JPS6125165A - Printing device - Google Patents

Printing device

Info

Publication number
JPS6125165A
JPS6125165A JP14548784A JP14548784A JPS6125165A JP S6125165 A JPS6125165 A JP S6125165A JP 14548784 A JP14548784 A JP 14548784A JP 14548784 A JP14548784 A JP 14548784A JP S6125165 A JPS6125165 A JP S6125165A
Authority
JP
Japan
Prior art keywords
resolution
spot diameter
intensity
potential
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14548784A
Other languages
Japanese (ja)
Inventor
Katsumi Tateno
館野 克美
Yukinori Maeda
幸則 前田
Masao Konishi
正雄 小西
Hiroshi Ito
寛史 伊藤
Tsugihiko Kobayashi
小林 継彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14548784A priority Critical patent/JPS6125165A/en
Publication of JPS6125165A publication Critical patent/JPS6125165A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure

Abstract

PURPOSE:To obtain excellent print quality by varying the light emission intensity of a light emission source by an intensity control pat according to specified resolution, and varying an apparent spot diameter and setting an optical spot diameter within a constant range. CONSTITUTION:When an intensity specifying signal SD indicates that a high resolution mode is off, a transistor (TR) Q1 turns off and a modulated signal LEDS, on the other hand, is inputted to a modulating circuit 210 to drive a laser diode 12a with a driving current obtained by superposing the modulated signal upon a bias current ic. Namely, the potential is raised almost to a threshold value T with the bias current ic and the diode is driven with the current having the modulated signl LEDS superposed thereupon. When the optical spot diameter is set within the range shown by an expression, a sufficient voltage margin is obtained even if the intensity is varied by switching the resolution, and excellent print quality is obtained even if a photosensitive body varies in potential. Bleeding due to a scatter is minimized at such an electrostatic charging potential at which the print density is small, and large with high print density and small with low resolution, but when the resolutio is low, unit line width is large and there is no apparent variation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感光体に発光源からのスポット光の露光によ
って潜像を形成する電子写真式プリンタ等の印刷装置に
おいて、解像度の切換に応じて単位印刷画素径を変更し
うる印刷装置に関し、特に発光源の光学的スポット径を
変えずに発光強度を変えて印刷画素径を変更しうる印刷
装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a printing device such as an electrophotographic printer that forms a latent image on a photoconductor by exposure to spot light from a light emitting source. The present invention relates to a printing device that can change the diameter of a unit printing pixel by changing the diameter of a unit printing pixel, and particularly relates to a printing device that can change the diameter of a printing pixel by changing the emission intensity without changing the optical spot diameter of a light emitting source.

電子写真方式の印刷装置は、普通紙に印刷できしかも種
々のパターンが印刷できることから広く利用されている
。このような印刷装置では、露光源にレーザ光源が用い
られており、第15図の全体構成図及び第16図の光学
系構成図の如く構成されている。
2. Description of the Related Art Electrophotographic printing devices are widely used because they can print on plain paper and can print various patterns. In such a printing apparatus, a laser light source is used as an exposure source, and is constructed as shown in the overall configuration diagram in FIG. 15 and the optical system configuration diagram in FIG. 16.

即ち、光導電体(感光体)を表面に有する感光ドラム4
の周囲に帯電器5、現像器6、転写器7、除電ユニット
8及びクリーナー9が配置されて電子写真ユニットを構
成するとともにレーザダイオード12、コリメートレン
ズ13、ポリゴンミラー14、F−θ(結像)レンズ1
6、ミラー17によって照光用光学ユニットを構成し、
更に用紙ホッパ1、繰出ローラ2、搬送ローラ3、定着
口ミラ10、スタン力11によって用紙取扱いユニット
を構成してなる。このような印刷装置では、レーザ源で
あるレーザダイオード12からの書込み像に応じて変調
されたレーザ光が、コリメートレンズ13を介しスピン
ドルモータ(サーボモータ)15によって回転されるポ
リゴンミラー14によって光走査され、F−θレンズ1
6、ミラー17を介して帯電器5で帯電された感光ドラ
ム4を躇光する。これによって感光ドラム4上に潜像が
形成され、現像器6で現像されて、用紙ホッパ1より繰
出しローラ2によって繰出され、搬送ローラ3で転写部
へ送られる用紙CPに転写器7によって現像像を転写セ
しめる。以降用紙cpは定着器10によって定着され、
スタッカ11に収容され、一方、感光ドラム4は除電ユ
ニット8で除電された後クリーナー9でクリーニングさ
れ、次の潜像形成に供される。
That is, a photosensitive drum 4 having a photoconductor (photoreceptor) on its surface.
A charging device 5, a developing device 6, a transfer device 7, a static eliminating unit 8, and a cleaner 9 are arranged around the electrophotographic unit, and a laser diode 12, a collimating lens 13, a polygon mirror 14, and an F-θ (image forming ) Lens 1
6. The mirror 17 constitutes an illumination optical unit,
Furthermore, a paper handling unit is constituted by a paper hopper 1, a feed roller 2, a conveyance roller 3, a fixing port mirror 10, and a stun force 11. In such a printing device, a laser beam modulated according to a written image from a laser diode 12 as a laser source is optically scanned by a polygon mirror 14 rotated by a spindle motor (servo motor) 15 via a collimating lens 13. and F-θ lens 1
6. The photosensitive drum 4 charged by the charger 5 is exposed to a hesitating light through the mirror 17. As a result, a latent image is formed on the photosensitive drum 4, which is developed by the developing device 6. The developed image is transferred by the transfer device 7 onto the paper CP, which is fed out from the paper hopper 1 by the feeding roller 2 and sent to the transfer section by the conveyance roller 3. transcribe and set. Thereafter, the paper cp is fixed by the fixing device 10,
The photosensitive drum 4 is housed in a stacker 11, while the photosensitive drum 4 is neutralized by a static eliminating unit 8, cleaned by a cleaner 9, and used for the next latent image formation.

このようなレーザ印刷装置では、第16図に示す如く光
学系としてレーザ源12、ポリゴンミラー(走査ミラー
)14及びスピンドルモータ15が設けられ、レーザ源
12のスポット光をスピンドルモータ15がポリゴンミ
ラー14を回転させることによりモータ4aによって回
転する感光ドラム4を第17図(A)のX方向、即ち主
走査方向に走査することによって像を形成する。このレ
ーザ源12は書込み像に応じた変調信号LEDSによっ
て駆動され、レーザ?s12より変調信号LEDSに対
応した光の点列が発生するので感光ドラム4上には書込
み像が形成されることになる。
In such a laser printing apparatus, as shown in FIG. 16, a laser source 12, a polygon mirror (scanning mirror) 14, and a spindle motor 15 are provided as an optical system. An image is formed by scanning the photosensitive drum 4 rotated by the motor 4a in the X direction of FIG. 17(A), that is, in the main scanning direction. This laser source 12 is driven by a modulation signal LEDS according to the written image, and the laser source 12 is driven by a modulation signal LEDS corresponding to the written image. Since a light dot train corresponding to the modulation signal LEDS is generated from s12, a written image is formed on the photosensitive drum 4.

従って、 第17図(A)の如く、各主走査線上の位置
X1〜Xmにおいてレーザ源12の光は互いに重なり合
うようにそのスポット径が設定され、ドラム4の回転に
よって副走査Yl−Ynを行う。
Therefore, as shown in FIG. 17(A), the spot diameters of the beams of the laser source 12 are set so that they overlap each other at positions X1 to Xm on each main scanning line, and the rotation of the drum 4 performs sub-scanning Yl-Yn. .

このようなレーザ源12のスポット光によって、感光ド
ラム4上では、次の様にして潜像が形成される。例えば
、第17図(B)の如く、変調信号がオン、オフ、オン
の場合に位置XIでスポット光S1が、X3でスポット
光S3が照射され、この発光強度をLl、L3とし、感
光体のスレソシ二ホールドをTとすると、スレッシュホ
ールドT以上の部分の電荷が消失し、潜像31が図の如
く形成される。正現像を行う場合には、帯電電位VCと
逆極性(マイナス)のトナーを施せばDIの様な可視像
が得られる。即ち、変調信号のオフの部分が黒パターン
となり、単位線幅(画素径)はdとなる。
A latent image is formed on the photosensitive drum 4 by the spot light from the laser source 12 in the following manner. For example, as shown in FIG. 17(B), when the modulation signal is on, off, and on, spot light S1 is irradiated at position XI and spot light S3 is irradiated at position X3. When the threshold value of T is assumed to be T, the charge in the portion above the threshold T disappears, and a latent image 31 is formed as shown in the figure. When performing normal development, a visible image like DI can be obtained by applying toner with a polarity opposite (minus) to the charging potential VC. That is, the part where the modulation signal is off becomes a black pattern, and the unit line width (pixel diameter) becomes d.

このような、印刷装置では、単位線幅dはスポット径に
依存し、一定である。しかしながら係る単位線幅を変更
する必要又は変更したいとの要望がある。
In such a printing device, the unit line width d depends on the spot diameter and is constant. However, there is a need or desire to change the unit line width.

例えば、第18図に示す様に解像度を変更する場合には
単位線幅をdlからdlへ変更する必要がある。即ち、
高解像度(例えば400dpi)の場合には、主走査方
向のドツト間隔はdblと小さく、それに応じて副走査
方向のドツト間隔(線密度)もdblと小さいが、低解
像度(例えば300dpi)の場合には、主走査方向の
ドツト間隔はdb2と大きく、それに応じて副走査方向
のドツト間隔もdb2と大となる。このため、高解像度
では単位線幅をdl−、低解像度では単位線幅をdlと
する必要がある。
For example, when changing the resolution as shown in FIG. 18, it is necessary to change the unit line width from dl to dl. That is,
In the case of high resolution (for example, 400 dpi), the dot spacing in the main scanning direction is as small as dbl, and the dot spacing (linear density) in the sub-scanning direction is correspondingly small as dbl, but in the case of low resolution (for example, 300 dpi), In this case, the dot spacing in the main scanning direction is large, db2, and the dot spacing in the sub-scanning direction is correspondingly large, db2. For this reason, it is necessary to set the unit line width to dl- at high resolution, and to set the unit line width to dl at low resolution.

〔従来の技術〕[Conventional technology]

従来、このような線幅の調整を行うため、光ビームの光
学的スポット径を拡大して線幅をdlからdlへ変更す
る方法が知られている。このため、従来は、スポット径
が異なる複数のレーザ源(発光源)を設けるか、光学系
を移動して焦点距離を変更してスポット径を変える方法
が提案されている。
Conventionally, in order to adjust the line width as described above, a method is known in which the optical spot diameter of the light beam is expanded to change the line width from dl to dl. For this reason, conventional methods have been proposed to change the spot diameter by providing a plurality of laser sources (light emitting sources) with different spot diameters or by changing the focal length by moving the optical system.

一方、主走査方向の変調幅を変え、だ円形のビームによ
って線幅を調整する方法も知られている。
On the other hand, a method is also known in which the modulation width in the main scanning direction is changed and the line width is adjusted using an oval beam.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の前者の従来の方法では、レーザ源を余分に必要と
したり、複雑な光学系を要したりして装置自体が複雑化
及び高価格化するという問題があった。また、後者の方
法では主走査方向の調整はできるが、副走査方向はスポ
ット径が変らず副走査方向の線幅調整ができないから細
線が解像しないという問題があった。
The former conventional method described above has the problem that it requires an extra laser source and a complicated optical system, making the device itself complicated and expensive. Further, although the latter method allows adjustment in the main scanning direction, the spot diameter does not change in the sub-scanning direction and line width adjustment in the sub-scanning direction cannot be performed, so there is a problem that fine lines cannot be resolved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、1つの発光源を電気的に制御して線幅を解像
度に応じて変更するとともに各解像度において最大の動
作マージンが得られるようにした印刷装置を提供するに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a printing device in which one light emitting source is electrically controlled to change the line width according to the resolution and to obtain the maximum operating margin at each resolution.

このため、本発明は、感光体と、該感光体を帯電する帯
電器と、所定のスポット径で該感光体に像を書込む発光
源と、該発光源の発光強度制御を行なう強度制御部とを
有し、指定された解像度に応じて該強度制御部が該発光
源の発光強度を変えて、見かけ上のスポット径を変更せ
しめて該解像度に対応する印刷画素径を得るとともに該
発光源の光学的スポット径りを、該指定解像度の最低解
像度時の走査ピッチPm1n 、最高解像度時の走査ピ
ッチPmaxに対し、1.io ・(PIIlin +
 Pn+ax )/2から1.40 ・(P+nin 
+ P+cax ) / 2の範囲内に設定したことを
特徴としている。
Therefore, the present invention provides a photoreceptor, a charger that charges the photoreceptor, a light emitting source that writes an image on the photoreceptor with a predetermined spot diameter, and an intensity control section that controls the emission intensity of the light emitting source. The intensity control section changes the light emission intensity of the light emitting source according to the specified resolution to change the apparent spot diameter to obtain a printing pixel diameter corresponding to the resolution, and the light emitting source. The optical spot radius of 1. io ・(PIIlin +
Pn+ax )/2 to 1.40 ・(P+nin
+P+cax)/2.

〔作用〕[Effect]

本発明では、発光源の発光強度の制御によって見かけ上
のスポット径を変えて指定解像度に対応する印刷ill
素径を得るとともに、各解像度において動作マージノ、
即ち良好な印刷品質を得られる帯電電位の範囲が最大と
なるような光学的スポット径を定めたものである。
In the present invention, printing illumination corresponding to a specified resolution is achieved by changing the apparent spot diameter by controlling the emission intensity of the light source.
In addition to obtaining the prime diameter, the operating margin at each resolution,
That is, the optical spot diameter is determined so that the range of charging potential that provides good print quality is maximized.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図は線幅調整の原理図、第3図は線幅調整特性図、
第4図は線幅調整説明図である。
Figure 2 is a diagram of the principle of line width adjustment, Figure 3 is a diagram of line width adjustment characteristics,
FIG. 4 is an explanatory diagram of line width adjustment.

先づ、第2図、第3図によって線幅調整の原理につい゛
ζ説明する。
First, the principle of line width adjustment will be explained with reference to FIGS. 2 and 3.

第2図(Δ)の光ビームの強度レベル分布図に示す様に
、強度P1の光ビームL1の光学的スポット径を1〕と
すると、感光体から見た見かけ上のスポット径は感光体
のスレッシュホールドT以上の部分のDlとなる。ここ
で光学的スポット径は強度PIの1/e2、即ち0.1
3・P+である。一方、同一の光学的スポット径D、即
ら焦点距離を同一とした時に、強度レベルをP2の如く
高めると図の様に光ビームL1と相似の光ビームL2と
なり、光学的スポット径はDのままであるが、見かけ上
のスポット径は感光体のスレンシュホールドT以上のD
2となり広がる。
As shown in the intensity level distribution diagram of the light beam in FIG. 2 (Δ), if the optical spot diameter of the light beam L1 with intensity P1 is 1], the apparent spot diameter as seen from the photoreceptor is This is Dl for the portion above the threshold T. Here, the optical spot diameter is 1/e2 of the intensity PI, that is, 0.1
3・P+. On the other hand, when the optical spot diameter D, that is, the focal length is the same, and the intensity level is increased as shown in P2, the light beam L2 becomes similar to the light beam L1 as shown in the figure, and the optical spot diameter is the same as D. However, the apparent spot diameter is D larger than the threshold T of the photoreceptor.
2 and spread.

このため、第2図(B)の如く強度P2の光ビームL2
を第17図(B)と同様に照射すると、見かげ上のスポ
ット径が拡大しているため潜像S■及び現像された可視
像の単位線幅が小さくなる。
Therefore, as shown in FIG. 2(B), a light beam L2 of intensity P2
When irradiated in the same manner as in FIG. 17(B), the apparent spot diameter is enlarged, so that the unit line width of the latent image S■ and the developed visible image becomes smaller.

このようにして光ビームの強度を変えて見かけ上のスボ
yH’!−を変化させ、線幅を調整する。
In this way, by changing the intensity of the light beam, you can create an apparent SuboyH'! - to adjust the line width.

即ち、第3図の如くレーザ光量と線幅とは反比例する関
係にあるので、所望の線幅を得るには対応するレーザ光
量(強度)でレーザ源12を駆動すればよい。
That is, since the amount of laser light and the line width are inversely proportional as shown in FIG. 3, in order to obtain the desired line width, it is sufficient to drive the laser source 12 with the corresponding amount (intensity) of the laser light.

従って、解像度に応じて線幅を変えるには、高解像度に
おいては、第4図(A)の如くレーザ強度がPlの如く
小の光ビームと、低解像度においては、第4図(B)の
如くレーザ強度がP2の如く大の光ビームとなるように
、解像度に応じて強度を変えれば、対応する単位線幅d
+、d2が得られることになる。
Therefore, in order to change the line width according to the resolution, for high resolution, a light beam with a small laser intensity like Pl is used as shown in Figure 4 (A), and for low resolution, as shown in Figure 4 (B). If the intensity is changed according to the resolution so that the laser intensity becomes a large light beam as shown in P2, the corresponding unit line width d
+, d2 will be obtained.

このように、本発明では、光学的スポット径を変えずに
強度を変え、線幅調整を行っているが、生くまでも光学
的スポット径が基準となる。このため、光学的スポット
径の設定によって動作マージン幅が定まる。
In this way, in the present invention, the line width is adjusted by changing the intensity without changing the optical spot diameter, but the optical spot diameter remains the standard. Therefore, the operating margin width is determined by setting the optical spot diameter.

本発明では、強度変化をした場合の動作マージン幅が最
大となる様な光学的スポット径を次のようにして得てい
る。
In the present invention, the optical spot diameter that maximizes the operating margin width when the intensity changes is obtained as follows.

第5図は光学的スポット径とドラム表面電位との特性図
であり、光学的スポット径に対し良好な印刷品質かえら
れる感光ドラムの表面電位範囲を示したものである。
FIG. 5 is a characteristic diagram of the optical spot diameter and drum surface potential, showing the range of surface potential of the photosensitive drum in which good printing quality can be achieved with respect to the optical spot diameter.

本発明者等は、各レーザビーム径(光学的スポット径)
において、解像度が200dpj  (ドツトパーイン
チ)、300dpiの場合に光ビームの強度を変えて良
好な品質が得られるドラム表面電位を測定した。この測
定には、良好な品質として、にじみ(チリ)が生ぜず、
また横線ヌケが生じない範囲を印刷結果の目視確認によ
って判定した。
The inventors have determined that each laser beam diameter (optical spot diameter)
The drum surface potential at which good quality could be obtained was measured by varying the intensity of the light beam when the resolution was 200 dpj (dots per inch) and 300 dpi. For this measurement, good quality includes no smudging (dust),
In addition, the range in which horizontal line omission did not occur was determined by visually checking the printing results.

横線ヌケとは、第17図において、走査線Y1とY3を
光ビーノ、で走査した時に、走査線Y2に良好ならあら
れれる横線がヌケてあられれないことをいい、この場合
具かけのスポット径が大きすぎるためである。一方、チ
リは、帯電(表面)電位が光ビーム強度に比し高すぎる
場合に生じる現象である。
Missing horizontal lines means that in Fig. 17, when scanning lines Y1 and Y3 are scanned with an optical vino, the horizontal lines that would otherwise appear on scanning line Y2 are missing and cannot be seen, and in this case, the spot diameter of the tool This is because it is too large. On the other hand, dust is a phenomenon that occurs when the charged (surface) potential is too high compared to the light beam intensity.

例えば、光学的スポット径が90μmに設定した場合は
、300dpiでは、表面電位が約950V以上でチリ
が生じ、また約650v以下では横線ヌケが生じた。同
様に、200dpiでは、表面電位が約800V以上で
はチリが生じ、表面電位が約650v以下では横線ヌケ
が生じた。
For example, when the optical spot diameter was set to 90 μm, at 300 dpi, dust appeared when the surface potential was about 950 V or more, and horizontal line omission occurred when the surface potential was about 650 V or less. Similarly, at 200 dpi, dust appeared when the surface potential was about 800 V or more, and missing horizontal lines occurred when the surface potential was about 650 V or less.

このようにして各光学的ビーム径について同様の測定を
行い、第5図の特性が得られた。尚、表面電位が約10
50V以上ではカブリが生じ、約550V以下では印刷
濃度が低すぎ、良好なものが得られなかった。この特性
かられかる様に、高解像度(300dpi )における
電位マージンが最大である光学的スポ・7ト径と、低解
像度(200dpi )における電位マージンが最大で
ある光学的スポット径とは異なる。このため、両脇像度
において最大の電位マージンがとれる光学的スポット径
を設定する必要がある。
In this way, similar measurements were made for each optical beam diameter, and the characteristics shown in FIG. 5 were obtained. In addition, the surface potential is about 10
At 50 V or more, fogging occurred, and at about 550 V or less, the printing density was too low and good results could not be obtained. As can be seen from this characteristic, the optical spot diameter at which the potential margin is maximum at high resolution (300 dpi) is different from the optical spot diameter at which the potential margin is maximum at low resolution (200 dpi). Therefore, it is necessary to set an optical spot diameter that provides the maximum potential margin in both side image degrees.

この第5図を書き直して、横軸に次式の解像度に対する
光学的スポット径りの比rをとると、第6図の如くなる
If we rewrite this FIG. 5 and take the ratio r of the optical spot radius to the resolution expressed by the following equation on the horizontal axis, we get something like FIG. 6.

Pm1n +Pmax 但し、Pm1nは最小解像度時の走査ピンチ(第18図
(A)のd b 1) 、Pmaxは最大解像度時の走
査ピッチ(第18図(B)のdb2)である。
Pm1n +Pmax However, Pm1n is the scanning pinch at the minimum resolution (db1 in FIG. 18(A)), and Pmax is the scanning pitch at the maximum resolution (db2 in FIG. 18(B)).

ここで、aは最大解像度時(300dpi )の特性で
あり、bは最小解像度時(200dpi )の特性であ
る。
Here, a is the characteristic at the maximum resolution (300 dpi), and b is the characteristic at the minimum resolution (200 dpi).

第6図を検討すると、■で示すr−1,0においては高
解像度において400ボルト以上の動作電圧範囲が得ら
れるが、低解像度においては、200ボルトしか動作電
圧範囲が得られず、感光体の電位変動によって低解像度
時にカスレや横線ヌケが生じる。逆に■で示ずr=1.
5においては、低解像度において400ボルト以上の動
作電圧範囲が得られるが、為解像度においては、200
ポルトしか動作電圧範囲が得られず、感光体の電位変動
によって高解像度時にカスレ、横線ヌケが生じる。
Examining FIG. 6, at r-1,0 indicated by ■, an operating voltage range of 400 volts or more is obtained at high resolution, but an operating voltage range of only 200 volts is obtained at low resolution, and the photoreceptor Due to potential fluctuations, blurring and missing horizontal lines occur at low resolution. Conversely, r=1.
5 provides an operating voltage range of over 400 volts at low resolution, but
Only Porto can provide an operating voltage range, and fluctuations in the potential of the photoreceptor can cause blurring and missing horizontal lines at high resolution.

一方、感光体の電位変動を考慮すると、300ボルトの
動作範囲が得られれば十分であるから、r −1,10
〜1.40の■で示す範囲が最適である。
On the other hand, considering potential fluctuations of the photoreceptor, it is sufficient to obtain an operating range of 300 volts, so r −1,10
The range shown by ■ from ~1.40 is optimal.

即ぢ、第(1)式を変形して、求める光学的スポ・ノド
径りは、 となるので、 に設定すればよい。
In other words, by transforming Equation (1), the optical spout/throat radius to be found is as follows, so it can be set as follows.

この範囲に光学的スポット径りを設定することにより、
解像度切換えで強度変化を行っても、十分な電圧マージ
ンを得ることができ、感光体の電位変動力(生じても良
好な印刷品質が得られる。
By setting the optical spot diameter within this range,
Even if the intensity is changed by switching the resolution, a sufficient voltage margin can be obtained, and good print quality can be obtained even if the potential fluctuation of the photoreceptor occurs.

この光学的レーザビーム径の設定は、第15図、第16
図のコリメートレンズ13の位置を調整して感光ドラム
4とコリメートレンズI3との距離を変えて設定する。
The setting of this optical laser beam diameter is shown in Figs. 15 and 16.
The distance between the photosensitive drum 4 and the collimating lens I3 is changed and set by adjusting the position of the collimating lens 13 shown in the figure.

このように、光学的スポット径りを設定した場合の20
0dpi と300dpi とのレーデ−パワー比は、
第7図に示す如くなり、例えばD=140μmの場合は
レーザーパワー比を114%に設定すれば、解像度切換
に応じ最適の線幅が得られることになる。
In this way, when the optical spot diameter is set, 20
The radar power ratio between 0dpi and 300dpi is
As shown in FIG. 7, for example, when D=140 μm, by setting the laser power ratio to 114%, the optimum line width can be obtained according to resolution switching.

次に、本発明の具体例について説明する。Next, specific examples of the present invention will be described.

第1図は本発明の一実施例構成図であり、図中、第15
図及び第16図で示したものと同一のものは同一の記号
で示してあり、20は帯電用高圧電源であり、帯電器5
に所定の帯電電圧(強さ)を印加するもの、21はレー
ザ駆動回路(強度制御部)であり、変調信号(ビデオ信
号)LEDSに従って後述する強度指定信号SDによる
強度でレーザ源12を駆動するもの、22はモーク駆動
部であり、速度指定信号VDに従った速度でモーフ15
を駆動するもの、23は制御部であり、外部から与えら
れる解像度切換信号DSに対応する強度指定信号SD、
帯電圧指定信号ST及び速度指定信号VDを発生するも
の、24は帯電制御部であり、後述する如く解像度切換
に応じて制御部23から与えられる帯電圧指定信号ST
に従って制御電圧Vcを発生し、帯電器5の帯電強さを
制御するものである。
FIG. 1 is a configuration diagram of one embodiment of the present invention, and in the figure, the 15th
Components that are the same as those shown in the figures and FIG.
21 is a laser drive circuit (intensity control unit) that drives the laser source 12 with the intensity according to an intensity designation signal SD, which will be described later, according to a modulation signal (video signal) LEDS. Reference numeral 22 is a mork drive unit which drives the morph 15 at a speed according to the speed designation signal VD.
23 is a control unit which drives a strength designation signal SD corresponding to a resolution switching signal DS given from the outside;
A charging control unit 24 generates a charging voltage designation signal ST and a speed designation signal VD, and a charging voltage designation signal ST is given from the control unit 23 in response to resolution switching as described later.
Accordingly, a control voltage Vc is generated to control the charging strength of the charger 5.

次に、第1図実施例構成の動作について説明すると、高
解像度の指定信号DSによって制御部23が高解像度に
対応する強度指定信号SD、帯電圧指定信号ST及び速
度指定信号VDを発しており、レーザ駆動回路21は高
解像度に対するビーム強度P+  (第2図及び第4図
(A))で発光源12を変調信号LEDSに従って駆動
し、モータ駆動部22はスピンドルモータ15を高解像
度の速度で駆動して、ポリゴンミラー14を係る速度で
回転せしめ、所定の光走査(主走査)速度で発光源12
のレーザ光を走査する。
Next, the operation of the embodiment configuration in FIG. 1 will be explained. In response to the high resolution designation signal DS, the control section 23 issues the strength designation signal SD, charge voltage designation signal ST, and speed designation signal VD corresponding to the high resolution. , the laser drive circuit 21 drives the light emitting source 12 according to the modulation signal LEDS with a beam intensity P+ for high resolution (FIGS. 2 and 4 (A)), and the motor drive section 22 drives the spindle motor 15 at a high resolution speed. The polygon mirror 14 is driven to rotate at a certain speed, and the light emitting source 12 is rotated at a predetermined optical scanning (main scanning) speed.
scan the laser beam.

即ら、単位線幅が高解像度に応したdiに設定されて、
発光源12による書込みが行なわれる。
That is, the unit line width is set to di corresponding to high resolution,
Writing is performed by the light emitting source 12.

次に、解像度指定信号DSが低解像度に切換わると、制
御部23は低解像度に対応する強度指定信号S L)、
帯電圧指定信号ST及び速度tけ定信号VDを発する。
Next, when the resolution designation signal DS is switched to low resolution, the control unit 23 switches the strength designation signal SL) corresponding to the low resolution,
A charging voltage designation signal ST and a speed t-setting signal VD are generated.

これによって、レーザ駆動回路21は第2図及び第4図
(B)の如く低解像度に対するビーム強度P2で発光源
12を変調信号LEDSに従って駆動する。この時変調
信号LEDSの周期(続出クロック)も第18図(B)
のdb2の如く低解像度用に長くなってレーザ駆動回路
21に到来する。
Thereby, the laser drive circuit 21 drives the light emitting source 12 according to the modulation signal LEDS with a beam intensity P2 for low resolution as shown in FIGS. 2 and 4(B). At this time, the period of the modulation signal LEDS (successive clock) is also shown in Fig. 18 (B).
db2 is longer for low resolution and reaches the laser drive circuit 21.

一方、モータ駆動部22は速度を低解像度の速度に切換
えて、スピンドルモータ15を駆動し、ポリゴンミラー
14を係る速度で回転せしめ、低解像度用の光走査速度
で発光源12のレーザ光を走査する。
On the other hand, the motor drive section 22 switches the speed to a low resolution speed, drives the spindle motor 15, rotates the polygon mirror 14 at the speed, and scans the laser beam from the light emitting source 12 at the low resolution optical scanning speed. do.

即ち、副走査方向の解像度は、感光ドラム4の回転速度
(副走査速度)によって定まるが、この例では感光ドラ
ムの回転速度を変えずに、ポリゴンミラー14の主走査
速度を変えて副走査方向の回転速度を等価的に変更して
いる。
That is, the resolution in the sub-scanning direction is determined by the rotation speed (sub-scanning speed) of the photosensitive drum 4, but in this example, the resolution in the sub-scanning direction is determined by changing the main scanning speed of the polygon mirror 14 without changing the rotational speed of the photosensitive drum. The rotation speed of is changed equivalently.

従って、低解像度に応じた単位線幅d2が設定されて、
発光源12による書込みが行なわれる。
Therefore, the unit line width d2 is set according to the low resolution,
Writing is performed by the light emitting source 12.

尚、帯電圧指定信号STによる帯電制御部24の動作は
後述する。
The operation of the charging control section 24 based on the charging voltage designation signal ST will be described later.

次に第1図構成のレーザ駆動回路について詳述する。Next, the laser drive circuit configured in FIG. 1 will be described in detail.

第8図は第1図実施例構成のレーザ駆動回路21の詳細
回路図であり、図中、第1図で示したものと同一のもの
は同一の記号で示してあり、12aはレーザダイオード
であり、発光源として動作するもの、12bはモニター
ダイオードであり、レーザダイオード12aの光を受光
し、電気信号に変換するもの、210は変調回路であり
、変調信号LEDSに応じてスイッチング動作し駆動電
流を流すもの、211はアンプであり、モニターダイオ
ード12bの出力電流を増幅するもの、212はゲイン
変更回路であり、強度指定信号sDに応じてフィードバ
ックゲインを変更するものであり、抵抗R1、R2とト
ランジスタQ1で構成されるもの、213は比較M路で
あり、ゲイン変更回路212からのフィードバック信号
と変調信号LEDSとを比較してレーザダイオード12
aに流すバイアス電流icを変化させるものである。
FIG. 8 is a detailed circuit diagram of the laser drive circuit 21 having the configuration of the embodiment shown in FIG. 1. In the figure, the same parts as shown in FIG. 12b is a monitor diode that receives the light from the laser diode 12a and converts it into an electric signal. 210 is a modulation circuit that performs switching operation according to the modulation signal LEDS and changes the drive current. 211 is an amplifier that amplifies the output current of the monitor diode 12b, 212 is a gain change circuit that changes the feedback gain according to the strength designation signal sD, and resistors R1 and R2. 213 is a comparison path consisting of the transistor Q1, which compares the feedback signal from the gain change circuit 212 and the modulation signal LEDS, and outputs the signal from the laser diode 12.
This is to change the bias current ic flowing through a.

次に、第8図実施例構成の動作について第9図書部波形
図及び第1o図レーザダイオード駆動説明図を用いて説
明する。
Next, the operation of the embodiment configuration shown in FIG. 8 will be explained with reference to the waveform diagram in FIG. 9 and the laser diode drive explanatory diagram in FIG. 1O.

先づ、強度指定信号SDがオフ(高解像度)とすると、
トランジスタQ1はオフである。一方、変調信号LED
Sは変調回路210に大刀し、レーザダイオ−)’ I
 2 aをバイアス電流icに変調信号を上乗せした駆
動電流で駆動する。レーザダイオードの特性は第10図
に示す様に駆動電流対レーザ光量は非線形の特性を有す
る。従って、バイアス電流i(でスレッシュボールドT
近傍まで持っていき、変調信号LEDSをこれに上乗せ
した形で駆動している。
First, if the intensity designation signal SD is off (high resolution),
Transistor Q1 is off. On the other hand, the modulation signal LED
S is connected to the modulation circuit 210, and the laser diode)' I
2a is driven with a drive current obtained by adding a modulation signal to the bias current ic. As shown in FIG. 10, the characteristics of the laser diode are non-linear in terms of the drive current versus the amount of laser light. Therefore, the bias current i (with threshold T
It is brought to the vicinity and driven by adding a modulation signal LEDS to it.

また、レーザーパワーを一定に保つため、モニターダイ
オード12bより発光状態を監視し、アンブ211、ゲ
イン変更回路212を介しフィートハックし、比較回路
213で変調信号LEDSとフィードハック信号FSと
を比較し、バイアス電流ICを制御して、レーザーパワ
ーを一定に制御している。
In addition, in order to keep the laser power constant, the light emitting state is monitored by the monitor diode 12b, and the feed hack signal is subjected to a feed hack via the amplifier 211 and the gain change circuit 212, and the modulation signal LEDS and the feed hack signal FS are compared by the comparison circuit 213. The laser power is controlled to be constant by controlling the bias current IC.

一方、SDがオン(低解像度)となり線幅(強度)の指
定が変わると、トランジスタQ1はオンし、抵抗R2に
よって分圧されるから、ゲインは低下し、従ってモニタ
ーダイオード12bからのフィードハック信号FSのレ
ベルは低下する。このため比較回路213は変調信号L
EDSとの比較の際このレベル低下分だけ、レーザーパ
ワーが落ちたものとみなし、バイアス電流をicの如く
上昇させる。これによってレーザーパワー(光量)はP
lからR2へ上昇し、発光強度が上昇してみかけ上のス
ポット径を拡大し、線幅を低解像度用のd2とせしめる
On the other hand, when SD is turned on (low resolution) and the line width (intensity) specification changes, transistor Q1 is turned on and the voltage is divided by resistor R2, so the gain decreases and therefore the feed hack signal from monitor diode 12b is The level of FS decreases. Therefore, the comparator circuit 213 uses the modulated signal L
When compared with EDS, it is assumed that the laser power has decreased by this level reduction, and the bias current is increased like IC. As a result, the laser power (light amount) is P
The light intensity increases from l to R2, the emission intensity increases, the apparent spot diameter is expanded, and the line width is set to d2 for low resolution.

次に、帯電制御部24の動作について第11図の過剰露
光現象説明図、第12図の濃度特性図、第13図の帯電
電位制御説明図を用いて説明する。
Next, the operation of the charging control section 24 will be explained with reference to FIG. 11, which is an explanatory diagram of overexposure phenomenon, FIG. 12, which is a density characteristic diagram, and FIG. 13, which is an explanatory diagram of charging potential control.

先づ、第11図によって過剰露光によるにじみ現象につ
い゛(説明すると、ある帯電電位vHの感光体に対し適
正なレーザー光量で露光すると、非露光部は第11図(
A)の如(、露光部との境は明確な、矩形状の電位分布
となる。これに対し、レーザー光量を低解像度の場合の
如く強めると、過剰露光が生じ、露光部の抵抗値が極め
て小さくなり、一種のハレーシゴン現象を生じる。この
ため、第11図(B)の如く露光部と非露光部との間の
電位において非露光部の電位が露光部に流れ出した形と
なり、この部分で像が飛び散りにじみとして現われる。
First, we will explain the bleeding phenomenon due to overexposure by referring to FIG.
As shown in A), a rectangular potential distribution with a clear border between the exposed area and This causes a kind of Haleshigon phenomenon.As a result, as shown in FIG. 11(B), the potential in the non-exposed part flows into the exposed part at the potential between the exposed part and the non-exposed part, and this part The image appears as a splatter and smudge.

このため、レーザーパワーを大とすると画質が劣化する
For this reason, when the laser power is increased, the image quality deteriorates.

一方、帯電電位と印刷濃度との関係は第12図に示す様
に帯電電位の上昇と印刷濃度の上昇は比例関係にある。
On the other hand, as shown in FIG. 12, the relationship between the charging potential and the printing density is such that the increase in the charging potential is proportional to the increase in the printing density.

そこで、本発明では、レーザ光量を大(低解像度)とし
た場合に、帯電電位を第13図のvLの如く低下ゼし、
める、即ち、印刷濃度が大ということはそれだけにじみ
やすいということであるから、印刷濃度が小の帯電電位
とすれば、前述の飛び散りによるにじみが最小限となり
、結局にじみを最小に抑えることができる。尚、この場
合、印刷濃度が高解像度では大、低解像度では小となる
が、前述の如く低解像度の場合は単位線幅が大となるか
ら、見た目は変りない。
Therefore, in the present invention, when the amount of laser light is large (low resolution), the charged potential is reduced as shown by vL in FIG.
In other words, the higher the print density, the more likely it is to smear. Therefore, if the charging potential is set to a low print density, the smearing caused by the aforementioned scattering will be minimized, and in the end it will be possible to minimize the smearing. can. In this case, the print density is large at high resolution and small at low resolution, but as described above, the unit line width is large at low resolution, so the appearance remains unchanged.

このため、制御部23はレーザ強度を大と指定した時は
帯電圧指定信号STを小と、レーザ強度を小と指定した
時は帯電圧指定信号STを大と帯電制御部24に指定す
る。これによって、帯電制御部24は制御電圧Vcを変
え、高圧電源2oの帯電電圧を制御して、感光ドラム4
上の帯電電位をレーザ強度に従って第13図のvH(レ
ーザ伸度小、高解像度)又はvL(レーザ強度大、低解
像度)とする。
Therefore, when the control unit 23 designates the laser intensity as high, it designates the charging voltage designation signal ST as low, and when the laser intensity is designated as low, it designates the charging voltage designation signal ST as high. As a result, the charging control section 24 changes the control voltage Vc, controls the charging voltage of the high voltage power supply 2o, and controls the charging voltage of the photosensitive drum 4.
The upper charging potential is set to vH (low laser elongation, high resolution) or vL (large laser intensity, low resolution) in FIG. 13 according to the laser intensity.

第14図は第1図実施例構成の帯電制御部24の詳細回
路図であり、図中、第1図で示したものと同一のものは
同一の記号で示してあり、240は加算器であり、後述
するベース電圧と付加電圧を加算して制御電圧Vcを作
成するもの、241はヘー・スミ圧発生回路であり、低
解像度用のベース電圧(Vc+ +yc2)を発生する
ものであり、R3、R4はその出力抵抗であり、242
は付加電圧付与回路であり、抵抗R1、R2及びトラン
ジスタQTIを有し、帯電指定信号STがオフ(高解像
度)の時、トランジスタQTIがオフとなり、抵抗R+
、R2の中点より付加電圧Vc3を発生ずるものである
FIG. 14 is a detailed circuit diagram of the charging control section 24 having the configuration of the embodiment shown in FIG. 1. In the figure, the same parts as those shown in FIG. 241 is a Hee-Sumi pressure generation circuit that generates a base voltage (Vc+ +yc2) for low resolution, and R3 , R4 is its output resistance, 242
is an additional voltage applying circuit, which includes resistors R1 and R2 and a transistor QTI. When the charging designation signal ST is off (high resolution), the transistor QTI is turned off, and the resistor R+
, R2, an additional voltage Vc3 is generated from the midpoint of R2.

次に、第14図実施例構成の動作について説明する。Next, the operation of the embodiment configuration shown in FIG. 14 will be explained.

帯電圧指定信号STがオンの場合(低解像度)にはトラ
ンジスタQTIがオンであるので付加電圧発生回路24
2から付加電圧が発生しないので加算器240の出力で
ある制御電圧Vcはベース電圧(Vt;++Vc2)と
なり、高圧電源20よりこれに応じた帯電電圧が発生し
、感光体4の帯電電位を第13図のvLとする。
When the charged voltage designation signal ST is on (low resolution), the transistor QTI is on, so the additional voltage generation circuit 24
Since no additional voltage is generated from the adder 240, the control voltage Vc that is the output of the adder 240 becomes the base voltage (Vt; ++Vc2), and the high-voltage power supply 20 generates a corresponding charging voltage to change the charging potential of the photoreceptor 4 to the second level. Let it be vL in Figure 13.

一方、帯電圧指定信号STがオフの場合(高解像度)に
はトランジスタQTIがオフであるので、付加電圧発生
回路242から付加電圧Vc3が発生し、加算器240
の出力である制御電圧Vcはベース電圧(Vc++Vc
2)と付加電圧Vc3との和となり、高圧電源20より
これに応した帯電電圧が発注し、感光体4の帯電電位を
第13図(B)のVHとする。
On the other hand, when the charged voltage designation signal ST is off (high resolution), the transistor QTI is off, so the additional voltage generation circuit 242 generates the additional voltage Vc3, and the adder 240
The control voltage Vc, which is the output of the base voltage (Vc++Vc
2) and the additional voltage Vc3, a corresponding charging voltage is ordered from the high-voltage power supply 20, and the charging potential of the photoreceptor 4 is set to VH in FIG. 13(B).

このようにして、線幅調整のためレーザーパワーを大と
してもにじみの少ない画像を得ることができる。
In this way, an image with less blur can be obtained even if the laser power is increased to adjust the line width.

上述の実施例では、発光源としてレーザダイオードを用
いているが、これに限られず強度可変のものであればよ
く、光走査系も実施例に限られない。
In the above-mentioned embodiment, a laser diode is used as a light emitting source, but the light source is not limited to this, and any type that can have variable intensity may be used, and the optical scanning system is not limited to that in the embodiment.

以上本発明を一実施例により説明したが、本発明は本発
明の主旨に従い種々の変形が可能であり、本発明からこ
れらを排除するものではない。
Although the present invention has been described above using one embodiment, the present invention can be modified in various ways according to the gist of the present invention, and these are not excluded from the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、感光体と、該感光
体を帯電する帯電器と、所定のスポット径で該感光体に
像を書込む発光源と、該発光源の発光強度制御を行なう
強度制御部とを有し、指定された解像度に応じて該強度
制御部が該発光源の発光強度を変えて、見かけ上のスポ
ット径を変更せしめて該解像度に対応する印刷画素径を
得るとともに該発光源の光学的スポット径りを、該指定
解像度の最低解像度時の走査ピッチPm1n 、最高解
像度時の走査ピッチP maxに対し、1.10・(P
min  + Rmax > / 2から1.40 ・
(Pm1n  + Pmax )/2の範囲内に設定し
たことを特徴としているので、−解像度切換に対した線
幅変更を1つの発光源を電気的に制御して行うことがで
きるから、装置構成が簡素化し且つ安価となるという効
果を奏する他に、所望の線幅を容易にえることが可能と
なるという効果も奏する。
As described above, according to the present invention, there is provided a photoreceptor, a charger that charges the photoreceptor, a light emitting source that writes an image on the photoreceptor with a predetermined spot diameter, and control of the light emission intensity of the light emitting source. The intensity control section changes the light emission intensity of the light emitting source according to the specified resolution, changes the apparent spot diameter, and adjusts the print pixel diameter corresponding to the resolution. At the same time, the optical spot diameter of the light emitting source is set to 1.10·(P
min + Rmax > / 2 to 1.40 ・
Since the line width is set within the range of (Pm1n + Pmax)/2, the line width can be changed in response to resolution switching by electrically controlling one light emitting source, so the device configuration can be changed. In addition to being simple and inexpensive, it is also possible to easily obtain a desired line width.

また、光学的スポット径を一定範囲内に設定することに
よって解像度切換に伴ない見かけのスポット径を変えて
も、電圧マージンが最大のものが得られるという効果を
奏し、非強制的又は強制的に帯電電位が変動しても、い
ずれの解像度においても良好な印刷結果が得られ、係る
解像度切換を行なう印刷装置の普及に貢献するところが
大きい。
In addition, by setting the optical spot diameter within a certain range, even if the apparent spot diameter changes due to resolution switching, the maximum voltage margin can be obtained. Even if the charging potential varies, good printing results can be obtained at any resolution, and this greatly contributes to the spread of printing apparatuses that perform such resolution switching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例構成図、第2図は本発明の線
幅調整原理図、第3図はレーザ光量対線幅特性図、第4
図は本発明による線幅調整説明図、第5図は光学的スポ
ット径対感光ドラム表面電位特性図、第6図は光学的ス
ポット径比対動作電圧特性図、第7図は光学的スポット
径対レーザーパワー比特性図、第8図は第1図構成にお
けるレーザ駆動回路の詳細構成図、第9図は第8図構成
の各部波形図、第10図は第8図構成におけるレーザダ
イオード特性図、第11図は過剰露光によるにじみ現象
説明図、第12図は帯電電位対印刷濃度特性図、第13
図は第1図における帯電電位制御説明図、第14図は第
1図実施例構成における帯電制御部の詳細構成図、第1
5図は本発明の対象とする印刷装置の一例構成図、第1
6図は第15図構成の光学系詳細構成図、第17図は電
子写真における記録原理説明図、第18図は線幅調整の
必要性説明図である。 図中、4−感光ドラム(感光体)、5−帯電器、】2−
発光源、14−ポリゴンミラー、15−スピンドルで−
タ、20−高圧電源、21− レープ駆動回路(強度制
御部) 、22−モータ駆動部、23−制御部、24−
帯電制御部。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram of the line width adjustment principle of the present invention, Fig. 3 is a diagram of laser light amount vs. line width characteristics, and Fig. 4 is a diagram of the line width adjustment principle of the present invention.
The figure is an explanatory diagram of line width adjustment according to the present invention, Figure 5 is an optical spot diameter versus photosensitive drum surface potential characteristic diagram, Figure 6 is an optical spot diameter ratio versus operating voltage characteristic diagram, and Figure 7 is an optical spot diameter characteristic diagram. Figure 8 is a detailed configuration diagram of the laser drive circuit in the configuration shown in Figure 1, Figure 9 is a waveform diagram of each part in the configuration shown in Figure 8, and Figure 10 is a characteristic diagram of the laser diode in the configuration shown in Figure 8. , Fig. 11 is an explanatory diagram of the bleeding phenomenon caused by overexposure, Fig. 12 is a graph of charging potential versus printing density characteristics, and Fig. 13
14 is a detailed configuration diagram of the charging control section in the embodiment configuration of FIG. 1.
FIG. 5 is a configuration diagram of an example of a printing device to which the present invention is applied.
6 is a detailed configuration diagram of the optical system of the configuration shown in FIG. 15, FIG. 17 is a diagram illustrating the recording principle in electrophotography, and FIG. 18 is a diagram illustrating the necessity of line width adjustment. In the figure, 4-photosensitive drum (photosensitive member), 5-charger, ]2-
Light source, 14-polygon mirror, 15-spindle-
20-high voltage power supply, 21-rape drive circuit (strength control section), 22-motor drive section, 23-control section, 24-
Charge control section.

Claims (1)

【特許請求の範囲】[Claims] 感光体と、該感光体を帯電する帯電器と、所定のスポッ
ト径で該感光体に像を書込む発光源と、該発光源の発光
強度制御を行なう強度制御部とを有し、指定された解像
度に応じて該強度制御部が該発光源の発光強度を変えて
、見かけ上のスポット径を変更せしめて該解像度に対応
する印刷画素径を得るとともに該発光源の光学的スポッ
ト径Dを、該指定解像度の最低解像度時の走査ピッチP
min、最高解像度時の走査ピッチPmaxに対し、1
.10・(Pmin+Pmax)/2から1.40・(
Pmin+Pmax)/2の範囲内に設定したことを特
徴とする印刷装置。
It has a photoreceptor, a charger that charges the photoreceptor, a light emitting source that writes an image on the photoreceptor with a predetermined spot diameter, and an intensity control section that controls the emission intensity of the light emitting source, and has a specified The intensity control unit changes the light emission intensity of the light source according to the resolution, changes the apparent spot diameter, obtains a print pixel diameter corresponding to the resolution, and changes the optical spot diameter D of the light source. , scanning pitch P at the lowest resolution of the specified resolution
min, 1 for the scanning pitch Pmax at the highest resolution
.. 10・(Pmin+Pmax)/2 to 1.40・(
A printing device characterized in that the setting is within the range of Pmin+Pmax)/2.
JP14548784A 1984-07-13 1984-07-13 Printing device Pending JPS6125165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14548784A JPS6125165A (en) 1984-07-13 1984-07-13 Printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14548784A JPS6125165A (en) 1984-07-13 1984-07-13 Printing device

Publications (1)

Publication Number Publication Date
JPS6125165A true JPS6125165A (en) 1986-02-04

Family

ID=15386394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14548784A Pending JPS6125165A (en) 1984-07-13 1984-07-13 Printing device

Country Status (1)

Country Link
JP (1) JPS6125165A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293566A (en) * 1987-05-27 1988-11-30 Canon Inc Laser bean printer
JPS63293565A (en) * 1987-05-27 1988-11-30 Canon Inc Laser beam printer
JPS63293567A (en) * 1987-05-27 1988-11-30 Canon Inc Laser beam printer
JPH03212664A (en) * 1990-01-17 1991-09-18 Tokyo Electric Co Ltd Optical scanner
EP0869407A2 (en) * 1997-03-31 1998-10-07 Canon Kabushiki Kaisha Image forming apparatus and cartridge removably mountable on the same
JP2015039833A (en) * 2013-08-22 2015-03-02 株式会社リコー Image forming method and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162554A (en) * 1978-06-13 1979-12-24 Ricoh Co Ltd Recording method
JPS5672461A (en) * 1979-11-19 1981-06-16 Ricoh Co Ltd Picture recording method on light scanning system
JPS57164759A (en) * 1981-04-02 1982-10-09 Canon Inc Recorder
JPS58152269A (en) * 1982-03-04 1983-09-09 Fujitsu Ltd Optical recording system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162554A (en) * 1978-06-13 1979-12-24 Ricoh Co Ltd Recording method
JPS5672461A (en) * 1979-11-19 1981-06-16 Ricoh Co Ltd Picture recording method on light scanning system
JPS57164759A (en) * 1981-04-02 1982-10-09 Canon Inc Recorder
JPS58152269A (en) * 1982-03-04 1983-09-09 Fujitsu Ltd Optical recording system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293566A (en) * 1987-05-27 1988-11-30 Canon Inc Laser bean printer
JPS63293565A (en) * 1987-05-27 1988-11-30 Canon Inc Laser beam printer
JPS63293567A (en) * 1987-05-27 1988-11-30 Canon Inc Laser beam printer
JPH03212664A (en) * 1990-01-17 1991-09-18 Tokyo Electric Co Ltd Optical scanner
EP0869407A2 (en) * 1997-03-31 1998-10-07 Canon Kabushiki Kaisha Image forming apparatus and cartridge removably mountable on the same
EP0869407A3 (en) * 1997-03-31 2000-11-22 Canon Kabushiki Kaisha Image forming apparatus and cartridge removably mountable on the same
JP2015039833A (en) * 2013-08-22 2015-03-02 株式会社リコー Image forming method and image forming apparatus

Similar Documents

Publication Publication Date Title
US5239313A (en) Continuously variable resolution laser printer
US6388689B1 (en) Scanning exposure unit, semiconductor laser driving circuit and image forming apparatus
JPS58107557A (en) Electrophotostatic printer
JP2675057B2 (en) Information printing device
US7403214B2 (en) Systems and methods for adjusting the dynamic range of a scanning laser beam
US7277111B2 (en) Multiple speed modes for an electrophotographic device
US5115259A (en) Electrophotographic image forming apparatus
JPS6125165A (en) Printing device
JP2000039748A (en) Image forming device
JPH0364068B2 (en)
JPH0293667A (en) Image forming device
JP3616276B2 (en) Image forming apparatus and image forming method
JP3012087B2 (en) Image forming device
JPS6125366A (en) Electronic photographic printer
JPS6125161A (en) Electrophotographic printer
JPH0254992B2 (en)
JP3705337B2 (en) Thin line scanning recording method
JP5274139B2 (en) Image forming apparatus
US20140093263A1 (en) System and Method for Controlling Multiple Light Sources of a Laser Scanning System in an Imaging Apparatus
JP4200030B2 (en) Image forming apparatus
JP2005178041A (en) Image forming apparatus
JP3563776B2 (en) Image forming apparatus and method
JP3019334B2 (en) Electrophotographic printer
JPH10324019A (en) Image-forming apparatus
JP2002072638A (en) Image forming device