JPS6125233B2 - - Google Patents

Info

Publication number
JPS6125233B2
JPS6125233B2 JP13551477A JP13551477A JPS6125233B2 JP S6125233 B2 JPS6125233 B2 JP S6125233B2 JP 13551477 A JP13551477 A JP 13551477A JP 13551477 A JP13551477 A JP 13551477A JP S6125233 B2 JPS6125233 B2 JP S6125233B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
film
active layer
diffusion
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13551477A
Other languages
Japanese (ja)
Other versions
JPS5468188A (en
Inventor
Shinsuke Ueno
Katsuhiko Nishida
Roi Rangu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13551477A priority Critical patent/JPS5468188A/en
Publication of JPS5468188A publication Critical patent/JPS5468188A/en
Publication of JPS6125233B2 publication Critical patent/JPS6125233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明はストライプ型半導体レーザの製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a striped semiconductor laser.

(Al・Ga)As等の多層ヘテロ構造半導体レー
ザは、低い閾値電流値をもち、室温でも高効率の
発振を行うことができるので、光フアイバー通信
用等の用途に用いられる。
Multilayer heterostructure semiconductor lasers such as (Al/Ga)As have a low threshold current value and can oscillate with high efficiency even at room temperature, so they are used for applications such as optical fiber communications.

この種のレーザをできるだけ小さい電流値で動
作せしめ、かつ、単一横モード又はこれに近い状
態で発振させるために各種のストライプ構造が工
夫されている。
Various striped structures have been devised in order to operate this type of laser with a current value as small as possible and to cause it to oscillate in a single transverse mode or in a state close to this mode.

しかし、従来使用されてきた各種ストライプ構
造は次のような共通の欠点をもつため、実用上不
満足である。すなわち、ストライプ幅が20μm程
度以上になると、高次横モードが容易に発振する
ため直接変調を行つた場合に波形が歪み、また出
力強度のゆらぎ(出力雑音)が増大する等の障害
があらわれる。一方ストライプ幅を8μm程度以
下にすると閾値電流密度が急速に増大するうえ、
端面への光学的損傷なしに出力できるレーザ光強
度が低下する。
However, the various striped structures conventionally used have the following common drawbacks and are therefore unsatisfactory in practice. That is, when the stripe width is about 20 μm or more, higher-order transverse modes easily oscillate, causing problems such as waveform distortion and increased output intensity fluctuations (output noise) when direct modulation is performed. On the other hand, when the stripe width is reduced to about 8 μm or less, the threshold current density increases rapidly, and
The laser beam intensity that can be output without optical damage to the end face is reduced.

そこで通常、ストライプ幅は、10μm以上、20
μm以下の範囲に設定されるが、ストライプ幅が
この範囲内ある場合には、半導体レーザーの諸特
性に異常があらわれる。例えば、出力が励起電流
とともに直線的に増大せず、励起電流−光出力曲
線に折れ曲りが発生し、直接変調時の波形が著し
く歪む。さらに上述の折れ曲り付近ないしそれ以
上の電流値では多くの場合、発振光スペクトル幅
が増大する等の特性の異常ないし劣化が発生す
る。
Therefore, the stripe width is usually 10μm or more, 20μm or more.
The stripe width is set to a range of .mu.m or less, but if the stripe width is within this range, abnormalities appear in various characteristics of the semiconductor laser. For example, the output does not increase linearly with the excitation current, a bend occurs in the excitation current-optical output curve, and the waveform during direct modulation is significantly distorted. Further, in many cases, when the current value is near or above the above-mentioned bending, abnormality or deterioration of the characteristics such as an increase in the oscillation light spectrum width occurs.

従つて、従来のストライプ型半導体レーザの示
す特性の異状を除去するためには水平横方向の光
導波を安定化する必要がある。そのためには例へ
ば活性層内水平横方向に結晶に固定された屈折率
または利得(ないし損失)の空間分布を形成し、
これによる光導波によつてレーザ光をストライプ
部分に閉じこめればよい。これには例えば多層ダ
ブルヘテロの活性層のストライプ部分にP型不純
物拡散を行い、この物分の屈折率をその外部の屈
折率に比べ高くすれば導入された屈折率分布によ
つて安定な光導波を行なわせることが可能である
ことが特許願51−26440に記載されており、その
効果は実験的にも確認されている。しかし上記特
許に記載された方法は、丁度活性層の深さに達す
るように不純物を拡散する必要があり、又、発振
モードを安定化するために最適な屈折率差を生じ
るように不純物濃度を制御することが要請される
ため、製造技術上の困難さを含んでいる。これら
の欠点を除去し再現よく安定した発振モードを有
する半導体レーザとして、ストライプ内の所定の
領域のみに不純物を活性層以遠にまで深く拡散
し、ストライプ内の実効的な屈折率がストライプ
外よりも高くなつている構造の半導体レーザが考
案された。(特願昭52−88196)このような構造の
半導体レーザでは不純物拡散領域の一部は他の部
分より深く不純物を拡散する必要があり、従来の
方法では、不純物を二重拡散法で行う以外、この
構造の半導体レーザを実現する方法がなかつた。
しかし二重拡散法では、不純物を二回にわけて拡
散するため不純物濃度や拡散深さの制御が困難で
あつた。
Therefore, in order to eliminate the abnormalities in the characteristics exhibited by the conventional striped semiconductor laser, it is necessary to stabilize the optical waveguide in the horizontal and lateral directions. For this purpose, for example, a spatial distribution of refractive index or gain (or loss) fixed to the crystal is formed horizontally within the active layer,
The laser light may be confined within the stripe portion by the optical waveguide. For example, if a P-type impurity is diffused into the striped part of the active layer of a multilayer double hetero, and the refractive index of this material is made higher than the refractive index of the outside, the introduced refractive index distribution will stabilize the light guide. It is described in Patent Application No. 51-26440 that waves can be generated, and the effect has been experimentally confirmed. However, in the method described in the above patent, it is necessary to diffuse the impurity to reach the depth of the active layer, and the impurity concentration must be adjusted to create an optimal refractive index difference to stabilize the oscillation mode. Since control is required, it involves difficulties in terms of manufacturing technology. In order to eliminate these drawbacks and create a semiconductor laser with a stable oscillation mode with good reproducibility, impurities are deeply diffused in only a predetermined region within the stripe beyond the active layer, so that the effective refractive index inside the stripe is higher than that outside the stripe. A semiconductor laser with a raised structure has been devised. (Japanese Patent Application No. 52-88196) In a semiconductor laser with such a structure, it is necessary to diffuse impurities deeper into a part of the impurity diffusion region than in other parts. However, there was no way to realize a semiconductor laser with this structure.
However, in the double diffusion method, the impurity is diffused twice, making it difficult to control the impurity concentration and diffusion depth.

本発明は上記のような欠点を除去し、不純物拡
散領域の所定の部分のみ選択的に深く拡散する方
法を提供し、かつ上記半導体レーザ(特願昭52−
88196)を容易に実現可能とするものである。す
なわち不純物を拡散すべき領域にあらかじめ所定
の深さで不純物を拡散し、この後拡散領域の所定
の領域のみSiO2膜等の誘電体被膜で表面を覆い
再び熱処理を行なう方法である。この方法によれ
ば、表面に誘電体被膜が形成されるため半導体の
表面状態に変化が生じ誘電体被膜下の領域では不
純物の拡散が促進或いは抑制され、部分的に拡散
深さの異なる領域が形成されるためストライプ内
の所定の領域のみ不純物が活性層まで深く拡散さ
れている構造の半導体レーザが得られる。
The present invention eliminates the above-mentioned drawbacks, provides a method for selectively and deeply diffusing only a predetermined portion of an impurity diffusion region, and also provides a method for selectively and deeply diffusing only a predetermined portion of an impurity diffusion region.
88196) can be easily realized. That is, this is a method in which impurities are diffused in advance to a predetermined depth in a region where impurities are to be diffused, and then only a predetermined region of the diffusion region is covered with a dielectric film such as a SiO 2 film and then heat treated again. According to this method, since a dielectric film is formed on the surface, the surface condition of the semiconductor changes, and the diffusion of impurities is promoted or suppressed in the region under the dielectric film, and regions with different diffusion depths are partially formed. Therefore, a semiconductor laser having a structure in which impurities are deeply diffused to the active layer only in a predetermined region within the stripe can be obtained.

以下図面を用いて本発明の実施の一例につき具
体的に説明する。
EMBODIMENT OF THE INVENTION An example of implementation of the present invention will be specifically described below using the drawings.

n型GaAs基板10上に液相成長法で約3μm
厚のn形A10.3Ga00.7As層11約0.2μm厚のn形
のGaAs活性層12、約2μm厚のP形
A10.3Ga00.7As層13、約1μm厚のn形GaAs層
14を成長させる。
Approximately 3 μm thick on n-type GaAs substrate 10 by liquid phase growth method
n-type A1 0.3 Ga 00.7 As layer 11 with a thickness of about 0.2 μm; n-type GaAs active layer 12 with a thickness of about 2 μm; P-type with a thickness of about 2 μm.
An A1 0.3 Ga 00.7 As layer 13 and an n-type GaAs layer 14 with a thickness of approximately 1 μm are grown.

第4層上につけたSiO2膜15中にフオトレジ
スト技術で劈開面に対し垂直方向にあけられた幅
15μm、250μm間隔のストライプを通してZn1
6が600℃で拡散され、その拡散フロント17は
第3層途中に制御されている(第1図)。
A width created in the SiO 2 film 15 on the fourth layer in a direction perpendicular to the cleavage plane using photoresist technology.
Zn1 through stripes with intervals of 15 μm and 250 μm
6 is diffused at 600° C., and its diffusion front 17 is controlled in the middle of the third layer (FIG. 1).

次にZn拡散用のSiO2膜15を除去し第4層全
面に誘電体被膜としてSiO2膜を3000Åつけた
後、フオトレジスト技術で前ストライプを横切る
ように(必ずしも直角である必要はない)50μm
間隔に幅10μmのストライプ状のSiO2膜18を
形成する(第2図)。
Next, after removing the SiO 2 film 15 for Zn diffusion and applying a 3000 Å SiO 2 film as a dielectric coating over the entire surface of the fourth layer, use photoresist technology to cross the front stripe (not necessarily at right angles). 50μm
A striped SiO 2 film 18 with a width of 10 μm is formed at intervals (FIG. 2).

このウエハーを石英アンプル中に真空度
10-6Torr以下でシールし、750℃の炉の中で3時
間熱処理すると、SiO2膜18を残した部分のZn
は速やかに拡散し、そのフロント19は第一層に
至る。これに対しSiO2膜18のない部分のZnは
ほとんど動かない為、拡散深さの異なる拡散領域
が形成される。SiO2膜18を取り除きP形オー
ミツクコンタクト20、n形オーミツクコンタク
ト21を形成し劈開によつて個々の半導体レーザ
を得る(第3図)。
This wafer is placed in a quartz ampoule with a high degree of vacuum.
When sealed at 10 -6 Torr or less and heat treated in a 750°C furnace for 3 hours, Zn is removed in the area where the SiO 2 film 18 remains.
quickly diffuses, and its front 19 reaches the first layer. On the other hand, since the Zn in the area without the SiO 2 film 18 hardly moves, diffusion regions with different diffusion depths are formed. The SiO 2 film 18 is removed, a P-type ohmic contact 20 and an n-type ohmic contact 21 are formed, and individual semiconductor lasers are obtained by cleavage (FIG. 3).

上記SiO2膜18の形状は図2には限定されず
図4でもよく、その形状は任意である。ただし、
活性層内に押し込まれたZnによつて生じる屈折
率の上昇は1%〜0.01%であるのでこの上昇が半
導体レーザ全体の屈折率の上昇に寄与するよう
に、Zn拡散部の体積を決定することにより単一
モードレーザが得られる。
The shape of the SiO 2 film 18 is not limited to that shown in FIG. 2, but may be shown in FIG. 4, and the shape is arbitrary. however,
Since the increase in refractive index caused by Zn pushed into the active layer is between 1% and 0.01%, the volume of the Zn diffusion part is determined so that this increase contributes to the increase in the refractive index of the entire semiconductor laser. This results in a single mode laser.

上記実施例では不純物としてZnを拡散した
GaAs−A1GaAsダブルヘテロ接合半導体レーザ
の場合について説明したがこれ以外の結晶材料、
例えばInGaAsP−InP、GaAsSb−A1GaAsSb等
他の結晶材料やSb等のZn以外の不純物にも適用
することができ、同様の効果が得られる。更に、
誘電体被膜としてSiO2膜を例にとり説明したが
これ以外の誘電体被膜を用いても多少の構造、或
いは拡散条件を変更するだけで同様の効果が達成
できる。例えばSiO2膜の代りにAl2O3膜を用いる
と、Al2O3膜直下では不純物の拡散が抑制される
ため深い拡散深さが必要な領域以外をAl2O3膜で
被覆することによりSiO2膜の場合と同様の結果
が得られる。
In the above example, Zn was diffused as an impurity.
Although we have explained the case of a GaAs-A1GaAs double heterojunction semiconductor laser, other crystal materials,
For example, it can be applied to other crystal materials such as InGaAsP-InP, GaAsSb-A1GaAsSb, and impurities other than Zn such as Sb, and similar effects can be obtained. Furthermore,
Although the SiO 2 film is used as an example of the dielectric coating, the same effect can be achieved by using other dielectric coatings by slightly changing the structure or diffusion conditions. For example, if an Al 2 O 3 film is used instead of a SiO 2 film, impurity diffusion is suppressed directly under the Al 2 O 3 film, so it is necessary to cover areas other than those where deep diffusion depth is required with the Al 2 O 3 film. The same results as in the case of SiO 2 film can be obtained.

以上説明したように本発明によれば不純物濃度
が精密に制御された拡散深さの異る拡散領域が容
易に得られるため、活性層のストライプ内の所定
の領域のみに不純物を部分的に拡散した構造の半
導体レーザが再現性よく容易に得られる。
As explained above, according to the present invention, diffusion regions with different diffusion depths with precisely controlled impurity concentrations can be easily obtained, so that impurities are partially diffused only in predetermined regions within the stripes of the active layer. A semiconductor laser with such a structure can be easily obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する半導体レーザウエハ
ーにZnを選択拡散した様子を示す断面図、第2
図はこの半導体レーザウエハーにSiO2被膜を選
択的にほどこした様子を示す平面図、第3図は本
発明によつて得られた半導体レーザの断面図、第
4図は半導体レーザウエハーに第2図とは異なつ
た構造にSiO2膜をほどこした様子を示す平面図
である。 図において、10……n形GaAs基板、11…
…n形A10.3Ga00.7As層、12……n形GaAsから
成る活性層、13……P形A10.3Ga00.7As層、1
4……n形GaAs層、15……Zn選択拡散用SiO2
膜、16……選択拡散したZnの拡散領域、17
……Zn拡散領域のフロント、18……SiO2膜、
19……深く拡散したZnのフロント、20……
P形オーミツクコンタクト、21……n形オーミ
ツクコンタクトをそれぞれ示す。
Figure 1 is a cross-sectional view showing how Zn is selectively diffused into the semiconductor laser wafer used in the present invention.
The figure is a plan view showing a state in which a SiO 2 film is selectively applied to this semiconductor laser wafer, FIG. 3 is a cross-sectional view of a semiconductor laser obtained by the present invention, and FIG. FIG. 2 is a plan view showing a SiO 2 film applied to a structure different from that shown in the figure. In the figure, 10... n-type GaAs substrate, 11...
...N-type A10.3 Ga00.7 As layer, 12 ...Active layer made of n-type GaAs, 13...P-type A10.3 Ga00.7 As layer , 1
4...n-type GaAs layer, 15...SiO 2 for Zn selective diffusion
Film, 16...Diffusion region of selectively diffused Zn, 17
...Front of Zn diffusion region, 18...SiO 2 film,
19... Deeply diffused Zn front, 20...
P-type ohmic contacts and 21...indicate n-type ohmic contacts, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 活性層を該活性層よりもバンドギヤツプの広
いクラツド層で挾みこんだダブルヘテロ接合構造
半導体レーザの製法において、該ダブルヘテロ接
合構造半導体レーザにストライプ状にあらかじめ
該活性層と反対の導電型を有する不純物を拡散し
た後、該拡散領域表面上の一部を誘電体被膜で覆
い、該半導体レーザウエハーを真空中にて熱処理
を加えて前記不純物をストライプ状活性領域内に
部分的に導入する工程を含むことを特徴とする半
導体レーザの製法。
1. In a method for manufacturing a double heterojunction semiconductor laser in which an active layer is sandwiched between cladding layers having a wider bandgap than the active layer, the double heterojunction semiconductor laser has a conductivity type opposite to that of the active layer in advance in a stripe shape. After diffusing the impurity, a part of the surface of the diffusion region is covered with a dielectric film, and the semiconductor laser wafer is heat-treated in a vacuum to partially introduce the impurity into the striped active region. A method for manufacturing a semiconductor laser characterized by comprising:
JP13551477A 1977-11-10 1977-11-10 Production of semiconductor laser Granted JPS5468188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13551477A JPS5468188A (en) 1977-11-10 1977-11-10 Production of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13551477A JPS5468188A (en) 1977-11-10 1977-11-10 Production of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5468188A JPS5468188A (en) 1979-06-01
JPS6125233B2 true JPS6125233B2 (en) 1986-06-14

Family

ID=15153534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13551477A Granted JPS5468188A (en) 1977-11-10 1977-11-10 Production of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5468188A (en)

Also Published As

Publication number Publication date
JPS5468188A (en) 1979-06-01

Similar Documents

Publication Publication Date Title
US4317085A (en) Channeled mesa laser
JPS6180882A (en) Semiconductor laser device
GB2046983A (en) Semiconductor lasers
JPH021387B2 (en)
US3969686A (en) Beam collimation using multiple coupled elements
US4309668A (en) Stripe-geometry double heterojunction laser device
JPS60789A (en) Semiconductor laser device
JPH021386B2 (en)
US4377865A (en) Semiconductor laser
US4960730A (en) Method of making a semiconductor light emitting device using out-diffusion from a buried stripe
JPS6125233B2 (en)
JPS59100583A (en) Semiconductor laser device
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPS5834988A (en) Manufacture of semiconductor laser
JPS622585A (en) Semiconductor laser
JP2525776B2 (en) Method for manufacturing semiconductor device
JPS61184894A (en) Semiconductor optical element
JP2913327B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPS6046558B2 (en) Striped double heterojunction laser device
CA1203611A (en) Laser with mode control and pump current confinement
KR0155514B1 (en) Laser diode and method of fabricating thereof
JPS6136720B2 (en)
JPS6055997B2 (en) Striped heterojunction laser device
JPS6353718B2 (en)
JPS6292385A (en) Semiconductor laser