー■ 船速計測間隔の計時用 CPU8に書込まれているプログラムをフローチャート
で示すと、第5図〜第8図のようになる。第5図はこの
プログラムのメインフローを与える間隔の計時を開始す
る。ステップ2で操縦ハンドル1よりの回転数設定信号
aをA/D変換した値NinをRAM?内のメモリへ保
管する。ステップ3でインプットボート6に主機FO流
量計パルスが入っているかどうかを確認し、yesなら
FO流員計パルス間隔計時のためのサブルーチン■へ分
岐する。ステップ4でタイマー■を確認し、微小速度変
化を与える時機がどうかを判断し、y6sなら現在の船
速計測を開始するためタイマー■をリセットし、船速計
測回数カウンタCをリセットする。ステップ5でタイマ
ー■を確認し、船速計測の時機かどうかを判断し、ye
sなら船速計測と船速計測後の処理のためサブルーチン
■へ分岐する。
Timer ■ Timer for measuring the pulse signal interval from the main engine FO flow meter ■ Timer for measuring the interval that gives minute speed changes ■ For measuring the ship speed measurement interval The program written in the CPU 8 is shown in the flowchart as No. 5. The result will be as shown in Fig. 8. FIG. 5 begins timing the intervals that give the main flow of the program. In step 2, the value Nin obtained by A/D converting the rotation speed setting signal a from the control handle 1 is stored in the RAM? Store it in the internal memory. In step 3, it is checked whether the main engine FO flowmeter pulse is input to the input boat 6, and if yes, the process branches to subroutine (2) for timing the FO flowmeter pulse interval. In step 4, the timer ■ is checked to determine whether it is time to make a slight speed change, and if it is y6s, the timer ■ is reset to start measuring the current ship speed, and the ship speed measurement number counter C is reset. In step 5, check the timer ■, determine whether it is time to measure the ship's speed, and then
If s, the process branches to subroutine (2) for ship speed measurement and post-measurement processing.

ステップ6では現在dy/dx制御0N10FFの確認
を行い、OFFならステップ7でアウトプットボートへ
の値NoutをNinに書き換え、ONならサブルーチ
ン■で演算処理されたNoutを保持する。ステップ8
ではアウトプットボートへNoutを出力しステップ2
へ戻る。
In step 6, the current dy/dx control 0N10FF is confirmed, and if it is OFF, the value Nout to the output port is rewritten to Nin in step 7, and if it is ON, the Nout calculated in subroutine (2) is held. Step 8
Now output Nout to the output boat and step 2
Return to

第6図はサブルーチンIの内容である。ステップIfで
RAM?内のタイマー■の経過時間を読み取る。RAM
?内にはFO流量計パルス間隔Tを保管するlOケのメ
モリT (1)からT (to)が設けてあり、ステッ
プ12でT (1)に今回読み取ったTを入れ、T(2
)にはT (1)を、T(3)にT(2)を、T (N
)にはT (N−1)を保管する。
FIG. 6 shows the contents of subroutine I. RAM in step If? Read the elapsed time on the timer ■. RAM
? There are 10 memories T (1) to T (to) for storing the FO flow meter pulse interval T, and in step 12, the T read this time is entered in T (1), and T (2
) is T (1), T (3) is T (2), T (N
) stores T (N-1).

ステップ13では次回のFO流量計パルス間隔の計時に
そなえタイマーIをリセットし、メインフローに戻る。
In step 13, the timer I is reset in preparation for timing the next FO flow meter pulse interval, and the process returns to the main flow.

第7図はサブルーチン■の内容である。RAM7には船
速計測回数をカウントするカウンタCと規定回数Mの船
速計測値を保管するMヶのメモリv(1)からV (M
)が設けである。ステップ21でインプットボート6よ
り船速信号5のA/D変換値■を読み取る。ステップ2
2でカウンタCに1を加える。ステップ23で読み取っ
た船速VをメモリV (C)に保管する。ステップ24
で規定回数だけ船速計測を行ったかどうかを判断し、y
esならサブルーチン■へ分岐する。ステップ25で次
の船速計測にそなえタイマー■をリセットし、メインフ
ローに戻る。
FIG. 7 shows the contents of subroutine (2). The RAM 7 includes a counter C that counts the number of ship speed measurements and M memories v(1) to V(M
) is provided. In step 21, the A/D conversion value ■ of the ship speed signal 5 is read from the input boat 6. Step 2
Add 1 to counter C at 2. The ship speed V read in step 23 is stored in the memory V (C). Step 24
Determine whether the ship speed has been measured the specified number of times with y
If es, branch to subroutine ■. In step 25, the timer ■ is reset in preparation for the next ship speed measurement, and the process returns to the main flow.

第8図はサブルーチン■の内容である。RAM7には前
回計測の平均船速と平均燃料消費量を保管するメモリX
 (2) 、Y (2)と今回計測値を保管するX(1
)、Y(1)が設けである。ステップ31では規定回数
Mの船速値から平均船速Vmeanを求める。ステップ
32では10回のFO流量計パルス間隔の平均値T m
eanを求める。ステップ33では比例定数にとT m
eanより単位時間あたりの燃料消111FOcを求め
る。ステップ34ではX (2) 、Y (2) ニ前
回計測の、X(1)、Y(1)に今回計測の船速と単位
時間あたりの燃料消費量を保管する。ステップ35で微
小速度変化前後のΔy/Δxを求める。ステップ36て
そのΔy/Δxが目標dy/ dxより大きいかを判断
し、yesならステップ37て規定の微小回転数変化量
ΔNの符号を負とし、Noならそのままステップ38で
アウトプットボートへ出力されるNoutにΔNを加え
る。ステップ39で次の微小速度変化を与える時機の決
定のため、タイマー■をリセットしてサブルーチン■へ
戻る。
FIG. 8 shows the contents of subroutine (2). RAM7 is memory X that stores the average ship speed and average fuel consumption measured last time.
(2) , Y (2) and X (1
), Y(1) is provided. In step 31, the average ship speed Vmean is determined from the ship speed values M specified times. In step 32, the average value T m of 10 FO flowmeter pulse intervals is
Find ean. In step 33, the proportionality constant T m
Fuel consumption per unit time 111FOc is calculated from ean. In step 34, the currently measured ship speed and fuel consumption per unit time are stored in X(1) and Y(1) of the previous measurements. In step 35, Δy/Δx before and after the minute speed change is determined. In step 36, it is determined whether the Δy/Δx is larger than the target dy/dx, and if yes, the sign of the specified minute rotational speed change ΔN is set to negative in step 37, and if no, it is directly output to the output boat in step 38. Add ΔN to Nout. In step 39, the timer (2) is reset to determine the timing for applying the next minute speed change, and the process returns to the subroutine (2).

以上説明したように、この発明は、航海中、ある時間ご
とに主機の回転数を微小変化させて、回転数の変化に伴
う船速の変化Δxと単位時間あたりの主機燃料消費量の
変化Δyを計・測し、両者の割合Δy/Δxが目的値と
一致するように主機回転数を制御するようにしたもので
あり、従来の回転数一定または出カ一定の制御方法に比
べて、−航海あたりの燃料消費量を少なくすることがで
きるという効果がある。
As explained above, this invention slightly changes the rotational speed of the main engine at certain intervals during a voyage, and changes Δx in ship speed and changes Δy in main engine fuel consumption per unit time due to changes in rotational speed. The main engine rotation speed is controlled so that the ratio Δy/Δx of the two matches the target value. - It has the effect of reducing fuel consumption per voyage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するための速力−燃料消
費量曲線、第2図はいくつかの主機制御方法の優劣を比
較するために想定した速力−燃料消費量曲線のモデル、
第3図は従来の主機操縦装置のブロック図、第4図は本
発明の実施に用いる装置のブロック図、第5図は第4図
のCPUを働かすためのプログラムのフローチャート、
第6、第7図は第5図のサブルーチン1、IIの内容を
それぞれ示すフローチャート、第8図は第7図のサブル
ーチン■の内容を示すフローチャートである。
FIG. 1 shows a speed-fuel consumption curve for explaining the invention in detail, and FIG. 2 shows a model of the speed-fuel consumption curve assumed to compare the superiority of several main engine control methods.
FIG. 3 is a block diagram of a conventional main engine control system, FIG. 4 is a block diagram of a device used to implement the present invention, and FIG. 5 is a flowchart of a program for operating the CPU shown in FIG.
6 and 7 are flowcharts showing the contents of subroutines 1 and II of FIG. 5, respectively, and FIG. 8 is a flowchart showing the contents of subroutine (2) of FIG. 7.

Claims (1)

【特許請求の範囲】[Claims] 1、航海中、ある時間ごとに、主機の回転数を微小変化
させ、その回転数の変化に伴う船速の変化Δxと単位時
間あたりの主機燃料消費量の変化Δyを計測し、両者の
割合Δy/Δxを目標値と比較し、Δy/Δxが目標値
より小さい場合に主機の回転を上げ、目標値より大きい
場合に回転を下げて、Δy/Δxと目標値の差がなくな
るよう、主機を制御することを特徴とする船舶の主機制
御方法。
1. During the voyage, the rotational speed of the main engine is slightly changed at certain intervals, and the change in ship speed due to the change in rotational speed, Δx, and the change in main engine fuel consumption per unit time, Δy, are measured, and the ratio of the two is calculated. Δy/Δx is compared with the target value, and if Δy/Δx is smaller than the target value, the rotation of the main engine is increased, and if it is larger than the target value, the rotation is decreased so that the difference between Δy/Δx and the target value disappears. A method for controlling a main engine of a ship, the method comprising: controlling the main engine of a ship;
JP60093909A 1985-05-02 1985-05-02 Method of controlling main machinery of ship Granted JPS61252842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093909A JPS61252842A (en) 1985-05-02 1985-05-02 Method of controlling main machinery of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093909A JPS61252842A (en) 1985-05-02 1985-05-02 Method of controlling main machinery of ship

Publications (2)

Publication Number Publication Date
JPS61252842A true JPS61252842A (en) 1986-11-10
JPH0511211B2 JPH0511211B2 (en) 1993-02-12

Family

ID=14095602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093909A Granted JPS61252842A (en) 1985-05-02 1985-05-02 Method of controlling main machinery of ship

Country Status (1)

Country Link
JP (1) JPS61252842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172073A (en) * 2018-03-28 2019-10-10 住友重機械マリンエンジニアリング株式会社 Vessel information distribution device, vessel information distribution program, storage medium, vessel information distribution method, and vessel information distribution system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721813A (en) * 1993-06-30 1995-01-24 Masuo:Kk Automatic gas lamp flashing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172073A (en) * 2018-03-28 2019-10-10 住友重機械マリンエンジニアリング株式会社 Vessel information distribution device, vessel information distribution program, storage medium, vessel information distribution method, and vessel information distribution system

Also Published As

Publication number Publication date
JPH0511211B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
KR900000241A (en) Delay compensation method of electronic control device and measurement data of automobile
ES473830A1 (en) Engine control system utilizing torque converter slip
US3814910A (en) Sailing computer
JPS61252842A (en) Method of controlling main machinery of ship
US4436482A (en) Constant ship speed control method
JPS5644433A (en) Method of adjusting idling revolution speed
JPS588269A (en) Control method of ignition timing in internal-combustion engine
JPS5951661B2 (en) fuel injected engine
US20180148034A1 (en) Device and method for controlling a propulsion effect of a ship
EP0136828A2 (en) Powered boat performance analyser
JPS5535166A (en) Controlling idling speed of automobile engine
JPS55102002A (en) Operation instruction control unit for a plurality of units
JPH09270099A (en) Device for supporting evaded sailing ship
GB2171208A (en) Apparatus for analysing sailboat performance
JPS624674Y2 (en)
JPS6332353Y2 (en)
JPS624675Y2 (en)
SU919937A2 (en) Apparatus for automatic control of propulsion plant of ship with variable-pitch propeller
JPH04109060A (en) Vehicular shift position specifying method
SU488140A1 (en) The method of measuring the rms value of the pulsations of the velocity of the liquid phase of a gas-liquid flow
JPS624676Y2 (en)
JPS60188826A (en) Measuring method of torque of engine
JPS6134360A (en) Governor for water turbine or pump water wheel
JPS6226503A (en) Adaptive control device
KR960012144B1 (en) Method for calibrating fuel film