JPS61252675A - Blue-light emitting element and manufacture thereof - Google Patents

Blue-light emitting element and manufacture thereof

Info

Publication number
JPS61252675A
JPS61252675A JP60094109A JP9410985A JPS61252675A JP S61252675 A JPS61252675 A JP S61252675A JP 60094109 A JP60094109 A JP 60094109A JP 9410985 A JP9410985 A JP 9410985A JP S61252675 A JPS61252675 A JP S61252675A
Authority
JP
Japan
Prior art keywords
light emitting
insulating layer
zns
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60094109A
Other languages
Japanese (ja)
Other versions
JPH06101590B2 (en
Inventor
Naoyuki Ito
直行 伊藤
Takashi Shimobayashi
隆 下林
Teruyuki Mizumoto
照之 水本
Norihisa Okamoto
岡本 則久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9410985A priority Critical patent/JPH06101590B2/en
Publication of JPS61252675A publication Critical patent/JPS61252675A/en
Publication of JPH06101590B2 publication Critical patent/JPH06101590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a blue-light emitting element characterized by light emitting efficiency, high reliability and less dispersion in characteristics, by using a single crystal thin film of zinc sulfide, which is prepared by an MOCVD method using an added body, as an insulating layer. CONSTITUTION:In an MIS type light emitting element using low resistance ZnS, into which a III-group element is doped, a single crystal ZnS thin film, which is prepared by an MOCVD method using an added body, is used as an insulating layer 4. When the single crystal ZnS thin film, which is the insulating film 4, is prepared by the MOCVD method in the preparing method of the MIS type light emitting element, the added body, which is obtained by the equimolar mixing of dialkyl zinc and dialkyl sulfur or dialkyl selenium is used as a Zn source, and hydrogen sulfide is used as a sulfur source. After a light emitting layer 3 is formed, the insulating layer 4 is continuously formed by stopping only the supply of dopant. Thus a ZnS insulating layer characterized by excellent insulating property and uniform thickness is formed and the light emitting efficiency, reliability, uniform characteristics and the like of the light emitting element can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示用あるいはセンサーなどの光源に用いられ
る青色発光素子及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blue light emitting element used for display purposes or as a light source for sensors, etc., and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、■族元素をドーピングした低抵抗ZnSを用
い九M I S (Metal In5ulutor 
−3emicorductor )型発光素子において
、付加体を用いたMOCVD法により形成したZnS単
結晶薄膜を絶縁層として用いることを特徴とし、また該
MIS型発光素子の製造法において、絶縁層であるZn
S単結晶薄膜をMOCVD法にょシ形成する際、znソ
ースとしてジアルキル亜鉛とジアルキル硫黄又はジアル
キルセレンの等モル混合によって得られる付加体を、又
硫黄ソースとして硫化水素を用い、しかも発光層の形成
後、ドーパントの供給のみを中断することKより連続し
て絶縁層の形成を行なうことを特徴とする。
The present invention utilizes low-resistance ZnS doped with group Ⅰ elements.
-3emicorductor) type light emitting device, which is characterized in that a ZnS single crystal thin film formed by the MOCVD method using an adduct is used as an insulating layer.
When forming an S single crystal thin film using the MOCVD method, an adduct obtained by equimolar mixture of dialkyl zinc and dialkyl sulfur or dialkyl selenium is used as the Zn source, and hydrogen sulfide is used as the sulfur source, and after the formation of the light emitting layer. The method is characterized in that only the supply of the dopant is interrupted and the insulating layer is formed continuously.

これらによシ絶縁性、厚さ均一性の優れたZnS絶縁層
を形成した結果、発光素子の発光効率や信頼性、特性の
均一性などの向上がなされた。
As a result of forming a ZnS insulating layer with excellent insulation properties and uniform thickness, the luminous efficiency, reliability, and uniformity of characteristics of the light emitting device were improved.

〔従来技術〕[Prior art]

MOCVD法は反応性の極めて高い有機金属化合物を原
料に用いるCVD技術であるため、低温における結晶成
長が可能であシ、シかも量産向きの薄膜形成法である。
Since the MOCVD method is a CVD technique that uses an extremely highly reactive organometallic compound as a raw material, it is a thin film forming method that is suitable for mass production and is capable of crystal growth at low temperatures.

結晶成長温度が低いことにより、オートドーピングによ
る成長膜への不純物の混入が抑制でき、さらに結晶成長
プロセスが熱平衡過程からはずれた状態で進行するため
に、格子欠陥の発生を低減することができる。この様な
長所を有するMOCVD法を、不純物の混入や結晶成長
過程で発生する格子欠陥の存在によシ、良質な単結晶薄
膜が得られていなかったII−VI族化金物半導体に応
用する試みがなされている。
By keeping the crystal growth temperature low, the incorporation of impurities into the grown film due to autodoping can be suppressed, and since the crystal growth process proceeds in a state deviated from the thermal equilibrium process, the occurrence of lattice defects can be reduced. This is an attempt to apply the MOCVD method, which has these advantages, to II-VI group metal semiconductors, where high-quality single crystal thin films have not been obtained due to the presence of impurity contamination and lattice defects generated during the crystal growth process. is being done.

例えば Japan J、A、P、 22 (1983
) L 583Japan J、A、P、 23 (1
983) L 388さらにMOCVD法で得られたZ
nS単結晶薄膜を用いてMIS型青色発光素子作製が例
えばExtended  Abstracts  of
  the  15 thConference  o
f  5olid  5tate  Devies a
ndMateiala  Tokyo、 1985. 
PP、 549−452に記載されるが如く試みられて
いる。しかし、上記の引用例においては、発光層である
AIをドーピングしたZn5(以下ZnS:AJと略記
する)の比抵抗が10g@αと大きいためにMOCVD
法で形成したZnS:AJを発光層とする発光素子は実
現せず、アンドープZnSをAlを含むバルクのZnS
結晶上に積層しMOCVD法にょるZnS単結晶薄膜を
絶縁層としたMIS型発光発光素子ただけである。これ
は、上記引用例で用いられているMOCVD法が、ジメ
チル亜鉛(DMZ )と硫化水素(HzS)を原料とし
ているため例えばJ、 Crystal Growth
 、 59 (1982) 155.Th1nSoli
d  Films 55 (1978) 375−58
6 JapanJ、A、P 22 (1983) L 
583  などに指摘されている様に、n−vt族MO
CVD法に特徴的な原料が成長基板に達する前におこす
気相反応、いわゆる” premature  rea
ction ”  の影響を受けているためと考えられ
る。すなわち、原料ガスが基板に達する以前に反応し、
生じたZnS微粒子が成長膜中にとシ込まれるために、
得られる膜の結晶性が低下してしまうのである。発光層
の結晶性が’ premature  reactio
n ”  の影響を受けて低下したために、前記引用例
ではMOCVD法で形成・したZnS:AIを発光層と
する発光素子の実現に至らなかったと考えられる。
For example, Japan J, A, P, 22 (1983
) L 583Japan J, A, P, 23 (1
983) L 388 and Z obtained by MOCVD method
For example, Extended Abstracts of MIS type blue light emitting device fabrication using nS single crystal thin film
the 15thConference o
f 5olid 5tate Devices a
ndMateiala Tokyo, 1985.
PP, 549-452. However, in the cited example above, MOCVD is
A light-emitting device with ZnS:AJ formed by the method as a light-emitting layer has not been realized, and undoped ZnS is replaced with bulk ZnS containing Al.
It is only an MIS type light-emitting device in which an insulating layer is a ZnS single-crystal thin film laminated on a crystal using the MOCVD method. This is because the MOCVD method used in the above cited example uses dimethyl zinc (DMZ) and hydrogen sulfide (HzS) as raw materials.
, 59 (1982) 155. Th1nSoli
d Films 55 (1978) 375-58
6 JapanJ, A, P 22 (1983) L
583, etc., the n-vt group MO
A gas phase reaction that occurs before the raw material reaches the growth substrate, which is characteristic of the CVD method, is the so-called "premature rea."
This is thought to be due to the influence of cation. In other words, the raw material gas reacts before reaching the substrate,
Because the generated ZnS fine particles are injected into the grown film,
This results in a decrease in the crystallinity of the resulting film. The crystallinity of the light emitting layer is 'premature reactio'.
It is considered that because of the decrease due to the influence of n'', the cited example did not lead to the realization of a light-emitting element having a light-emitting layer made of ZnS:AI formed by MOCVD.

最近、亜鉛ソースとしてジアルキル亜鉛とジアルキル硫
黄又はジアルキルセレンの等モル混合ニよって得られる
付加体を用いたMOCVD法にょシas−grounで
数g・αの比抵抗を有する低抵抗ZnS:AI単結晶膜
が得られた。さらにこの低抵抗ZnS:AA!の上にS
tow  等の絶縁層、及び電極層を積層したMIS型
構造によって、順方向バイアス時に青色発光が確認され
た。
Recently, a low-resistance ZnS:AI single crystal with a resistivity of several g.alpha. A membrane was obtained. Furthermore, this low resistance ZnS:AA! S on top of
Blue light emission was confirmed during forward bias due to the MIS type structure in which an insulating layer such as tow and an electrode layer were laminated.

亜鉛ソースをジアルキル亜鉛から前述の付加体にカエル
コ(!: K ヨッテ’ premature rea
ction ’が抑制でき、発光層の結晶性が向上した
ためにMOCVD法で作製したZnS:AJを用いた発
光素子が実現したと考えられる。
Zinc source from dialkylzinc to the aforementioned adduct (!: K Yotte' premature rea
It is thought that a light emitting device using ZnS:AJ produced by MOCVD method was realized because cation' could be suppressed and the crystallinity of the light emitting layer was improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来技術によって作製される青色発光素子は発光
層であるZnS:AIの成長が終ってから、試料を取り
出し、別の装置で絶縁層の形成を行なうために、以下の
様な問題点をもっている。
The blue light-emitting device manufactured by the above-mentioned conventional technique has the following problems because the sample is taken out after the growth of the light-emitting layer ZnS:AI is completed and the insulating layer is formed in a separate device. There is.

1、 2nS:A1表面が非常に活性なため、絶縁層を
形成する以前に表面状態が変化しゃすい。従って、zn
S二Alと積層する絶縁層との界面状態の再現性が悪く
、素子特性のバラツキが大きい。
1, 2nS: Since the A1 surface is very active, the surface state is likely to change before the insulating layer is formed. Therefore, zn
The reproducibility of the interface state between S2Al and the laminated insulating layer is poor, and the device characteristics vary widely.

2 蒸着やスパッタで絶縁層を形成する際にピンホール
等が生じやすく、素子破壊要因となる。
2. When forming an insulating layer by vapor deposition or sputtering, pinholes and the like are likely to occur, which can cause device destruction.

そこで本発明は上述の様な問題点を解決するもので、発
光効率や信頼性が高くしかも特性のバラツキの少ない青
色発光素子の構成及び製造法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a structure and manufacturing method for a blue light-emitting element that has high luminous efficiency and reliability and has less variation in characteristics.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明の青色発光素子は付加体を用いたMOCVD法に
より形成したZnS単結晶薄膜を絶縁層として用いるこ
とを特徴とする。また該MIS型発光発光素子造法にお
いて、絶縁層であるZnS単結晶薄膜をMOCVD法に
より形成する際、Znノースとしてジアルキル亜鉛とジ
アルキル硫黄又はジアルキルセレンの等モル混合によっ
て得られる付加体を、又硫黄ソースとして硫化水素を用
い、しかも発光層の形成後、ドーパントの供給のみを中
断することにより連続して絶縁層の形成を行なうことを
特徴とする。
The blue light emitting device of the present invention is characterized in that a ZnS single crystal thin film formed by MOCVD using an adduct is used as an insulating layer. In addition, in the MIS type light emitting device manufacturing method, when forming a ZnS single crystal thin film as an insulating layer by MOCVD, an adduct obtained by equimolar mixing of dialkyl zinc and dialkyl sulfur or dialkyl selenium is used as Zn north. The method is characterized in that hydrogen sulfide is used as the sulfur source, and after the formation of the light-emitting layer, the insulating layer is continuously formed by interrupting only the supply of the dopant.

ここでいう付加体とは、ジアルキル亜鉛とジアルキル硫
黄又はジアルキルセレンを等モル混合した際、酸−塩基
反応によって得られる配位化合物のみならず、等モル混
合を行なった混合物をも含む。さらに該混合物において
、一部が配位化合物を形成し、他がジアルキル亜鉛とジ
アルキル硫黄又はジアルキルセレンに解離した状態で3
つの化学種が共存している場合も含む。
The adduct here includes not only a coordination compound obtained by an acid-base reaction when dialkyl zinc and dialkyl sulfur or dialkyl selenium are mixed in equimolar amounts, but also a mixture obtained by equimolar mixing. Furthermore, in the mixture, a part forms a coordination compound and the other part dissociates into dialkylzinc and dialkylsulfur or dialkylselenium.
This also includes cases where two chemical species coexist.

〔作用〕[Effect]

ZnSは室温において約16eVのバンドキャップを有
するため、絶縁層となる。従って高品位のZnS単結晶
薄膜はそのまま絶縁層として使用できる。前出の引用例
Exfeuded Abstracts ofthe 
15 th Conference of 5olid
 3tateDeviea and material
s 、 Tokyo 、 (1983)pps49−5
52  においても示されている様に、DMZを用いた
MOCVD法によるZnS薄膜も高抵抗を示し絶縁膜と
して使用が可能である。しかし電圧印加時の絶縁特性と
しては、ZnS膜中に転位や線欠陥などが多数存在する
場合には、そこが電流リークや絶破壊の原因となりやす
い。従って従来技術において説明した如<、DMZを亜
鉛ソースとするMOCVD法によって形成されたZnS
よシも結晶品位の高い、付加体を用いたMOCVD法に
よるZnSの方が絶縁特性に優れることは容易に推察で
きる。また、znS:AI発光層とZnS絶縁層を連続
成長することにより、両者の界面が再現性よく形成でき
ることも推察できる。
Since ZnS has a band gap of about 16 eV at room temperature, it becomes an insulating layer. Therefore, a high-quality ZnS single crystal thin film can be used as it is as an insulating layer. Exfeuded Abstracts ofthe
15th Conference of 5olid
3tateDeviea and material
s, Tokyo, (1983) pps49-5
As shown in No. 52, a ZnS thin film produced by the MOCVD method using DMZ also exhibits high resistance and can be used as an insulating film. However, in terms of insulation properties when voltage is applied, if there are many dislocations, line defects, etc. in the ZnS film, these are likely to cause current leakage or catastrophic breakdown. Therefore, as explained in the prior art, ZnS formed by the MOCVD method using DMZ as a zinc source.
It can be easily inferred that ZnS produced by the MOCVD method using an adduct, which has a high crystal quality, has better insulating properties. It can also be inferred that by continuously growing the ZnS:AI light emitting layer and the ZnS insulating layer, the interface between them can be formed with good reproducibility.

〔実施例1〕 第1図には本発明に係る素子の断面構造の一例を示す。[Example 1] FIG. 1 shows an example of the cross-sectional structure of an element according to the present invention.

■はGaAa、GaP、Stなどの低抵抗n−型単結晶
基板で一方の面にはオーム性電極■が形成されている。
2 is a low-resistance n-type single crystal substrate made of GaAa, GaP, St, etc., and an ohmic electrode 2 is formed on one surface thereof.

■と反対側の面では付加体をZnノースとするMOCV
D法により作製したZnS:AA!単結晶膜などからな
る発光層■、ZnS単結晶膜■及び電極■が順次積層さ
れており、■がS一層、■がニ一層、■がM一層に相当
するMIS構造である。
MOCV with Zn north as adduct on the opposite side to ■
ZnS prepared by method D: AA! A light emitting layer (2) made of a single crystal film, etc., a ZnS single crystal film (2), and an electrode (2) are sequentially laminated, and the MIS structure is such that (2) corresponds to one S layer, (2) corresponds to two layers, and (2) corresponds to one M layer.

素子作製は以下の工程で行なった。The device was manufactured using the following steps.

1、低抵抗n−型単結晶基板■へのMOCVD法による
発光層■の形成 2 絶縁性ZnS単結晶膜■の積層 五 オーム性電極材料の蒸着又はスパッタ4、合金化に
よるオーム性電極■の形成5、電極■の形成 以下、上述の素子作製工程に従いs Z n S : 
A 1を発光層とする素子の作製を例にあげ、本発明に
係る青色発光素子の製造法を説明する。
1. Formation of a light emitting layer (2) on a low resistance n-type single crystal substrate (2) by MOCVD method (2) Lamination of an insulating ZnS single crystal film (5) Vapor deposition or sputtering of an ohmic electrode material (4) Formation of an ohmic electrode (2) by alloying Formation 5: Formation of electrode (2) Following the above-described device fabrication process, s Z n S:
A method for manufacturing a blue light-emitting device according to the present invention will be described by taking as an example the manufacture of a device having A1 as a light-emitting layer.

第2図には本発明において用いるMOCVD装置の概略
図である。
FIG. 2 is a schematic diagram of the MOCVD apparatus used in the present invention.

石英ガラス製の横型反応管■の内部にはsicコーティ
ングを施したグラファイト製サセプター■が置かれ、さ
らにその上には基板■が置かれている。反応炉の側面か
ら高周波加熱炉、赤外線炉。
A graphite susceptor (2) coated with SIC is placed inside a horizontal reaction tube (2) made of quartz glass, and a substrate (2) is further placed on top of it. High frequency heating furnace, infrared furnace from the side of the reactor.

または抵抗加熱炉■などによシ基板加熱を行なう。Alternatively, heat the substrate using a resistance heating furnace.

基板温度はグラファイト製サセプター■の中に埋め込ん
だ熱電対OKよシモニターする。反応管は排気系O及び
廃ガス処理系0とパルプ0,0を介して接続されている
。Znノースであるジアルキル亜鉛とジアルキル硫黄又
はジアルキルセレンとの等モル混合によって得られる付
加体はバブラー■に封入されている。またAIのソース
となるトリエチルアルミニウム(TEAAりはバブラー
[相]に封入されている。キャリアーガス及び硫化水素
はそれぞれボンベ@、OK充填されている。純化装置0
によって精製されたキャリアーガス及び硫化水素ハマス
クローコントローラΦにより流量制御される。バブラー
e、eに封入された付加体及びTEAIは恒温槽@によ
シ所定温度に維持されている。バブラーの中に適当量の
キャリアーガスを導入しバブリングを行なうことによシ
所望の量の付加体及びTEAlが供給される。バブラー
0゜[相]及びボンベ0よシ供給された付加体、TEA
l。
The substrate temperature is monitored by a thermocouple embedded in the graphite susceptor. The reaction tube is connected to an exhaust system O and a waste gas treatment system 0 via pulps 0 and 0. The adduct obtained by equimolar mixing of dialkylzinc, which is Znose, and dialkyl sulfur or dialkyl selenium is enclosed in bubbler (2). In addition, triethyl aluminum (TEAA), which is the source of AI, is sealed in a bubbler [phase]. Carrier gas and hydrogen sulfide are each filled in cylinders. Purification equipment 0
The flow rate is controlled by carrier gas purified by hydrogen sulfide and a hydrogen sulfide Hamascrow controller Φ. The adducts and TEAI sealed in bubblers e and e are maintained at a predetermined temperature in a constant temperature bath. A desired amount of adduct and TEAl are supplied by introducing an appropriate amount of carrier gas into the bubbler and performing bubbling. Bubbler 0° [phase] and adduct supplied from cylinder 0, TEA
l.

硫化水素はそれぞれキャリアーガスによって希釈された
後に合流し三方パルプ・を経て反応管■へ導入される。
The hydrogen sulfide is diluted with a carrier gas, then merged and introduced into the reaction tube (1) through a three-way pulp.

三方パルプ0は原料ガスの反応管[F]への導入及び廃
ガス処理系Oへの廃棄の切シ換えを行なう。第2図には
横型反応炉を示したが縦型反応炉においても基本的構成
は同じである。但し基板の回転機構を設けるととKより
得られる膜の均一性を確保する必要がある。
The three-way pulp 0 switches between introducing the raw material gas into the reaction tube [F] and disposing it into the waste gas treatment system O. Although FIG. 2 shows a horizontal reactor, the basic configuration is the same for a vertical reactor. However, if a mechanism for rotating the substrate is provided, it is necessary to ensure the uniformity of the film obtained.

(100)面、(100)面から(110)面の方向に
5°あるいは2°のずれを有する面においてスライスし
、鏡面研磨した低抵抗n−型のヒ化ガリウム(GaAs
)、リン化ガリウム(GaP)及びシリコン(Si)t
トリクロルエチレン、アセトン、メタノールによる超音
波洗浄を施した後にエツチングをする。エツチング条件
は、以下の通シである。
Low-resistance n-type gallium arsenide (GaAs) is sliced in the (100) plane, a plane with a 5° or 2° deviation in the direction from the (100) plane to the (110) plane, and mirror-polished.
), gallium phosphide (GaP) and silicon (Si)t
Etching is performed after ultrasonic cleaning using trichlorethylene, acetone, and methanol. The etching conditions are as follows.

QaAs基板 HzSOn :HeOz :HzO=5
 : 1 : 1 (体積比)室温で2m1n GaP基板 He :HNOs=3 : 1 (体積比
)室温テ1secSi基板 HF:HeO−1: ’ 
(体積比)室温で2m1n’純水を用いてエツチングを
停止し、純水、メタノールにて洗浄した後、ダイフロン
中に保存した。
QaAs substrate HzSOn:HeOz:HzO=5
: 1 : 1 (Volume ratio) 2m1n GaP substrate at room temperature He:HNOs=3:1 (Volume ratio) 1sec Si substrate at room temperature HF:HeO-1: '
(Volume ratio) Etching was stopped using 2 ml of pure water at room temperature, washed with pure water and methanol, and then stored in a Daiflon.

基板は反応管へのセットを行なう直前にダイア0ンよシ
取シ出し、乾燥窒素ブローによりダイフロンを乾燥除去
する。基板セットの後反応炉内を10  Torr程度
まで真空引きし、系内に残留するガスを除く。キャリア
ーガスを導入して系内を常圧に戻した後1〜2J/mi
n程度のキャリアーガスを流しつつ昇温を開始する。加
熱には赤外線加熱炉を用いた。キャリアーガスとしては
、純度99、9999 %のHetたは純化装置を通過
させたH2を用いた。基板温度が所定温度に到達し、安
定した後、原料ガスの供給を開始し、低抵抗ZnS膜の
成長を行なう。但しSi基板の場合には、水素気流中9
00℃、10分間程度の熱処理による基板表面の清浄化
を行なう必要がある。用いた付加体は純度999999
%のジメチル亜鉛とジエチル硫黄を等モル混合して得ら
れる付加体である。
Immediately before setting the substrate in the reaction tube, the substrate is taken out from the diaphragm, and the diaphron is removed by dry nitrogen blowing. After setting the substrates, the inside of the reactor is evacuated to about 10 Torr to remove any gas remaining in the system. After introducing carrier gas and returning the system to normal pressure, 1 to 2 J/mi
The temperature is started to rise while flowing a carrier gas of about n. An infrared heating furnace was used for heating. As the carrier gas, Het with a purity of 99.9999% or H2 passed through a purification device was used. After the substrate temperature reaches a predetermined temperature and becomes stable, supply of raw material gas is started and a low resistance ZnS film is grown. However, in the case of a Si substrate, 9
It is necessary to clean the substrate surface by heat treatment at 00° C. for about 10 minutes. The purity of the adduct used was 999999.
It is an adduct obtained by mixing equimolar amounts of dimethylzinc and diethyl sulfur.

この付加体は30℃において280 mHf程度の蒸気
圧を有する。下記に示す成長条件により約3μmのZn
S:Al単結晶膜が形成される。
This adduct has a vapor pressure of about 280 mHf at 30°C. Approximately 3 μm of Zn was grown under the growth conditions shown below.
An S:Al single crystal film is formed.

基板温度500〜550℃、原料導入口から基板までの
距離zofi、付加体バブリング量−16℃において3
011Ll/min 、 T EAJバブリング貴−1
0℃において2 QWLt/min 、 Heで希釈し
た2%のHz Sの供給量200iaj/min 、キ
ャリアーガスを含む全ガス流量4.517m1n 、成
長時間190m1n、ZnS:Al層の形成後、次の手
順に従いZnS絶緻層を形成する。
3 at a substrate temperature of 500 to 550°C, a distance zofi from the raw material inlet to the substrate, and an adduct bubbling amount of -16°C.
011Ll/min, T EAJ Bubbling Ki-1
2 QWLt/min at 0 °C, supply rate of 2% Hz S diluted with He 200 iaj/min, total gas flow rate including carrier gas 4.517 m1n, growth time 190 m1n, After forming the ZnS:Al layer, the following steps A ZnS dense layer is formed according to the following steps.

1、 三方パルプ@の操作により原料ガスをガス処理系
Oへ廃棄することにより反応管■への供給を中断する。
1. Discard the raw material gas to the gas treatment system O by operating the three-way pulp @, thereby interrupting the supply to the reaction tube (■).

2 バブラー・のパルプ0の操作によりTEAlの供給
を中止する。
2 Stop supplying TEAl by operating the bubbler at pulp 0.

五 しばらくガスの廃棄を行ない配管内に残留するTE
AJ  を除去する。TEjl  の除去を効率よく行
なうために、すべての思料ガス及びキャリアーガスの供
給を中断し、パルプ0゜0を介して配管内の脱気を排気
系■により行なってもよい。
5. TE remaining in the piping after disposing of the gas for a while
Remove AJ. In order to efficiently remove TEjl, the supply of all source gases and carrier gases may be interrupted, and the inside of the pipe may be degassed via the pulp 0°0 using the exhaust system (2).

4、三方パルプ・の操作により、付加体と硫化水素から
なる原料ガスを反応管■に導入する。
4. Introduce the raw material gas consisting of the adduct and hydrogen sulfide into the reaction tube (2) by operating the three-way pulp.

これKよりアンドープZnSの成長が開始する。Growth of undoped ZnS starts from this K.

約7m1nの成長により100 OA’程度のアンドー
プZnS層が形成される。
By growing about 7 m1n, an undoped ZnS layer of about 100 OA' is formed.

所定の時間成長を行なった後、原料の供給をストップし
、冷却する。冷却中はHe又はHzを1〜2J/min
流しておく。基板表面の熱エツチングを防ぐためにHe
希釈2チのHz Sを50〜60d/min程度流しな
がら冷却してもよい。基板が室温にもどったら反応炉内
を排気し、系内に残留する硫化水素を除去する。系内を
大気圧に戻した後に基板をと9出す。
After growth for a predetermined period of time, the supply of raw materials is stopped and the system is cooled. During cooling, He or Hz is applied at 1 to 2 J/min.
Let it flow. He was used to prevent thermal etching of the substrate surface.
Cooling may be performed while flowing 2 diluted Hz S at a rate of about 50 to 60 d/min. When the substrate returns to room temperature, the reactor is evacuated to remove hydrogen sulfide remaining in the system. After returning the system to atmospheric pressure, remove the substrate.

続いて下記の条件により、基板の裏面にオーム性接触を
形成する。
Subsequently, an ohmic contact is formed on the back surface of the substrate under the following conditions.

GaAs基板 Au−Ge(Qem12wt−%)又はAu−2nを約
200 OA’  程度蒸着後、不活性雰囲気中350
〜500℃で5〜10m1n間熱処理GaP基板 Au−siAu−5i(Si%)又はAu−Znを約2
00OA’程度蒸着後、不活性雰囲気中400〜600
℃においてs〜10m1n間熱処理 Si基板 Al又はAI −8i (S 1−2wt −%)を3
000A0程度スパッタあるいは蒸着し、不活性雰囲気
中300℃ 50 min間熱処理最後に絶縁層上にコ
ンタクト用の電極として、金またはITO層を形成する
。光の取り出しを確保するため、Auは500〜500
A’程度の厚さにする。
After depositing Au-Ge (Qem 12wt-%) or Au-2n on a GaAs substrate to about 200 OA', 350 OA' was deposited in an inert atmosphere.
Heat-treated GaP substrate Au-siAu-5i (Si%) or Au-Zn for 5-10 ml at ~500°C for about 2
400~600 in inert atmosphere after evaporation of about 00OA'
Heat treated Si substrate Al or AI-8i (S 1-2wt-%) for s~10m1n at ℃ 3
Sputtering or vapor deposition is carried out to the extent of 000A0, followed by heat treatment at 300° C. for 50 minutes in an inert atmosphere.Finally, a gold or ITO layer is formed on the insulating layer as a contact electrode. In order to ensure light extraction, Au is 500 to 500
Make it about A' thick.

以上の様にして作製したMIS構造を有する素子に順方
向のバイアス電圧を印加すると、1〜2V付近から発光
が観測された。
When a forward bias voltage was applied to the device having the MIS structure manufactured as described above, light emission was observed from around 1 to 2 V.

発光強度は素子を流れる電流に比例して増加した。得ら
れた素子の発光スペクトルの代表例を第5図に示す。発
光スペクトルは室温で475順付近にピークを有してお
り、素子の発光効率は約10 であった。
The emission intensity increased in proportion to the current flowing through the device. A typical example of the emission spectrum of the obtained device is shown in FIG. The emission spectrum had a peak near 475 order at room temperature, and the luminous efficiency of the device was about 10.

以上の工程による素子作製を25mX25mのウェハー
上に行なった場合、同一ウニバー内の素子特性のバラツ
キは約10%であった。また異なるバッチ間で比較した
場合も同程度であった。素子特性のバラツキは作製工程
の改良によシさらに低減できると思われる。
When devices were fabricated using the above steps on a 25 m x 25 m wafer, the variation in device characteristics within the same uniform bar was about 10%. Furthermore, when comparing different batches, the results were also at the same level. It is believed that variations in device characteristics can be further reduced by improving the manufacturing process.

比較のためKDMZと硫化水素を原料とするMOCVD
法で形成されるアンドープZnSを、上述の工程に従っ
て形成したznS:A1発光層に積層し、絶縁層の作製
プロセスのみが異なるMIS型発光素子を形成したとこ
ろ、発光効率は約10〜10 程度と小さく、また素子
特性のバラツキは20%程度であった。さらに1付加体
を用いて形成したアンドープZnSを絶縁層とする素子
に比べて素子の平均寿命は高々数分の1程度であった。
For comparison, MOCVD using KDMZ and hydrogen sulfide as raw materials
When undoped ZnS formed by the method was laminated on a znS:A1 light-emitting layer formed according to the above-mentioned process to form a MIS-type light-emitting device, which differed only in the manufacturing process of the insulating layer, the light-emitting efficiency was about 10 to 10. The variation in device characteristics was about 20%. Furthermore, the average life of the device was at most a fraction of that of a device formed using a monoadduct and having an insulating layer of undoped ZnS.

上記の比較から明白な様に、付加体を用いて形成したア
ンドープZnS層を連続プロセスによシ、ZnS:AI
に積層してMIS型素子を製造することで、素子の特性
、信頼性の向上、及びそのバラツキの低減化がなされた
As is clear from the above comparison, when the undoped ZnS layer formed using the adduct is processed in a continuous process, ZnS:AI
By manufacturing an MIS type element by laminating the two layers, the characteristics and reliability of the element can be improved, and variations thereof can be reduced.

上記の説明では付加体としてジメチル亜鉛とジエチル硫
黄の等モル混合によシ得られるものKついて述べたが、
この他、ジメチル亜鉛とジメチル硫黄(20℃における
蒸気圧的flH?)、ジエチル亜鉛とジメチル硫黄(5
0℃における蒸気圧的88s+mHf’)及びジエチル
亜鉛とジエチル硫黄(20℃における蒸気圧的15mH
f )などの組み合せによる付加体も、ジアルキル亜鉛
とジアルキル硫黄の等モル混合によって得られ、ジメチ
ル亜鉛とジエチル硫黄の付加体と同様にして使用でき、
本発明の範ちゅうに入るものである。この他に、成長温
度400℃以下ではほとんど分解しない。ジメチルセレ
ン、ジエチルセレンとジメチル亜鉛、ジエチル亜鉛の組
み合せKよって得られる4種類の付加体も、アルキルセ
レンの付加体と同じく使用が可能であり、本発明に含ま
れるものである。
In the above explanation, the adduct K obtained by equimolar mixing of dimethylzinc and diethyl sulfur was described.
In addition, dimethyl zinc and dimethyl sulfur (vapor pressure flH at 20°C?), diethyl zinc and dimethyl sulfur (5
88 s+mHf' vapor pressure at 0°C) and diethylzinc and diethyl sulfur (15mH vapor pressure at 20°C)
Combination adducts such as f) can also be obtained by equimolar mixing of dialkylzinc and dialkylsulfur, and can be used in the same manner as the adducts of dimethylzinc and diethylsulfur.
This falls within the scope of the present invention. In addition, it hardly decomposes at a growth temperature of 400° C. or lower. Four types of adducts obtained from the combination K of dimethylselenium, diethylselenium, dimethylzinc, and diethylzinc can also be used as well as the adducts of alkylselenium, and are included in the present invention.

以上の説明から容易に類推できる如<、ZnSのAlの
添加と同様にして、G、a、Inの添加も、対応する有
機金属化合物、例えばトリエチルガリウム(沸点=14
3℃)、トリエチルインジウム(沸点−184℃)を用
いることにより可能である。バブリング温度における蒸
気圧とバブリングガスの流量から計算される供給量がト
リエチルアルミニウムのそれと等しいときs Z n 
S : G a 。
As can be easily inferred from the above explanation, in the same way as the addition of Al to ZnS, the addition of G, a, and In can also be performed using a corresponding organometallic compound, such as triethylgallium (boiling point = 14
3°C) and triethyl indium (boiling point -184°C). When the supply amount calculated from the vapor pressure at the bubbling temperature and the bubbling gas flow rate is equal to that of triethylaluminum, s Z n
S: Ga.

ZnS : Inを発光層とするMIS型青色発光素子
もznS:Alを発光層とするものと同様の特性を示し
た。
The MIS-type blue light emitting device using ZnS:In as a light emitting layer also exhibited characteristics similar to those using znS:Al as a light emitting layer.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明に係る青色発光素子では付加体を
ZnソースとするMOCVD法で絶縁層として用いるZ
nS単結晶薄膜を形成することによって、ジアルキル亜
鉛をZnソースとするMOCVD法に比べ、発光効率、
信頼性、寿命の向上がなされ、また素子特性のバラツキ
も低減できた。
As described above, in the blue light emitting device according to the present invention, Z
By forming an nS single crystal thin film, luminous efficiency and
Reliability and lifespan have been improved, and variations in device characteristics have also been reduced.

さらに本発明に係る青色発光素子の製造法においては、
発光層の形成後、ドーパントの供給のみを中断すること
によって連続して絶縁層の形成を行なうため、発光層と
絶縁層の界面を再現性よく制御できる様になった。これ
により、素子特性のバラツキが低下でき、また素子の信
頼性の向上が可能となった。本発明が青色発光素子及び
その製造に寄与するところ極めて大きいと確信する。
Furthermore, in the method for manufacturing a blue light emitting element according to the present invention,
After forming the light-emitting layer, the insulating layer is formed continuously by interrupting only the supply of dopant, making it possible to control the interface between the light-emitting layer and the insulating layer with good reproducibility. This has made it possible to reduce variations in device characteristics and improve device reliability. We believe that the present invention will greatly contribute to blue light emitting devices and their production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって作製される青色発光素子の断面
図 1、 低抵抗n−型単結晶基板  2 オーム性電極 
 !h  ZnS:AJ単結晶薄膜などからなる発光層
  4. アンドープZnS単結晶薄膜からなる絶縁層
  & 電極 第2図は本発明において用いるMOCVD装置の概略図 & 石英ガラス製反応管  Z  SiCコーティング
を施したグラファイト製サセプターa 基板  9 高
周波加熱炉又は赤外線炉又は抵抗加熱炉  1α 熱電
対  11.  排気系  12.廃ガス処理系  1
3 、14.  パルプ  15.付加体の入ったバブ
ラー 1&  l族元素の有機金属化合物の入ったバブラー 
 1′1 キャリアーガスの入ったボンベ1a 硫化水
素の入ったボンベ 19、 ガス純化装置  21 マスフロコントローラ
  21.恒温槽  22.三方パルプ2五 パルプ 第3図は本発明において作製された青色発光素子の発光
スペクトル図。 以上
FIG. 1 is a cross-sectional view of a blue light emitting device manufactured according to the present invention. 1. Low resistance n-type single crystal substrate 2. Ohmic electrode
! h ZnS: A light-emitting layer made of AJ single crystal thin film, etc. 4. Insulating layer and electrode made of undoped ZnS single crystal thin film Figure 2 is a schematic diagram of the MOCVD apparatus used in the present invention & Reaction tube made of quartz glass Z Susceptor made of graphite with SiC coating a Substrate 9 High frequency heating furnace or infrared furnace or resistor Heating furnace 1α thermocouple 11. Exhaust system 12. Waste gas treatment system 1
3, 14. Pulp 15. Bubbler 1 containing adducts & Bubbler containing organometallic compounds of group I elements
1'1 Cylinder 1a containing carrier gas Cylinder 19 containing hydrogen sulfide, Gas purifier 21 Mass flow controller 21. Constant temperature bath 22. Mikata Pulp 25 Pulp Figure 3 is an emission spectrum diagram of the blue light emitting element produced in the present invention. that's all

Claims (1)

【特許請求の範囲】 1、単結晶基板上に付加体を用いた有機金属気相熱分解
法(MOCVD法)により形成した発光層の上に絶縁層
、電極層を順次積層した青色発光素子において、絶縁層
が付加体を用いたMOCVD法により作製した硫化亜鉛
単結晶薄膜であることを特徴とした青色発光素子。 2、単結晶基板上に付加体を用いたMOCVD法により
形成した発光層の上に絶縁層、電極層を順次積層してゆ
く青色発光素子の製造法において、亜鉛ソースとしてジ
アルキル亜鉛とジアルキル硫黄又はジアルキルセレンの
等モル混合によつて得られる付加体、硫黄ソースとして
硫化水素を用いたMOCVD法により高抵抗硫化亜鉛単
結晶薄膜を絶縁層として形成することを特徴とした青色
発光素子の製造法。 3、特許請求の範囲第2項において、発光層形成後、ド
ーパントの供給のみを中断することにより絶縁層の形成
を連続して行なうことを特徴とした青色発光素子の製造
法。
[Claims] 1. In a blue light-emitting element in which an insulating layer and an electrode layer are sequentially laminated on a light-emitting layer formed on a single crystal substrate by a metal organic vapor phase pyrolysis method (MOCVD method) using an adduct. A blue light emitting device, wherein the insulating layer is a zinc sulfide single crystal thin film produced by an MOCVD method using an adduct. 2. In a method for manufacturing a blue light-emitting device in which an insulating layer and an electrode layer are sequentially laminated on a light-emitting layer formed by an MOCVD method using an adduct on a single crystal substrate, dialkylzinc and dialkylsulfur or dialkylzinc are used as zinc sources. A method for producing a blue light emitting device, characterized in that a high resistance zinc sulfide single crystal thin film is formed as an insulating layer by an MOCVD method using an adduct obtained by equimolar mixing of dialkyl selenium and hydrogen sulfide as a sulfur source. 3. A method for manufacturing a blue light emitting device according to claim 2, characterized in that after the light emitting layer is formed, the insulating layer is continuously formed by interrupting only the supply of dopant.
JP9410985A 1985-05-01 1985-05-01 Blue light emitting device and manufacturing method thereof Expired - Lifetime JPH06101590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9410985A JPH06101590B2 (en) 1985-05-01 1985-05-01 Blue light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9410985A JPH06101590B2 (en) 1985-05-01 1985-05-01 Blue light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61252675A true JPS61252675A (en) 1986-11-10
JPH06101590B2 JPH06101590B2 (en) 1994-12-12

Family

ID=14101265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9410985A Expired - Lifetime JPH06101590B2 (en) 1985-05-01 1985-05-01 Blue light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH06101590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351869A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351869A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
EP0351868A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
EP0351867A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor

Also Published As

Publication number Publication date
JPH06101590B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
US4404265A (en) Epitaxial composite and method of making
KR940001249B1 (en) SILICON-GaAs EPITAXIAL COMPOSITIONS AND PROCESS FOR MAKING THE SAME
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
JPS61252675A (en) Blue-light emitting element and manufacture thereof
US4719124A (en) Low temperature deposition utilizing organometallic compounds
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JP2704223B2 (en) Semiconductor element
JPH08264829A (en) Compound semiconductor structure and manufacture thereof
JPS6247176A (en) Manufacture of blue light emitting device
JPS61214527A (en) Low resistance n- type semiconductor thin film and manufacture thereof
JPH05243153A (en) Growth of semiconductor thin film
JP2650635B2 (en) Method for producing II-VI compound semiconductor thin film
JP2563781B2 (en) Method for manufacturing compound semiconductor thin film
JPS6324683A (en) Manufacture of light-emitting element
CA3164557A1 (en) Heteroepitaxial growth method of compound semiconductor materials on multi-oriented semiconductor substrates and devices
JPH0682618B2 (en) <II>-<VI> Group compound semiconductor thin film manufacturing method
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPH01173764A (en) Manufacture of light-emitting element
JPS61218184A (en) Blue light emitting element and manufacture thereof
JPH03232220A (en) Vapor growth method for compound semiconductor crystal
JPS63142823A (en) Manufacture of ii-vi compound semiconductor thin film
JPS61232627A (en) Manufacture of semiconductor thin film
JPH0492900A (en) Semiconductor thin film and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term