JPS6125160B2 - - Google Patents

Info

Publication number
JPS6125160B2
JPS6125160B2 JP54002235A JP223579A JPS6125160B2 JP S6125160 B2 JPS6125160 B2 JP S6125160B2 JP 54002235 A JP54002235 A JP 54002235A JP 223579 A JP223579 A JP 223579A JP S6125160 B2 JPS6125160 B2 JP S6125160B2
Authority
JP
Japan
Prior art keywords
thin film
stretched
transparent
synthetic rubber
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002235A
Other languages
Japanese (ja)
Other versions
JPS5595999A (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Engineering Co Ltd
Original Assignee
Showa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Engineering Co Ltd filed Critical Showa Engineering Co Ltd
Priority to JP223579A priority Critical patent/JPS5595999A/en
Publication of JPS5595999A publication Critical patent/JPS5595999A/en
Publication of JPS6125160B2 publication Critical patent/JPS6125160B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は透明合成ゴム薄膜材で構成された吸
音構造体に関するものであつて、より詳細には引
張応力―伸び曲線が非直線形で高い伸び率をもち
復帰に応力の遅応答特性を有する透明油展合成ゴ
ム薄膜材と該薄膜材の背後に形成される共鳴空気
層とによつて吸音性能を高め、すぐれた防音・吸
音構造としたものである。 防音のためにエネルギーを転換しまたは遮閉す
る必要から従来の防音構造体の吸音材料として広
く使用されている材料には、a穿孔板、bグラス
ウール、ロツクウールなどの多孔質材又はc板状
材、d発泡材などがあり、これらは単体もしくは
組合せて使用されているが、何れも透明とするこ
とができず、防音構造体の景観を損ねると共に太
陽光線を遮つて屋内環境を悪くしている結果を招
いている。そして、これら吸音材料は粒子表面で
の空気の粘性に起因する減衰又は板の曲げ剛性に
よる減衰を利用する吸音機構に基づくために、特
に、低周波域の吸音率を高めることができない。 また、一部に透明なプラスチツク材が使用され
ているが、これらは吸音性のない遮音壁にしかす
ぎない。 この発明は新規な吸音構造体を提供することを
意図して開発したものである。 この発明の一つの目的は、共鳴効果のもとで外
方からの音エネルギーを内部損失によつて強制的
に高吸音率で吸収させるために、引張応力―伸び
曲線が非直線形で高い伸び率をもち復帰に応力の
遅応答特性をもつ透明合成ゴム薄膜材を用いて共
鳴空気層を構成させることにより、低周波域にお
ける吸音率を高めることのできる吸音構造体を提
供することにある。 この発明の他の目的は、透明合成ゴム薄膜材を
多層に組合せて広い周波数に亘つて優れた吸音性
能を発揮できる吸音構造体を提供することにあ
る。 この発明の性質又は諸目的及び利益は詳細な説
明中の記載ならびに添付図面によつて明確になる
であろう。なお、図面中、同一符号は類似符号を
示すものである。 この発明の吸音機構は材料を構成する実質部分
でのエネルギーの内部損失に起因する減衰であ
る。即ち薄膜材に音の振動エネルギーが浸入して
くる場合、共鳴効果のもとで強制的に内部損失す
なわち材料が遅応答特性をもち、位相の遅れを伴
うようにすれば振動の強制減衰が起り振動の持続
を防げる。従つて、更に外からエネルギーの供給
を求めることになり、音の吸収となつてあらわれ
るのである。ここで振動を受ける板の各点におけ
る位相の遅れ(または進み)とその板の共鳴振動
との相関については既に報告(例えば特願昭53―
99109号明細書)されている。 この発明で述べられる透明ゴム薄膜材の代表例
としては、スチレン・ブタジエンゴム(SBR)の
分子量の大なるブロツク・コポリマーに30〜50%
のプロセス油を乳化状態で混合し共凝固させた油
展SBRであつて、伸び率800%以上にするために
加硫を必要としないものが望ましい。従つて、
JIS硬さは60前後である。 かかるSBRは引張応力―伸び曲線が非直線形で
高い伸び率をもち復帰に応力の遅応答特性を有す
る透明な材料となり得ることは後述の実験例が示
す通りである。従つて、この様な特性を発揮する
油展SBRに限らず上記特性を具有するジエン重合
体の合成ゴムまたはこれらを主成分とする合成樹
脂とのブレンド薄膜材であれば使用可能である。 この発明は透明合全ゴム薄膜材の特性を利用し
て防音構造体に具体化したものであり、その特徴
とするところは、相対向させた枠体の音源側に透
明油展合成ゴム薄膜材を張設し、該音源側と反対
側に透明プラスチツク製しや音板を張設し、前記
張設された両部材間に共鳴空気層を形成させたこ
とにある。 他の発明は、上記両部材間に最適値を求めて透
明油展合成ゴム薄膜材又は分子量を異にした透明
非油展合成ゴムもしくはこれらを主成分とした薄
膜材もしくはこれらを組合せて該ゴム薄膜材を1
乃至数材定の間隔に張設して多層に構成したこと
を特徴とする。このことによつて広い周波域に亘
つて優れた吸音特性を発揮しうる。 この発明は、透明合成ゴム薄膜材で構成される
共鳴空気層を具有する共鳴器をつくり、共鳴周波
数を中心に音のエネルギーを吸収するものであ
る。空気の粘性によるもので板や膜自身の剛性が
無視できるとき、その共鳴周波数〔〕は次式
によるものとされている。 但し、c…空気中の音速 ρ…空気密度 m…単位面積当りの質量 d…背後空気層の厚さ しかし、合成ゴム薄膜材の場合には
The present invention relates to a sound absorbing structure made of a transparent synthetic rubber thin film material, and more specifically to a transparent structure having a non-linear tensile stress-elongation curve, a high elongation rate, and a slow response to stress upon recovery. The sound-absorbing performance is enhanced by the oil-extended synthetic rubber thin film material and the resonant air layer formed behind the thin film material, resulting in an excellent soundproofing/sound-absorbing structure. Materials that are widely used as sound absorbing materials for conventional soundproofing structures due to the need to convert or block energy for soundproofing include (a) perforated plates, (b) porous materials such as glass wool and rock wool, and (c) plate-like materials. , d foam materials, etc. These materials are used alone or in combination, but none of them can be made transparent, spoiling the appearance of the soundproof structure and blocking sunlight, making the indoor environment worse. It's causing consequences. Since these sound-absorbing materials are based on a sound-absorbing mechanism that utilizes attenuation caused by the viscosity of air on the particle surface or attenuation due to the bending rigidity of the plate, it is not possible to increase the sound absorption coefficient particularly in the low frequency range. Also, although transparent plastic materials are used in some areas, these are only sound barriers that do not absorb sound. This invention was developed with the intention of providing a new sound absorbing structure. One purpose of this invention is to forcibly absorb sound energy from the outside with a high sound absorption coefficient through internal loss under the resonance effect. An object of the present invention is to provide a sound absorbing structure capable of increasing sound absorption coefficient in a low frequency range by constructing a resonant air layer using a transparent synthetic rubber thin film material having a slow stress response characteristic and a slow stress response characteristic. Another object of the present invention is to provide a sound absorbing structure that can exhibit excellent sound absorbing performance over a wide range of frequencies by combining transparent synthetic rubber thin film materials in multiple layers. The nature or objects and advantages of the invention will become apparent from the detailed description and accompanying drawings. In addition, in the drawings, the same reference numerals indicate similar reference numerals. The sound absorption mechanism of the present invention is attenuation caused by internal loss of energy in a substantial portion of the material. In other words, when sound vibration energy enters a thin film material, forced attenuation of the vibration will occur if the resonance effect forces the material to have internal loss, that is, the material has slow response characteristics, and is accompanied by a phase delay. Prevents continuation of vibration. Therefore, an additional supply of energy is required from the outside, which manifests itself in the absorption of sound. Here, the correlation between the phase delay (or advance) at each point of the plate subjected to vibration and the resonant vibration of that plate has already been reported (for example, in Japanese patent application No.
99109 specification)). A typical example of the transparent rubber thin film material described in this invention is a large block copolymer of styrene-butadiene rubber (SBR) with a molecular weight of 30 to 50%.
It is desirable that the oil-extended SBR is made by mixing process oils in an emulsified state and co-coagulating them, and that does not require vulcanization to achieve an elongation rate of 800% or more. Therefore,
JIS hardness is around 60. As shown in the experimental examples described below, such SBR can be a transparent material with a non-linear tensile stress-elongation curve, a high elongation rate, and a slow response to stress upon recovery. Therefore, not only oil-extended SBR exhibiting such characteristics, but also synthetic rubbers of diene polymers having the above characteristics or blended thin film materials with synthetic resins having these as main components can be used. This invention was realized in a soundproof structure by utilizing the characteristics of a transparent synthetic rubber thin film material, and its feature is that a transparent oil-extended synthetic rubber thin film material is used on the sound source side of the opposed frames. is stretched, and a transparent plastic tone plate is stretched on the side opposite to the sound source side, and a resonant air layer is formed between the two stretched members. Another invention is to obtain a transparent oil-extended synthetic rubber thin film material, a transparent non-oil-extended synthetic rubber with different molecular weights, a thin film material mainly composed of these, or a combination of these to obtain the optimum value between the two members. 1 thin film material
It is characterized by having a multi-layer structure in which one or more materials are stretched at regular intervals. This makes it possible to exhibit excellent sound absorption characteristics over a wide frequency range. This invention creates a resonator having a resonant air layer made of a transparent synthetic rubber thin film material, and absorbs sound energy centered on the resonant frequency. When the stiffness of the plate or membrane itself can be ignored due to the viscosity of air, the resonance frequency [ 0 ] is determined by the following equation. However, c... Speed of sound in air ρ... Air density m... Mass per unit area d... Thickness of back air layer However, in the case of synthetic rubber thin film material

【式】 については適用できるが、【formula】 It can be applied to

【式】にはよらな いで分子量や伸びの大きくなる程が高くなる
係数が入つてくる。 第1図はこの発明で示される透明合成ゴム薄膜
材の実験データを図表化した引張応力―伸び特性
を示す曲線である。図中の添字及びはSBRで
あり、しかもブロツク・コポリマーで加硫しない
種類のものである。 同図のは復帰の遅応答性を求めて伸び(%)
を大きくするために分子量(粘度平均分子量
Mv)をに比べて1.7倍とし、かつ物性を高める
ようにプロセスオイルを50%混入した油展SBRの
引張応力―伸び曲線を示すものである。の曲線
は、プロセスオイルを混入しないものを示す。
及びのSBR材の膜厚は1mmとした。 なお、図示は破断時伸びの80%伸長における履
歴を示すものである。 同図に見られるように何れも非直線形の姿を描
き高伸び率を示しており、復帰に大きな応力遅れ
をもたらしているが、の油展SBRの伸び率は
のSBRの倍の値すなわち800%以上を有し、復帰
の道程が長い点を特色としている。 第2図は第1図の説明に従う各SBR材の単味の
垂直入射吸音率の測定結果を図表化して示したも
のである。 同図に見られるうに、のプロセスオイルを混
入しない非油展SBRは一般の板状吸音特性そのま
まの値を示し、各周波数域において0.05前後の吸
音率を示し、殆んど吸音効果がないことを示して
いる。これに反し、の油展SBRは1600Hzをピー
クとして高周波域において吸音率0.75という優れ
た値を示している。 さらに、空気層を付加すればその空気層の厚味
に応じてピークが低周波側に寄つて優れた吸音率
を発揮させることができる。 第3図は上記で示されるプロセスオイルを混
入しない非油展SBRの単体では共鳴吸音効果をも
ち得ないものでも空気層を付加することにによつ
て両者一体となつて位相差による共鳴効果を発現
して吸音率を高めることを証した実験データであ
る。 図中の符号は次のものを表わす。 ′:の非油展SBRに空気層をその背面部に10
mm厚で付加したもの。 ′:の非油展SBRに空気層を同じく20mm厚で
付加したもの。 同図に見られるように、添字′で示されるも
のは630Hzにおいて0.70、″のものは500Hzにお
いて実に0.95の吸音率を示すことに至る。 このように、空気層の付加によつて例えば10mm
から20mmの増加に応じて′,″の場合は1/2オ
クターブ低周波側に寄せられるのに対し、の油
展SBRの場合には特に図示していないが、0→20
mmの空気層付加で11/2オクターブと大きく低周
波側に寄せることができる。なお分子量をさらに
低く抑えるとその材料の共鳴点はそれに応じて低
周波側に寄つてくることが実験によつて確められ
た。 次に、上記説明の理論を防音構造体に具体化し
た実施例を示す。 第4図はその縦断面図を示すものにして、数字
1はアルミニウム押出成形による枠体であつて、
この音源側に本発明で述べられる高分子量の透明
油展合成ゴム薄膜体2(膜厚1mm)が枠体に相対
向させて設けられた突出部位1a,1aにボルト
3によつて均一に張設されている。図中の3aは
ナツト、3bは金属パツキングを示す。音源側と
反対側の枠体1に形成された突出部位1a′,1
a′に透明プラスチツク製しや音板4(例えばアク
リル樹脂板)がボルト3及び金属パツキング3b
を介してナツト3aで取付けられ、該ゴム薄膜体
としや音板とのなす空間部位は共鳴空気層5を形
成する。 枠体1は同一の形状の縦枠と横枠とを額縁形に
構成するように型止金具6とボルト類によつて予
め組立てたものが用いられる。 しや音板4は一定の強度をもち透明なプラスチ
ツク材であれば十分使用可能であり、その質量の
選定によつてしや音性能が左右されることは言う
までもない。従つて、その板厚はしや音性能を考
慮して定められる。 第5図は本発明で述べられる透明合成ゴム薄膜
材を多層に張設した吸音構造体の代表例として三
層に構成したものを示すものである。第4図と対
応する符号は同様にあらわれる。 枠体は前部1a、中央部1a″、後部1a′の各突
出部位を構成しており、前部突出部位1a間にス
ペサー7を介して高分子量の透明油展合成ゴム薄
膜材2及び中分子量の透明非油展合成ゴム薄膜材
2′(厚さ1mm)がボルト、金属パツキング及び
ナツトで均一に張設され、各部材間に共鳴空気層
5′が形成される。中央突出部位1a″間に低分子
量の透明非油展合成ゴム薄膜材2″(厚さ1mm)
がボルト、金属パツキング及びナツトによつて均
一に張設され、両部材間に共鳴空気層5″が形成
される。更に後部突出部位1a′に透明プラスチツ
クのしや音板4が同様にボルト、パツキング及び
ナツトによつて張設され、両部材間に共鳴空気層
5が形成される。 油展されない中高分子量の合成ゴム薄膜材と低
分子量の合成ゴム薄膜材は、それ自体で吸音率を
高め得ないことは(1)式及び第2図の説明で指摘し
たとおりである。勿論、三層とも高分子量の油展
合成ゴム薄膜材を張設すれば、吸音率は一層高め
ることができる。 また、必要により油展合成ゴム薄膜材と非油展
ゴム薄膜材を組合せて多層に構成することもでき
る。 共鳴空気層の厚さは、この図示の例では一次空
気層5′で6mm、二次の空気層5″で20mm、三次空
気層5は30mmである。 第6図は第5図に示される構造体のうちしや音
板4を除いた複合吸音構造体についての垂直入射
吸音率の実験結果を示す図表であつて、上記せる
高・中・低各分子量の合成ゴム(SBR)薄膜材の
膜厚は何れも1mmであり、一次共鳴空気層5′の
厚さは6mm、二次共鳴空気層5″の厚さは20mmで
薄膜材2″の背後の空気層の厚さは30mmである。 同図に見られるように低周波側は200Hz以下迄
カバーできており、高周波側は高分子量の合成ゴ
ム薄膜材によつて1600Hz以上迄高い吸音率を示す
ことができた。 なお、共鳴空気層の厚味を小さくすることによ
つてピークが高周波側に寄るから400Hzという中
間の吸音率の降下部を減少できることは、本文中
の空気層の付加による説明の項で述べたとおりで
ある。 また、薄膜材の膜厚を厚くすると透明度を減少
するので透明度及び膜強度を考慮して適正な膜厚
に定めることが望ましい。 このように、この発明は構造簡単にして優れた
吸音率を発揮する吸音構造体となり得ると共に景
観及び環境を損ねない構造体となり得る等の効果
をもたらす。
Regardless of [Formula], a coefficient is entered that increases in value of 0 as the molecular weight and elongation increase. FIG. 1 is a curve showing the tensile stress-elongation characteristics, which is a graph of experimental data of the transparent synthetic rubber thin film material according to the present invention. The subscripts in the figure indicate SBR, which is a block copolymer that is not vulcanized. In the same figure, the growth (%) is determined by the slow response of recovery.
In order to increase the molecular weight (viscosity average molecular weight
This figure shows the tensile stress-elongation curve of oil-extended SBR with Mv) 1.7 times that of SBR and 50% process oil mixed in to improve physical properties. The curve shows that without mixing process oil.
The film thickness of the SBR material was 1 mm. Note that the diagram shows the history at 80% elongation of the elongation at break. As seen in the figure, all of them have a non-linear shape and show a high elongation rate, causing a large stress delay in recovery, but the elongation rate of the oil-extended SBR is twice that of the SBR of It has a score of over 800% and is characterized by a long recovery path. FIG. 2 is a graph showing the measurement results of the normal incidence sound absorption coefficient of each SBR material according to the explanation in FIG. 1. As can be seen in the figure, the non-oil extended SBR that does not contain process oil exhibits the same value as the general plate-like sound absorption properties, exhibiting a sound absorption coefficient of around 0.05 in each frequency range, and has almost no sound absorption effect. It shows. On the other hand, oil-extended SBR shows an excellent sound absorption coefficient of 0.75 in the high frequency range with a peak of 1600Hz. Furthermore, if an air layer is added, the peak will shift to the lower frequency side depending on the thickness of the air layer, and an excellent sound absorption coefficient can be exhibited. Figure 3 shows that even though the non-oil-extended SBR shown above, which does not contain process oil, cannot have a resonant sound absorption effect by itself, by adding an air layer, both of them can combine to produce a resonant effect due to the phase difference. This is experimental data proving that the sound absorption coefficient increases. The symbols in the figure represent the following. ′: Non-oil extended SBR with an air layer on its back side 10
Added in mm thickness. ′: non-oil-extended SBR with an air layer added at the same thickness of 20 mm. As can be seen in the figure, those indicated by the subscript '' exhibit a sound absorption coefficient of 0.70 at 630Hz, and those indicated by ''' exhibit a sound absorption coefficient of 0.95 at 500Hz.In this way, by adding an air layer, for example, 10 mm
In the case of ′,″, the frequency is shifted to the 1/2 octave lower frequency side according to the increase of 20 mm from
By adding an air layer of mm, it is possible to greatly shift the frequency to the low frequency side by 11/2 octaves. It has been confirmed through experiments that if the molecular weight is kept even lower, the resonance point of the material will move closer to the lower frequency side. Next, an example will be shown in which the theory described above is applied to a soundproof structure. FIG. 4 shows a longitudinal cross-sectional view of the same, and numeral 1 is a frame made of aluminum extrusion.
On the sound source side, a high molecular weight transparent oil-extended synthetic rubber thin film body 2 (film thickness 1 mm) described in the present invention is uniformly stretched with bolts 3 to protruding parts 1a, 1a provided opposite to the frame body. It is set up. In the figure, 3a indicates a nut, and 3b indicates a metal packing. Projecting parts 1a', 1 formed on the frame 1 on the side opposite to the sound source side
A transparent plastic sound plate 4 (for example, an acrylic resin plate) is attached to the bolt 3 and the metal packing 3b.
The space between the rubber thin film body and the tone plate forms a resonant air layer 5. The frame 1 used is one in which a vertical frame and a horizontal frame of the same shape are assembled in advance using mold fittings 6 and bolts so as to form a picture frame shape. The sound plate 4 can be sufficiently used as long as it has a certain strength and is made of transparent plastic material, and it goes without saying that the sound performance will be influenced by the selection of its mass. Therefore, the thickness of the plate is determined by taking into consideration the strength and sound performance. FIG. 5 shows a three-layer structure as a representative example of a sound-absorbing structure in which transparent synthetic rubber thin film materials are stretched in multiple layers according to the present invention. Symbols corresponding to those in FIG. 4 appear in the same manner. The frame constitutes a front part 1a, a middle part 1a'', and a rear part 1a', and a high molecular weight transparent oil-extended synthetic rubber thin film material 2 and a middle part are inserted between the front part 1a and a spacer 7. A molecular weight transparent non-oil extended synthetic rubber thin film material 2' (thickness 1 mm) is uniformly stretched with bolts, metal packing and nuts, and a resonant air layer 5' is formed between each member.The central protruding portion 1a'' In between is a thin film of low molecular weight transparent non-oil extended synthetic rubber 2″ (thickness 1mm)
are uniformly tensioned with bolts, metal packing and nuts, and a resonant air layer 5'' is formed between both members.Furthermore, a transparent plastic sheet and tone plate 4 are attached to the rear protruding portion 1a' by bolts, metal packing and nuts. It is stretched by packing and nuts, and a resonant air layer 5 is formed between both members.The medium-high molecular weight synthetic rubber thin film material and the low molecular weight synthetic rubber thin film material, which are not oil-extended, increase the sound absorption coefficient by themselves. What cannot be achieved is as pointed out in the explanation of equation (1) and Figure 2.Of course, the sound absorption coefficient can be further increased if all three layers are covered with high molecular weight oil-extended synthetic rubber thin film materials. Furthermore, if necessary, a multi-layer structure can be constructed by combining an oil-extended synthetic rubber thin film material and a non-oil-extended rubber thin film material.In the illustrated example, the thickness of the resonant air layer is 6 mm for the primary air layer 5', and The next air layer 5'' is 20 mm, and the tertiary air layer 5 is 30 mm. FIG. 6 is a chart showing the experimental results of the normal incidence sound absorption coefficient of the composite sound absorbing structure excluding the inner part and sound plate 4 of the structure shown in FIG. The thickness of the molecular weight synthetic rubber (SBR) thin film material is 1 mm, the thickness of the primary resonant air layer 5' is 6 mm, and the thickness of the secondary resonant air layer 5'' is 20 mm behind the thin film material 2''. The thickness of the air layer is 30mm. As seen in the figure, the low frequency side was able to cover frequencies below 200Hz, and the high frequency side was able to exhibit high sound absorption coefficients up to 1600Hz and above due to the high molecular weight synthetic rubber thin film material. It should be noted that by reducing the thickness of the resonant air layer, the peak shifts to the high frequency side, so it is possible to reduce the drop in the sound absorption coefficient in the middle of 400 Hz, as mentioned in the explanation of adding an air layer in the main text. That's right. Further, as the thickness of the thin film material increases, the transparency decreases, so it is desirable to determine the appropriate film thickness in consideration of transparency and film strength. As described above, the present invention provides effects such as being able to provide a sound absorbing structure with a simple structure and exhibiting excellent sound absorption coefficient, and also being able to provide a structure that does not damage the landscape and environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSBR薄膜体の引張応力―伸び曲線を示
す履歴線図、第2図はSBR薄膜材の単体における
垂直入射吸音率の実験結果を示す図表、第3図は
空気層の付加と垂直入射吸音率との関係を示す実
験結果の図表、第4図は本発明の吸音構造体を示
す基本構成図、第5図は本発明の複合吸音構造体
の一例を示す断面図、第6図は本発明の吸音構造
体の吸音効果の一例を示す図表である。 符号の説明、1…枠体、2,2′,2″…透明合
成ゴム薄膜材、3…ボルト類、4…透明プラスチ
ツクしや音板、5,5′,5″,5…共鳴空気
層。
Figure 1 is a history diagram showing the tensile stress-elongation curve of the SBR thin film material, Figure 2 is a chart showing the experimental results of normal incidence sound absorption coefficient of a single SBR thin film material, and Figure 3 is a graph showing the addition of an air layer and the perpendicular A diagram of the experimental results showing the relationship with the incident sound absorption coefficient, FIG. 4 is a basic configuration diagram showing the sound absorbing structure of the present invention, FIG. 5 is a sectional view showing an example of the composite sound absorbing structure of the present invention, and FIG. 6 is a chart showing an example of the sound absorption effect of the sound absorption structure of the present invention. Explanation of symbols, 1... Frame body, 2, 2', 2''... Transparent synthetic rubber thin film material, 3... Bolts, 4... Transparent plastic sheet and tone plate, 5, 5', 5'', 5... Resonant air layer .

Claims (1)

【特許請求の範囲】 1 相対向させた枠体の音源側に透明油展合成ゴ
ム薄膜材を張設し、該音源側と反対側に透明プラ
スチツクしや音板を張設し、前記張設されたゴム
薄膜材としや音板とのなす空間部位に共鳴空気層
を形成させてなる透明合成ゴム薄膜材よりなる吸
音構造体。 2 相対向させた枠体の音源側に透明油展合成ゴ
ム薄膜材を張設し、該音源側と反対側に透明プラ
スチツクしや音板を張設し、両張設部材間に透明
油展合成ゴム薄膜材又は分子量を異にした透明非
油展合成ゴム薄膜材もしくはこれらを組合せて該
ゴム薄膜材を所定間隔で1乃至数材張設し、該各
ゴム薄膜材のなす空間部位に共鳴空気層を形成さ
せてなる透明合成ゴム薄膜材よりなる複合吸音構
造体。
[Claims] 1. A transparent oil-extended synthetic rubber thin film material is stretched on the sound source side of the opposing frames, a transparent plastic sheet or tone plate is stretched on the side opposite to the sound source side, and the stretched A sound absorbing structure made of a transparent synthetic rubber thin film material in which a resonant air layer is formed in the space formed between the rubber thin film material and the tone plate. 2 A transparent oil-extended synthetic rubber thin film material is stretched on the sound source side of the opposing frames, a transparent plastic sheet or tone plate is stretched on the opposite side of the sound source side, and a transparent oil-extended rubber film is stretched between the two stretched members. Synthetic rubber thin film materials, transparent non-oil-extended synthetic rubber thin film materials with different molecular weights, or a combination of these, one or several thin rubber film materials are stretched at predetermined intervals, and resonance occurs in the spatial region formed by each of the rubber thin film materials. A composite sound-absorbing structure made of transparent synthetic rubber thin film material with an air layer formed therein.
JP223579A 1979-01-16 1979-01-16 Sound absorption structrre consisting of transparent synthetic rubber film material Granted JPS5595999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP223579A JPS5595999A (en) 1979-01-16 1979-01-16 Sound absorption structrre consisting of transparent synthetic rubber film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP223579A JPS5595999A (en) 1979-01-16 1979-01-16 Sound absorption structrre consisting of transparent synthetic rubber film material

Publications (2)

Publication Number Publication Date
JPS5595999A JPS5595999A (en) 1980-07-21
JPS6125160B2 true JPS6125160B2 (en) 1986-06-14

Family

ID=11523683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP223579A Granted JPS5595999A (en) 1979-01-16 1979-01-16 Sound absorption structrre consisting of transparent synthetic rubber film material

Country Status (1)

Country Link
JP (1) JPS5595999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115677U (en) * 1991-03-29 1992-10-14 フジコピアン株式会社 Ink ribbon ink supply structure
JP2006184681A (en) * 2004-12-28 2006-07-13 Yamaha Corp Low-pitched filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823753B2 (en) * 1986-04-24 1996-03-06 松下電工株式会社 Silencer
JP5446134B2 (en) * 2008-06-04 2014-03-19 ヤマハ株式会社 Sound absorbing structure
JP5632595B2 (en) * 2009-08-14 2014-11-26 リケンテクノス株式会社 Sound absorber and sound absorbing structure
JP2011039355A (en) * 2009-08-14 2011-02-24 Riken Technos Corp Sound-absorbing body and sound-absorbing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115677U (en) * 1991-03-29 1992-10-14 フジコピアン株式会社 Ink ribbon ink supply structure
JP2006184681A (en) * 2004-12-28 2006-07-13 Yamaha Corp Low-pitched filter

Also Published As

Publication number Publication date
JPS5595999A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
EP1570461B1 (en) Ultralight trim composite
TWI299853B (en)
US6705268B2 (en) Engine noise barrier
US7731878B2 (en) Process of forming a microperforated polymeric film for sound absorption
US11260735B2 (en) Belt line portion sound insulation structure for automobile and door glass for automobile
JP6165466B2 (en) Soundproof structure
JP5866172B2 (en) Translucent sound absorbing panel
US5031721A (en) Sound absorption barriers
US6708626B2 (en) Double-walled damping structure
US20060096183A1 (en) Sound-absorbing structure using thin film
JPS6125160B2 (en)
JP4226673B2 (en) Multiple glass assembly with soundproofing and thermal insulation
JP4019820B2 (en) Sound absorbing structure
JP3273222B2 (en) Sound insulation
CZ285099B6 (en) Multilayer sound-insulating and absorptive structural part
JPH0976391A (en) Sound insulation structure
JP2001105521A (en) Sound-absorbing structure
JP2002264736A (en) Silencer laid in occupant room of automobile
JP7174138B1 (en) soundproof material
JP5512950B2 (en) Interior parts for vehicles
KR970020414A (en) Composite sandwich structure with foam layers of different densities
JPH0517232Y2 (en)
JPH0343242A (en) Soundproofing material
RU2716043C1 (en) Low-noise technical room
KR200327224Y1 (en) Panel for building