JPS6125226B2 - - Google Patents

Info

Publication number
JPS6125226B2
JPS6125226B2 JP2480278A JP2480278A JPS6125226B2 JP S6125226 B2 JPS6125226 B2 JP S6125226B2 JP 2480278 A JP2480278 A JP 2480278A JP 2480278 A JP2480278 A JP 2480278A JP S6125226 B2 JPS6125226 B2 JP S6125226B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
oxide film
single crystal
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2480278A
Other languages
Japanese (ja)
Other versions
JPS54117690A (en
Inventor
Yoshinori Yukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2480278A priority Critical patent/JPS54117690A/en
Publication of JPS54117690A publication Critical patent/JPS54117690A/en
Publication of JPS6125226B2 publication Critical patent/JPS6125226B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特に高周波用
として有効な静電誘導形トランジスタの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a static induction type transistor that is effective for high frequency applications.

従来、静電誘導形トランジスタとしてはゲート
領域を半導体内部に埋め込んで作るゲート埋め込
み形構造のものや、ゲート領域を平坦な半導体表
面に形成してゲート電極とソース電極とが同一面
上を走るようにした表面配線ゲート構造のもの等
が開発されている。そして高周波用素子としては
後者の構造のものが一般には用いられている。そ
の理由として、ゲート・ソース間浮遊容量が小さ
く、ゲート信号伝達抵抗Rが小さく、したがつて
それとゲート・チヤンネル間静電容量Cとできま
る(CR)時定数を小さくすることができるとい
う利点があげられている。
Conventionally, electrostatic induction transistors have a buried-gate structure in which the gate region is buried inside the semiconductor, and transistors in which the gate region is formed on a flat semiconductor surface so that the gate electrode and source electrode run on the same surface. Gate structures with surface wiring gates have been developed. The latter structure is generally used as a high frequency element. The reason for this is that the stray capacitance between the gate and the source is small, the gate signal transmission resistance R is small, and the time constant (CR) formed by this and the capacitance C between the gate and channel can be made small. It is given.

しかしながら、このような表面配線ゲート構造
にも次のような欠点がある。すなわち、ゲートと
ソースが同一面から拡散で形成されるため、その
間隔が小さく、従つてゲート・ソース間の耐圧が
低く、またゲート・ソース間の浮遊容量を充分小
さくすることができない。またゲート電圧Vgの
変化に対するドレイン電流IDの変化(ΔID/Δ
G)、すなわち相互コンダクタンスgnが大きく
できないという問題がある。
However, such a surface wiring gate structure also has the following drawbacks. That is, since the gate and source are formed by diffusion from the same surface, the distance between them is small, and therefore the withstand voltage between the gate and source is low, and the stray capacitance between the gate and source cannot be made sufficiently small. Also, the change in drain current I D with respect to the change in gate voltage Vg (ΔI D
V G ), that is, the mutual conductance g n cannot be increased.

このような問題を解決する方法として第1図に
示すようにゲート流域4をソース領域5に比して
深い位置に形成する方法が提案されている。
As a method for solving this problem, a method has been proposed in which the gate region 4 is formed at a deeper position than the source region 5, as shown in FIG.

すなわちゲート領域4を拡散で形成する前に、
高不純物濃度のN形半導体より成るドレイン領域
1および低不純物濃度のN形エビタキシヤル層2
より成る半導体本体を、例えばシリコン窒化膜を
マスクとして選択的エツチング法により部分的に
除去することによつて、ゲート領域を形成すべき
部分のみに凹部をつけておき、その後拡散等を用
いてゲート領域4を形成し、次いでソース領域5
を形成する方法をとつている。(なお同図中3は
保護膜6は電極である)このような構造およびそ
の製造方法を用いると以下に列挙する種々の問題
を生ずる。
That is, before forming the gate region 4 by diffusion,
Drain region 1 made of N-type semiconductor with high impurity concentration and N-type epitaxial layer 2 with low impurity concentration
For example, by partially removing the semiconductor body consisting of a silicon nitride film by selective etching using a silicon nitride film as a mask, a recess is formed only in the part where the gate region is to be formed, and then the gate region is formed using diffusion or the like. Form region 4, then source region 5
We are taking a method to form a (Note that 3 in the figure indicates that the protective film 6 is an electrode.) If such a structure and its manufacturing method are used, various problems will occur as listed below.

エツチングによつて狭いスリツト状の凹部を
形する際その底面を水平にしにくいこと。
When forming a narrow slit-like recess by etching, it is difficult to level the bottom surface.

凹部の中央部のみにゲートを拡散するための
マスク(例えばSiO2)の選択エツチングが困難
なこと。
Difficulty in selectively etching a mask (for example, SiO 2 ) to diffuse the gate only in the center of the recess.

電極6の形成のためのメタライズ金属の同様
な選択的エツチングによるパターニング問題。
A similar selective etching patterning problem of metallized metal for the formation of electrode 6.

拡散層端面での段差部における上記メタライ
ズ層の断線の問題。
Problem of disconnection of the metallized layer at the stepped portion at the end face of the diffusion layer.

したがつてこの技術は微細パターンをもつて高
周波用素子を得る場合には非常に困難を伴なう。
Therefore, this technique is extremely difficult when obtaining a high frequency device with a fine pattern.

本発明は上記の製造上の問題点を解決し、もつ
て容量に高耐圧低浮遊容量、低ゲート抵抗、高相
互コンダクタンスの高周波用として好適な素子を
得ることを目的として成されるものであつて、以
下発明の実施例を図面に従つて詳細に説明する。
The present invention has been made with the object of solving the above-mentioned manufacturing problems and obtaining an element suitable for high frequency use, which has a high breakdown voltage, low stray capacitance, low gate resistance, and high mutual conductance. Embodiments of the invention will now be described in detail with reference to the drawings.

第2図は本発明の方法により高周波用静電誘導
形トランジスタを作る場合のプロセス・フローチ
ヤートを示すものである。第2図aはドレイン領
域となる高不純物濃度N形(N+)半導体基板1の
表面に、上記基板1のそれに比し充分低い不純物
濃度(N-)のエピタキシヤル層2を形成したシリ
コン半導体を用意し、その表面を酸化して酸化膜
を500Å位から2000Å位の厚みに付着し、ゲート
を作るべき位置の酸化膜31のみを残すように写
真製版技術によつてパターニングした状態を示す
図である。
FIG. 2 shows a process flowchart for manufacturing a high frequency electrostatic induction transistor by the method of the present invention. FIG. 2a shows a silicon semiconductor in which an epitaxial layer 2 with an impurity concentration (N - ) sufficiently lower than that of the substrate 1 is formed on the surface of a highly impurity-concentrated N-type (N + ) semiconductor substrate 1 that will serve as a drain region. The figure shows a state in which the surface is oxidized to form an oxide film with a thickness of about 500 Å to 2000 Å, and patterned by photolithography so that only the oxide film 31 at the position where the gate is to be formed is left. It is.

次に第2図bに示すようにシリコンの気相成長
を行なうと酸化膜31が残された領域上には多結
晶シリコン膜22が、シリコン表面が露出したと
ころには単結晶シリコン膜21が選択的に成長す
る。このとき上記酸化膜31の厚さが2000Å以下
と薄ければ、上記エピタキシヤル工程において酸
化膜31はエツチングされ、ほとんど消失する。
Next, as shown in FIG. 2b, when silicon is vapor phase grown, a polycrystalline silicon film 22 is formed on the area where the oxide film 31 remains, and a single crystal silicon film 21 is formed on the exposed silicon surface. Grow selectively. At this time, if the thickness of the oxide film 31 is as thin as 2000 Å or less, the oxide film 31 will be etched in the epitaxial process and almost disappear.

次に第2図cに示すように単結晶シリコン膜2
1と多結晶シリコン膜22の境界を含むようにフ
オトレンジスト8のパターニングによる窓開けを
行ない、多孔質シリコン層7を形成する。多孔質
シリコン層7の形成には50%弗酸溶液に半導体基
板およびその表面に対向するように上記基板を正
に、白金電極を負に保つて直流電流を流すことに
よつて行なわれる。このとき多結晶シリコンの深
さに相当する深さまで多孔質化する必要がある
が、それは電流の大きさと通電時間を制御するこ
とによつて容易に達成できる。
Next, as shown in FIG. 2c, a single crystal silicon film 2 is formed.
A window is formed by patterning the photoresist 8 so as to include the boundary between the porous silicon layer 1 and the polycrystalline silicon film 22, thereby forming a porous silicon layer 7. The porous silicon layer 7 is formed by applying a direct current to a 50% hydrofluoric acid solution while keeping the substrate positive and the platinum electrode negative so as to face the semiconductor substrate and its surface. At this time, it is necessary to make the material porous to a depth corresponding to the depth of polycrystalline silicon, but this can be easily achieved by controlling the magnitude of the current and the duration of the current.

次に第2図dに示すようにwetO2中で酸化処理
し、多孔質シリコンを酸化する。このとき多孔質
シリコンの酸化速度が速いので1100℃30分程度で
多孔質シリコンが完全に酸化膜3となるが単結晶
シリコン部分や多結晶シリコン部分は1100℃30分
程度の処理では高々4000〜5000Åの酸化膜33が
形成されるだけである。
Next, as shown in FIG. 2d, oxidation treatment is performed in wet O 2 to oxidize the porous silicon. At this time, the oxidation rate of porous silicon is fast, so the porous silicon will completely become the oxide film 3 in about 30 minutes at 1100℃, but the monocrystalline silicon and polycrystalline silicon parts will oxidize at most 4000~30 minutes at 1100℃. Only an oxide film 33 of 5000 Å is formed.

そのあと第2図eに示すようにゲート領域4を
形成すべき部分の上方の酸化膜33を部分的に除
去し、残された酸化膜33,3をマスクとして多
結晶シリコン膜22およびその下のエピタキシヤ
ル層2にp形不純物を高濃度に拡散して、ゲート
領域4を形成するとともに表面に新たな酸化膜3
4を形成する。次に上記と同様の手法により多孔
質シリコンで出来た酸化膜3および上記新らたに
形成した酸化膜34および前に形成した酸化膜3
3の一部をマスクとしてソース領域5を拡散によ
り形成し、そのときその表面に新らたな酸化膜3
5を形成する。
Thereafter, as shown in FIG. 2e, the oxide film 33 above the part where the gate region 4 is to be formed is partially removed, and the remaining oxide films 33, 3 are used as a mask to remove the polycrystalline silicon film 22 and its lower part. A p-type impurity is diffused at a high concentration into the epitaxial layer 2 to form a gate region 4 and a new oxide film 3 is formed on the surface.
form 4. Next, by the same method as above, the oxide film 3 made of porous silicon, the newly formed oxide film 34, and the previously formed oxide film 3 are formed.
A source region 5 is formed by diffusion using a part of the oxide film 3 as a mask, and at that time, a new oxide film 3 is formed on the surface of the source region 5.
form 5.

そのあと、第3図に示すように金属を蒸着して
選択エツチングを行なつて電極配線を形成する。
Thereafter, as shown in FIG. 3, metal is deposited and selectively etched to form electrode wiring.

このような本発明においては、拡散および金属
のエツチングの工程で酸化膜3が自己整合を容易
とするので微細化されたパターンでも容易に行な
うことができる。すなわち、酸化膜33,34等
は酸化膜3に比し充分薄いので、それをエツチン
グする際酸化膜3を同時にエツチングしても良
く、したがつてそのときのマスク合せは、マスク
のエツジが少なくとも上記酸化膜3上にあればよ
いからそれ以上の位置合せ精度は必要ない。また
上記の方法では、ゲート部分の拡散においては、
多結晶シリコン部分22と単結晶シリコンのエピ
タキシヤル層2中への拡散とを同時に行なう例に
ついて説明したが、この場合工程が簡単である
が、シート抵抗は上記拡散を別々に行なう場合に
比し若干高くなるので実施にあたつては、その点
を考慮して、いずれの方法をとるか決定すべきで
あり、別々に拡散する場合はエピタキシヤル層2
1,22を形成する前にゲート領域4を形成して
おく必要がある。
In the present invention, since the oxide film 3 facilitates self-alignment during the diffusion and metal etching steps, even fine patterns can be easily formed. That is, since the oxide films 33, 34, etc. are sufficiently thinner than the oxide film 3, when etching them, the oxide film 3 may be etched at the same time. As long as it is on the oxide film 3, no higher alignment accuracy is required. In addition, in the above method, in the diffusion of the gate part,
An example has been described in which the polycrystalline silicon portion 22 and single crystal silicon are diffused into the epitaxial layer 2 at the same time. In this case, the process is simple, but the sheet resistance is lower than when the above diffusion is carried out separately. The cost will be slightly higher, so when implementing it, you should take this into consideration when deciding which method to use.
It is necessary to form the gate region 4 before forming the regions 1 and 22.

以上、本発明を具体的実施例を用いて詳細に説
明してきたが、かゝる本発明によれば次に示すよ
うな効果がある。
The present invention has been described above in detail using specific examples, and the present invention has the following effects.

ゲート領域4をソース領域5に比べて低い位
置に形成することができるためチヤンネルを流
れるドレイン電流の制御が容易であり、したが
つて相互コンダクタンスgn(=ΔID/ΔV
G){IDはドレイン電流、VGはゲート電圧}を
大きくすることができる。
Since the gate region 4 can be formed at a lower position than the source region 5, it is easy to control the drain current flowing through the channel, and therefore the mutual conductance g n (=ΔI D /ΔV
G ) {I D is the drain current, V G is the gate voltage} can be increased.

ゲート・ソース間に酸化膜が介在するため高
耐圧で、かつゲート・ソース間の寄生容量Cgs
の少さい素子を得ることが出来、その結果、こ
れは高周波特性向上に役立つ。
Since there is an oxide film between the gate and source, it has a high breakdown voltage and the parasitic capacitance between the gate and source Cg s
As a result, this is useful for improving high frequency characteristics.

ゲート領域4が深い位置にありながらその上
部を多結晶シリコンが覆つているためゲート領
域4上の表面の高さはソース領域5上の表面の
高さとほゞ等しいので、全体的に段差が小さ
く、選択的写真製版技術適用時における欠陥が
生じにくくまた、金属配線の断線も起りにく
い。
Although the gate region 4 is located at a deep position, its upper part is covered with polycrystalline silicon, so the height of the surface above the gate region 4 is approximately the same as the height of the surface above the source region 5, so that the overall height difference is small. , Defects are less likely to occur when selective photolithography is applied, and metal wiring is less likely to be disconnected.

ゲート領域とゲート電極とは高不純物濃度の
多結晶半導体で接続されているため直列抵抗が
小さく高周波特性の向上に役立つ。
Since the gate region and the gate electrode are connected through a polycrystalline semiconductor with a high impurity concentration, series resistance is small, which helps improve high frequency characteristics.

ソースおよびゲートの拡散およびメタライズ
工程における選択的処理を酸化膜の厚さの差を
利用して自己整合的に行なうことができ微細加
工を容易にすることができる。
Selective processing in the source and gate diffusion and metallization steps can be performed in a self-aligned manner by utilizing the difference in oxide film thickness, and microfabrication can be facilitated.

以上本発明を静電誘導形トランジスタの製造方
法について説明したが、本発明の方法はその他の
縦形電界効果トランジスタ等少なくとも半導体内
部に形成される領域からの電極引き出しを多結晶
半導体で行ない、かつそれをその外周の単結晶か
ら絶縁部をもつて分離するような場合全てについ
て実施可能である。
Although the present invention has been described above with respect to a method for manufacturing a static induction transistor, the method of the present invention is also applicable to other vertical field effect transistors, etc. in which electrodes are drawn out from at least a region formed inside a semiconductor using a polycrystalline semiconductor, and This method can be implemented in all cases where the crystal is separated from the single crystal on its outer periphery by an insulating part.

また半導体基板上に単結晶領域および多結晶領
域を形成させる場合、上記のような酸化膜による
他、半導体表面にあらかじめ多結晶を低温で薄く
形成しておき、それを部分的にエツチングして多
結晶上に多結晶を、単結晶上に単結晶を生長させ
てもよく、さらには半導体基板表面上に部分的に
歪層を形成しておき、その上に多結晶を他の部分
に単結晶を形成するようにしてもよい。
Furthermore, when forming a single crystal region and a polycrystalline region on a semiconductor substrate, in addition to using the oxide film described above, a thin polycrystalline film is formed on the semiconductor surface at a low temperature in advance, and then it is partially etched to form a polycrystalline region. Polycrystals may be grown on crystals and single crystals may be grown on single crystals. Furthermore, a strained layer may be formed partially on the surface of the semiconductor substrate, and polycrystals may be grown on other parts of the semiconductor substrate. may be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法により得られた素子の断面
図、第2図は本発明の製造方法における各工程を
半導体の断面図によつて示すプロセス・フローチ
ヤート、第3図は本発明の方法により得られた素
子の一例を示す断面図である。 1……半導体ドレイン領域、2……エピタキシ
ヤル層、3……酸化膜、4……ゲート領域、5…
…ソース領域、6……金属配線、7……多孔質シ
リコン層、8……フオトレジスト、21……単結
晶シリコン、22……多結晶シリコン、31,3
2,33,34……酸化膜。
Fig. 1 is a cross-sectional view of a device obtained by the conventional method, Fig. 2 is a process flowchart showing each step in the manufacturing method of the present invention using a cross-sectional view of a semiconductor, and Fig. 3 is a cross-sectional view of a device obtained by the method of the present invention. FIG. 3 is a cross-sectional view showing an example of the obtained element. DESCRIPTION OF SYMBOLS 1... Semiconductor drain region, 2... Epitaxial layer, 3... Oxide film, 4... Gate region, 5...
... Source region, 6 ... Metal wiring, 7 ... Porous silicon layer, 8 ... Photoresist, 21 ... Single crystal silicon, 22 ... Polycrystalline silicon, 31,3
2, 33, 34...Oxide film.

Claims (1)

【特許請求の範囲】 1 半導体単結晶基板の表面上に動作領域として
働く単結晶領域を選択的に形成し、かつ上記半導
体単結晶基板の表面上に上記単結晶領域と隣り合
つて多結晶領域を形成し、上記単結晶領域と多結
晶領域との境界部に多孔質半導体領域を形成した
後、この多孔質半導体領域を酸化膜に変換せしめ
ることにより上記多結晶領域と上記単結晶領域と
を上記酸化膜により分離し、上記酸化膜をマスク
として上記多結晶領域に不純物を選択的に拡散
し、上記多結晶領域を上記半導体単結晶基板に形
成される半導体領域からの電極引き出し部とする
ことを特徴とする半導体装置の製造方法。 2 多孔質半導体領域を変換することにより得ら
れた酸化膜をマスクとして上記多結晶領域および
その下部の半導体基板に不純物を同時に拡散する
ことを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。 3 半導体基板の表面に部分的に薄い半導体酸化
膜が形成されている状態で上記酸化膜上に多結晶
領域を他の部分に単結晶半導体領域をエピタキシ
ヤル成長させると共に、上記多結晶下の酸化膜の
ほとんどを消失せしめることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
[Claims] 1. A single crystal region that serves as an operating region is selectively formed on the surface of a semiconductor single crystal substrate, and a polycrystalline region is formed adjacent to the single crystal region on the surface of the semiconductor single crystal substrate. and forming a porous semiconductor region at the boundary between the single crystal region and the polycrystalline region, and then converting the porous semiconductor region into an oxide film to separate the polycrystalline region and the single crystal region. separation by the oxide film, selectively diffusing impurities into the polycrystalline region using the oxide film as a mask, and using the polycrystalline region as an electrode extension portion from the semiconductor region formed on the semiconductor single crystal substrate; A method for manufacturing a semiconductor device, characterized by: 2. The semiconductor device according to claim 1, characterized in that impurities are simultaneously diffused into the polycrystalline region and the semiconductor substrate below the polycrystalline region using an oxide film obtained by converting the porous semiconductor region as a mask. manufacturing method. 3 With a thin semiconductor oxide film partially formed on the surface of the semiconductor substrate, epitaxially grow a polycrystalline region on the oxide film and a single crystal semiconductor region in other parts, and oxidize under the polycrystal. 2. The method of manufacturing a semiconductor device according to claim 1, wherein most of the film is eliminated.
JP2480278A 1978-03-03 1978-03-03 Production of semiconductor device Granted JPS54117690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2480278A JPS54117690A (en) 1978-03-03 1978-03-03 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2480278A JPS54117690A (en) 1978-03-03 1978-03-03 Production of semiconductor device

Publications (2)

Publication Number Publication Date
JPS54117690A JPS54117690A (en) 1979-09-12
JPS6125226B2 true JPS6125226B2 (en) 1986-06-14

Family

ID=12148317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2480278A Granted JPS54117690A (en) 1978-03-03 1978-03-03 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPS54117690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190905A (en) * 1987-01-31 1988-08-08 Hiroshi Sato Parallel driving type hydraulic motor device and vehicle driven by hydraulic motor
JPS63172725U (en) * 1987-04-30 1988-11-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480501A1 (en) * 1980-04-14 1981-10-16 Thomson Csf SURFACE-ACCESSIBLE DEEP GRID SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190905A (en) * 1987-01-31 1988-08-08 Hiroshi Sato Parallel driving type hydraulic motor device and vehicle driven by hydraulic motor
JPS63172725U (en) * 1987-04-30 1988-11-09

Also Published As

Publication number Publication date
JPS54117690A (en) 1979-09-12

Similar Documents

Publication Publication Date Title
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
US3974515A (en) IGFET on an insulating substrate
US4043848A (en) Method of fabrication of insulated gate field effect semiconductor devices
US4477963A (en) Method of fabrication of a low capacitance self-aligned semiconductor electrode structure
JPS6125226B2 (en)
JPS5911645A (en) Manufacture of semiconductor device
US4876581A (en) Field effect transistor with short channel length and process of fabrication thereof
JP2720911B2 (en) Method for preparing substrate surface for semiconductor device
JPH03201564A (en) Lateral semiconductor device
JPS6237890B2 (en)
JPS6042636B2 (en) Manufacturing method of static induction transistor
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
KR960013945B1 (en) Soi transistor structure
JPS60753A (en) Manufacture of semiconductor device
JPS6395664A (en) Semiconductor device and manufacture thereof
RU795311C (en) Method of manufacturing transistor structures
JPS595645A (en) Manufacture of semiconductor device
KR850001439B1 (en) Epitaxial growth for semiconductor materials on a substrate
JPS6028383B2 (en) Selective impurity diffusion method into semiconductor substrate
JPS62238669A (en) Manufacture of vertical field effect transistor
JPH04348037A (en) Semiconductor device and its manufacture
JPS6011472B2 (en) Manufacturing method of MOS transistor
JPS5931228B2 (en) MOS
JPS6145868B2 (en)
JPH03177073A (en) Thin-film transistor