JPS61251463A - Rotary electric machine - Google Patents

Rotary electric machine

Info

Publication number
JPS61251463A
JPS61251463A JP9050385A JP9050385A JPS61251463A JP S61251463 A JPS61251463 A JP S61251463A JP 9050385 A JP9050385 A JP 9050385A JP 9050385 A JP9050385 A JP 9050385A JP S61251463 A JPS61251463 A JP S61251463A
Authority
JP
Japan
Prior art keywords
field
armature
salient pole
cogging
cogging force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9050385A
Other languages
Japanese (ja)
Other versions
JPH0691715B2 (en
Inventor
Tamotsu Nose
保 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP60090503A priority Critical patent/JPH0691715B2/en
Publication of JPS61251463A publication Critical patent/JPS61251463A/en
Publication of JPH0691715B2 publication Critical patent/JPH0691715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To increase an effective magnetic flux while effectively preventing a cogging and to increase a torque by canceling a cogging force generated by a groove for a winding by a cogging force generated at a plurality of projections formed on salient poles, respectively. CONSTITUTION:A cogging force generated at a salient pole 22a is reverse to cogging forces generated at projections 22a3, 22b2, 22c1, respectively, thereby canceling the cogging force. Since the cogging force is canceled by the three projections for one groove of the armature 22, the cogging force shared by the three projection formed at each salient pole can be 1/3, and a gap between the position except the projections of an armature and a field 21 can be largely reduced. Further, since the number of the projections formed at one salient pole is increased, the effective magnetic flux between the field and the armature can be largely increased to increase a torque.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、給電することにより回転出力を得ることがで
きる電動機、あるいは外部から回転力を与えることによ
り電気出力を得ることができる発電機といった回転電機
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to electric motors that can obtain rotational output by supplying electric power, or generators that can obtain electric output by applying rotational force from the outside. Regarding rotating electric machines.

(従来の技術) 一般に、電機子巻線を施すために電機子鉄心に溝を設け
て突極構造にした回転電機は、突極構造でない回転電機
に比べて電機子巻線記多くの界磁磁束を交叉させること
ができるため、小型、軽量で大きな出力が得られる回転
電機となる。しかし電機子鉄心が突極構造の場合には、
電機子鉄心が磁気的に不均一な構造であるために、例え
ば永久磁石などにより構成される界磁部との相互作用に
よってコギングを発生するという問題点がある。
(Prior art) In general, rotating electric machines that have a salient pole structure by providing grooves in the armature core for armature windings have a larger field strength than those that do not have a salient pole structure. Because the magnetic flux can cross, it becomes a rotating electrical machine that is small, lightweight, and can produce high output. However, if the armature core has a salient pole structure,
Since the armature core has a magnetically non-uniform structure, there is a problem in that cogging occurs due to interaction with a field section composed of, for example, a permanent magnet.

このことについて第6図及び第7図を参照しながら説明
する。第6図において、符号1は2極に着磁された円環
状の永久磁石でなる界磁部、2は電機子を構成する電機
子鉄心であり、これは三つの究極部2a、2b、 2c
を有する。この各突極部2as2b、2Cは前記界磁部
10着磁された内面と所定の間隙をおいて対向させられ
、界磁部1と電機子鉄心2のうち、何れか一方が他方に
対して回転自在となっている。なお、符号3a、 3b
、3cは巻線用の溝であり、4a、 4b、 4cは突
極部2a、 2b、 2cにそれぞれ集中巻きして巻装
された3相の電機子巻線である。
This will be explained with reference to FIGS. 6 and 7. In FIG. 6, reference numeral 1 denotes a field section consisting of an annular permanent magnet magnetized into two poles, and 2 denotes an armature core constituting the armature, which consists of three ultimate sections 2a, 2b, and 2c.
has. These salient pole parts 2as2b, 2C are opposed to the magnetized inner surface of the field part 10 with a predetermined gap between them, and either one of the field part 1 and the armature core 2 is opposed to the other. It can be rotated freely. In addition, codes 3a and 3b
, 3c are winding grooves, and 4a, 4b, and 4c are three-phase armature windings wound around the salient pole portions 2a, 2b, and 2c in a concentrated manner, respectively.

ここで、第6図の回転電機を電動機と考えると、電機子
巻線4a、4b、4Cに順に電流を流すことにより、界
磁部1と電機子2との間で発生する電磁力により持続的
な回転トルクを得ることができる。
Here, if we consider the rotating electrical machine shown in Fig. 6 as an electric motor, by passing current through the armature windings 4a, 4b, and 4C in order, the electromagnetic force generated between the field section 1 and the armature 2 can be sustained. rotational torque can be obtained.

また、第6図の回転電機を発電機と考えるならば、回転
子である界磁部1を外部から回転させることにより電機
子巻線4a、4b、4Cに3相の交流出力を得ることが
できる。
Furthermore, if the rotating electrical machine shown in Fig. 6 is considered to be a generator, it is possible to obtain three-phase AC output to the armature windings 4a, 4b, and 4C by rotating the field section 1, which is the rotor, from the outside. can.

ところで、コギング力は界磁部と電機子の磁場に貯えら
れた磁気エネルギーが両者の相対的な回転に応じて変化
することにより生ずるものであり、特に、界磁部の磁気
的不均一性(磁場に起因)と電機子鉄心の磁気的不均一
性(溝に起因)の両者に関係して発生し、第6図のごと
く界磁部1と電機子鉄心2の突極部2a、2b、2Cの
両方に磁気的な周期性がある場合には、一般に、その両
者に共通して存在する調波成分(整合成分)のコギング
力が生ずる。
By the way, the cogging force is generated when the magnetic energy stored in the magnetic fields of the field part and the armature changes according to the relative rotation of the two, and in particular, the cogging force is caused by the magnetic non-uniformity of the field part ( The salient pole portions 2a, 2b of the field portion 1 and the armature core 2, as shown in FIG. When both 2C have magnetic periodicity, a cogging force of a harmonic component (matching component) that is common to both is generally generated.

この点に対処するものとして、上記調波成分の次数を高
くすることにより、コギング力を小さくする手段が提案
されている(例えば、特公昭58−42707号公報)
。第7図はかかる方式の一例を示すものであって、第6
図の例と異なるところは、電機子鉄心12の突極部12
a 、12b 、12cの、界磁部1と対向する部分に
補助溝5al 、5a2.5bl、5b2.5cl 、
5c2を設けた点である。なお、上記各補助溝5al〜
5c2は界磁部1又は電機子鉄心12の回転軸、即ち、
中心点Aを通る中心軸線の長手方向(図面の紙面に対し
て垂直な方向)に設けられている。
To address this issue, a method has been proposed to reduce the cogging force by increasing the order of the harmonic components (for example, Japanese Patent Publication No. 58-42707).
. FIG. 7 shows an example of such a system.
The difference from the example in the figure is that the salient pole portion 12 of the armature core 12
Auxiliary grooves 5al, 5a2.5bl, 5b2.5cl,
5c2 was provided. In addition, each of the above-mentioned auxiliary grooves 5al~
5c2 is the rotating shaft of the field part 1 or armature core 12, that is,
It is provided in the longitudinal direction of the central axis passing through the center point A (in the direction perpendicular to the plane of the drawing).

この結果、補助溝を設けることにより、実質的にコギン
グ力の原因となる溝の数を増やしたことになり、鉄心に
よる調波成分が、補助溝を2個設けたとすれば3倍の周
波数となるので高調波成分となり、コギング力が減少す
る。しかし、かかる手段では、界磁部の着磁状態がある
特定の場合にのみ有効であるが、この着磁状態が変化す
るとコギング力が変化してしまう欠点がある。
As a result, by providing auxiliary grooves, we have essentially increased the number of grooves that cause cogging force, and the harmonic components due to the iron core will have three times the frequency if two auxiliary grooves were provided. Therefore, it becomes a harmonic component and the cogging force decreases. However, such means is effective only in a certain specific case of the magnetized state of the field part, but has the drawback that the cogging force changes when the magnetized state changes.

そこで、本出願人は、電機子の突極の界磁に対向する部
位であって、巻線用の谷溝の位置に対して(360°/
界磁極数又はこの整数倍)だけずれた部位に凸部を設け
たてなる回転電機について先に特許出願をした(特願昭
59−6759号)。
Therefore, the present applicant proposed a site that faces the field of the salient pole of the armature, and that is (360°/
We previously filed a patent application (Japanese Patent Application No. 59-6759) for a rotating electric machine in which a convex portion is provided at a position shifted by the number of field poles or an integral multiple thereof.

(発明が解決しようとする問題点) 上記特願昭59−6759号の回転電機によれば、電機
子の巻線用の溝によって生ずるコギング力が、その凸部
によって互いに相殺され、コギング力が著しく減少する
という効果があり、また、巻線用の溝によるコギング力
を凸部により直接的に打ち消すため、界磁の磁束波形、
即ち、着磁状態にほとんど影響されなくなり、界磁に対
する着磁にばらつきがあってもコギング力を減少させる
ことができるという効果がある。
(Problems to be Solved by the Invention) According to the rotating electric machine disclosed in Japanese Patent Application No. 59-6759, the cogging forces generated by the grooves for the windings of the armature are canceled out by the convex portions, and the cogging forces are reduced. In addition, since the cogging force caused by the winding groove is directly canceled by the convex part, the magnetic flux waveform of the field,
That is, there is an effect that the cogging force can be reduced even if there is variation in magnetization with respect to the field because it is hardly affected by the magnetization state.

しかし、上記出願に係る回転電機によれば、電機子の凸
部の高さを、巻線用溝によるコギング力を相殺するだけ
の高さにする必要があり、その結果、凸部以外の凹部と
界磁とのギャップが大きくなり、有効磁束が減少してト
ルクが減少することがあった。
However, according to the rotating electric machine according to the above application, it is necessary to set the height of the convex part of the armature to a height sufficient to offset the cogging force due to the winding groove, and as a result, the concave part other than the convex part The gap between the magnetic field and the magnetic field becomes large, and the effective magnetic flux decreases, resulting in a decrease in torque.

また、電機子の突極部に、巻線用の溝に対して(360
’ /界磁極数)だけずれた部位に凸部を設けるという
条件で界磁の磁極数を4極以上の偶数にすると、はとん
どの場合、第8図に示されているように電機子2の各突
極部2a、2b、 2cの中心でなく、偏倚した部分に
凸部6a、6b、6cが形成されることになり、電機子
2の表裏の形状が異なるために組み立てが煩雑になると
いう問題もある。
In addition, the salient pole part of the armature has a groove for the winding (360
If the number of magnetic poles of the field is set to an even number of 4 or more under the condition that the convex portion is provided at a position shifted by 1/number of field poles, in most cases the armature will The convex portions 6a, 6b, 6c are formed not at the center of each salient pole portion 2a, 2b, 2c of the armature 2, but at offset portions, and the front and back sides of the armature 2 have different shapes, making assembly complicated. There is also the issue of becoming.

本発明は、上記出願に係る発明のコギング防止原理を利
用し、コギング防止効果を損なうことなく有効磁束を大
きくし、トルクの増大を図った回転電機を提供すること
を目的とする。
An object of the present invention is to provide a rotating electrical machine that uses the cogging prevention principle of the invention according to the above application to increase effective magnetic flux and increase torque without impairing the cogging prevention effect.

(問題点を解決するための手段) 本発明の回転電機は、界磁に2n(ただし、nは2以上
の整数)極を着磁すると共に、電機子の突極の上記界磁
に対向する部位であって、巻線用の谷溝の位置に対して
(360°/界磁極数又はこの整数倍)だけずれた各突
極の部位に複数個の凸部を設けたことを特徴とする。
(Means for Solving the Problems) The rotating electric machine of the present invention has 2n (however, n is an integer of 2 or more) poles magnetized in the field, and the salient poles of the armature are opposed to the field. A plurality of convex portions are provided at the portion of each salient pole that is shifted by (360°/number of field poles or an integral multiple thereof) with respect to the position of the winding groove. .

(作用) 電機子の一つの巻線用溝によって生ずるコギング力と各
突極における複数の凸部によって生ずるコギング力は互
いに逆向きに作用して相殺され、コギング力が減少する
。一つの巻線用溝に生ずるコギング力を相殺するための
各突極における複数の凸部のコギング力は数分の−ずつ
分担すればよく、よって、各凸部の高さは、各突極に一
つだけ凸部を設けた場合に比べて数分の−で足りる。
(Operation) The cogging force generated by one winding groove of the armature and the cogging force generated by the plurality of convex portions of each salient pole act in opposite directions and cancel each other out, thereby reducing the cogging force. In order to offset the cogging force generated in one winding groove, the cogging force of the plurality of protrusions on each salient pole can be divided by a fraction of the number of parts. Therefore, the height of each protrusion is Compared to the case where only one convex portion is provided, it is necessary to reduce the amount by several minutes.

(実施窃り 第1図において、符号21は周方向に4極に着磁された
円環状の永久磁石でなる界磁、22は鉄心で構成された
電機子であり、この電機子22は三つの突極22a 、
22a 、22cを有している。この各突極22a 、
22b 、22cは上記界磁21の内面と所定の間隙を
おいて対向させられ、界磁21と電機子22のうち何れ
か一方が他方に対して回転自在となっている。上記各突
極22a 、 22b 、 22c相互間には巻線用の
溝23a 、23b 、 23cが形成され、各突極2
2a122b 、22cの基部には上記溝23a 、2
3b 、23cを通して3相の電機子巻線24a 、2
4b 、24cが集中巻によって巻装されている。
(In FIG. 1, reference numeral 21 is a field made of an annular permanent magnet magnetized into four poles in the circumferential direction, and 22 is an armature composed of an iron core. Two salient poles 22a,
22a and 22c. Each salient pole 22a,
22b and 22c are opposed to the inner surface of the field 21 with a predetermined gap therebetween, and one of the field 21 and the armature 22 is rotatable relative to the other. Winding grooves 23a, 23b, 23c are formed between each of the salient poles 22a, 22b, 22c.
The grooves 23a, 2a are formed at the bases of 2a122b, 22c.
Three-phase armature windings 24a, 2 through 3b, 23c
4b and 24c are wound by concentrated winding.

電機子22の各突極22a 、 22b 、 22cに
は、界磁21に対向する部位において、各突極22a 
、22b、22cごとに複数の凸部22a1.22a2
.22a3.22b1.22b2.22b3.22C1
,22c2.22c3が設けられている。
Each of the salient poles 22a, 22b, and 22c of the armature 22 includes a portion of the salient pole 22a that faces the field 21.
, 22b, 22c each have a plurality of convex portions 22a1, 22a2.
.. 22a3.22b1.22b2.22b3.22C1
, 22c2, 22c3 are provided.

これらの凸部22a1〜22c3は、上記巻線用の谷溝
23a7.23b、23Cに対して90゛ずれた部位お
よび180°ずれた部位にそれぞれ設けられている。
These convex portions 22a1 to 22c3 are provided at positions shifted by 90° and 180° with respect to the valley grooves 23a7, 23b, and 23C for the winding, respectively.

界磁の磁極数と、電機子の各突極に設ける凸部の部位を
一般的に示すと、界磁の磁極数は2n極(ただし、nは
2以上の整数)とし、電機子の各突極に設ける凸部の部
位は、前記巻線用の谷溝23a 、23b 、23cの
位置に対して(360°/界磁極数又はこの整数倍)だ
けずらした部位となり、かかる条件を満たせばコギング
力を減少させることができる。
Generally speaking, the number of magnetic poles of the field and the location of the convex portion provided on each salient pole of the armature are as follows: The number of magnetic poles of the field is 2n poles (where n is an integer of 2 or more), and each salient pole of the armature is The portion of the convex portion provided on the salient pole is a portion shifted by (360°/number of field poles or an integral multiple thereof) with respect to the position of the valley grooves 23a, 23b, and 23c for the windings, and if such conditions are satisfied. Cogging force can be reduced.

上記一般条件に従って第1図の実施例の界磁21の極数
と各凸部22a1〜22c3の形成部位を説明すると、
nを2として界磁21の極数を4極とし、巻線用の谷溝
23a 、23b 、23cに対しく360°/界磁極
数)である90°だけずれた部位及びこの90°に整数
の2をかけた180°だけずれた部位にそれぞれ上記各
凸部22a1〜22c3が設けられている。
The number of poles of the field 21 and the formation locations of the convex portions 22a1 to 22c3 in the embodiment shown in FIG. 1 will be explained according to the above general conditions.
When n is 2 and the number of poles of the field 21 is 4, a portion shifted by 90° (360°/number of field poles) with respect to the valley grooves 23a, 23b, 23c for windings, and an integer at this 90°. The above-mentioned convex portions 22a1 to 22c3 are provided at positions shifted by 180° multiplied by 2.

次に、上記第1図の実施例に係る回転電機のコギング減
少作用について第3図を参照しながら説明する。第3図
の状態では、界磁21に対し電機子22が右方に相対移
動することにより、突極22aが界磁21のN極から離
れようとしてコギング力が発生しており、これと同時に
、界磁21の各磁極の中性点B、C,D部に各突極22
a 、 22b 、 22cの凸部22a3.22b2
.22c1が入ろうとしており、これによってコギング
力が発生している。上記突極22aに発生する前者のコ
ギング力と、後者の各凸部22a3.22b2.22c
1に発生するコギング力は互いに逆向きであり、これに
よりコギング力が相殺される。
Next, the cogging reduction effect of the rotating electric machine according to the embodiment shown in FIG. 1 will be explained with reference to FIG. 3. In the state shown in FIG. 3, as the armature 22 moves rightward relative to the field 21, a cogging force is generated as the salient pole 22a tries to move away from the N pole of the field 21, and at the same time , each salient pole 22 at the neutral point B, C, D of each magnetic pole of the field 21.
Convex portions 22a3, 22b2 of a, 22b, 22c
.. 22c1 is about to enter, causing a cogging force. The former cogging force generated on the salient pole 22a and the latter convex portions 22a3.22b2.22c
The cogging forces generated at 1 are in opposite directions, so that the cogging forces cancel each other out.

このように、上記実施例では、電機子22の一つの溝に
対して三つの凸部によってコギング力を相殺するように
なっているため、各突極にそれぞれ3個ずつ設けた各凸
部が分担するコギング力は3分の1でよく、よって、第
2図に示されているように、各凸部22a1〜22c3
の高さtは、前述の出願に係る発明のように各突極に凸
部を1個ずつ設けた場合に比べて3分の1の高さに減少
させることができる。従って、電機子の各凸部以外の部
位と界磁とのギャップを大幅に減少させることができ、
しかも、一つの突極に設けられる凸部の数も増加してい
るので、界磁と電機子との間の有効磁束が大幅に増加し
、トルクの増大を図ることができる。
In this way, in the above embodiment, the cogging force is canceled out by the three convex portions for one groove of the armature 22, so that each salient pole has three convex portions. The cogging force to be shared may be one-third, so as shown in FIG.
The height t can be reduced to one-third of the height when each salient pole is provided with one convex portion as in the invention related to the above-mentioned application. Therefore, the gap between the field and parts other than the convex parts of the armature can be significantly reduced.
Moreover, since the number of convex portions provided on one salient pole is increased, the effective magnetic flux between the field and the armature is significantly increased, and the torque can be increased.

なお、第2図に示されているように、各凸部22al〜
22c3の角度θ1は、谷溝23a 、23b 、 2
3cの角度θ2と同一にすることが好ましいが、発生ト
ルクおよびコギング力の許容範囲から、θ1=(0,5
〜2.0)・θ2の範囲であれば実用上問題ない。
In addition, as shown in FIG. 2, each convex portion 22al~
The angle θ1 of 22c3 is the valley groove 23a, 23b, 2
It is preferable to set the angle θ2 to be the same as the angle θ2 of 3c.
~2.0)·θ2, there is no practical problem.

第4図、第5図は本発明の別の実施例を示す。4 and 5 show another embodiment of the invention.

第4図の実施例は、nを4として界磁31の磁極数を8
とし、電機子32に三つの突極32a 、 32b 、
 32cを形成し、各突極32a 、32b 、32c
の界磁31との対向部位に、各突極ごとに複数個の凸部
を、巻線用の谷溝33a 、33b 、 33cの位置
に対しく360゜/界磁極数)である45°及びこの整
数倍である  。
In the embodiment shown in FIG. 4, n is 4 and the number of magnetic poles of the field 31 is 8.
The armature 32 has three salient poles 32a, 32b,
32c, each salient pole 32a, 32b, 32c
A plurality of convex portions are provided for each salient pole at a portion facing the field 31 at an angle of 360°/number of field poles (360°/number of field poles) with respect to the position of the winding grooves 33a, 33b, 33c. It is an integer multiple of this.

90°、135°、180°だけずれた部位に設けてな
るものである。
They are provided at locations shifted by 90°, 135°, and 180°.

第5図の実施例は、nを2として界磁41の磁極数を4
とし、電機子42に5個の突極42a 、42b、42
c 、 42d 、 42eを形成し、この各突極42
a 〜42eの界磁41との対向部位に、各突極ごとに
複数個の凸部を、巻線用の谷溝43a 、43b 、 
43c 、43d、43eの位置に対しく360°/界
磁極数)である90゜及びその整数倍である180°だ
けずれた部位に設けてなるものである。
In the embodiment shown in FIG. 5, n is 2 and the number of magnetic poles of the field 41 is 4.
The armature 42 has five salient poles 42a, 42b, 42.
c, 42d, 42e, and each salient pole 42
A plurality of convex portions are provided for each salient pole at the portions a to 42e facing the field 41, and valley grooves 43a, 43b for winding are provided.
43c, 43d, and 43e are provided at positions shifted by 90°, which is 360°/number of field poles, and 180°, which is an integral multiple thereof.

第4図、第5図の実施例の場合も、第1図の実施例につ
いて説明した作用効果と同様の作用効果を奏する。
The embodiments shown in FIGS. 4 and 5 also provide the same effects as those described for the embodiment shown in FIG.

(発明の効果) 本発明によれば、1箇所の巻線用の溝によって発生する
コギング力を、各突極に設けた複数個の凸部に発生する
コギング力で打ち消すことができるため、上記凸部の高
さを、各突極に凸部を1個ずつ設けた場合に比べて低く
することができる。
(Effects of the Invention) According to the present invention, the cogging force generated by the winding groove at one location can be canceled out by the cogging force generated by the plurality of convex portions provided on each salient pole. The height of the convex portion can be made lower than when each salient pole is provided with one convex portion.

従って、界磁に対する電機子の上記凸部以外の部分のギ
ャップを小さくすることができることと、界磁に近接す
る凸部の数が増えてその面積が増大することとの相乗効
果により有効磁束が増大し、よって、コギングを有効に
防止しつつ、トルクの大きな回転電機を提供することが
できる。また、一つの突極に対して複数の凸部を設けた
から、電機子を構成するコアは対称形になり、表裏が同
一形状になるため、組み立て作業の効率化及び組み立て
ミスの防止を図ることもできる。
Therefore, the effective magnetic flux is increased due to the synergistic effect of being able to reduce the gap between the parts of the armature other than the above-mentioned convex parts with respect to the field, and increasing the number of convex parts close to the field and increasing their area. Therefore, it is possible to provide a rotating electrical machine with a large torque while effectively preventing cogging. In addition, since multiple convex parts are provided for one salient pole, the core that makes up the armature is symmetrical, and the front and back sides have the same shape, which improves the efficiency of assembly work and prevents assembly errors. You can also do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は同上
実施例の要部を拡大して示す断面図、第3図は上記実施
例においてコギング力が減少されることを説明するため
にモデル的に示す展開図、第4図は本発明の別の実施例
を示す断面図、第5図は本発明のさらに別の実施例を示
す断面図、第6図は従来の回転電機の一例を示す断面図
、第7図は従来の回転電機の別の例を示す断面図、第8
図は従来の回転電機のさらに別の例を示す断面図である
。 21.3L 41−界磁、 22.32.42・−・電
機子、22a 、 22b 、 22c 、 32a 
、 32b 、 32c 、 42a 。 42b 、 42c 、 42d 、 42e ・−突
極、23a 、23b 、 23c 、 33a 、 
33b 、 33c 、 43a 。 43b 、 43c 、 43d 、 43e −巻線
用の溝、22al、 22B2.22a3.22b1.
22b2.22b3.22c1.22c2.22c3−
凸部。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the main part of the same embodiment, and Fig. 3 explains how the cogging force is reduced in the above embodiment. FIG. 4 is a cross-sectional view showing another embodiment of the present invention, FIG. 5 is a cross-sectional view showing yet another embodiment of the present invention, and FIG. 6 is a conventional rotation FIG. 7 is a cross-sectional view showing an example of an electric machine; FIG. 7 is a cross-sectional view showing another example of a conventional rotating electric machine; FIG.
The figure is a sectional view showing yet another example of a conventional rotating electric machine. 21.3L 41-field, 22.32.42... armature, 22a, 22b, 22c, 32a
, 32b, 32c, 42a. 42b, 42c, 42d, 42e - salient pole, 23a, 23b, 23c, 33a,
33b, 33c, 43a. 43b, 43c, 43d, 43e - groove for winding, 22al, 22B2.22a3.22b1.
22b2.22b3.22c1.22c2.22c3-
Convex part.

Claims (1)

【特許請求の範囲】[Claims] 巻線用の溝及び突極を有する電機子を界磁に対向させて
配設し、電機子と界磁のうちの何れか一方を他方に対し
て回転させる回転電機において、上記界磁に2n(ただ
し、nは2以上の整数)極を着磁すると共に、上記電機
子の突極の上記界磁に対向する部位であって、前記巻線
用の各溝の位置に対して(360°/界磁極数又はこの
整数倍)だけずれた各突極の部位に複数個の凸部を設け
たことを特徴とする回転電機。
In a rotating electrical machine in which an armature having a winding groove and salient poles is arranged to face a field, and one of the armature and the field is rotated relative to the other, the field has a 2n (However, n is an integer of 2 or more) At the same time as magnetizing the pole, it is a portion of the salient pole of the armature that faces the field, and is located at an angle (360°) with respect to the position of each groove for the winding. A rotating electric machine characterized in that a plurality of convex portions are provided at portions of each salient pole shifted by / field pole number or an integral multiple thereof).
JP60090503A 1985-04-26 1985-04-26 Rotating electric machine Expired - Fee Related JPH0691715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090503A JPH0691715B2 (en) 1985-04-26 1985-04-26 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090503A JPH0691715B2 (en) 1985-04-26 1985-04-26 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPS61251463A true JPS61251463A (en) 1986-11-08
JPH0691715B2 JPH0691715B2 (en) 1994-11-14

Family

ID=14000298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090503A Expired - Fee Related JPH0691715B2 (en) 1985-04-26 1985-04-26 Rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0691715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057864A (en) * 1999-12-23 2001-07-05 이형도 A brushless motor of single phase
JP2004242471A (en) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd Commutator motor
JP2010156227A (en) * 2008-12-26 2010-07-15 Starting Ind Co Ltd Recoil starter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842707A (en) * 1981-09-07 1983-03-12 Kawasaki Steel Corp Construction for refractory lining of blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842707A (en) * 1981-09-07 1983-03-12 Kawasaki Steel Corp Construction for refractory lining of blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057864A (en) * 1999-12-23 2001-07-05 이형도 A brushless motor of single phase
JP2004242471A (en) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd Commutator motor
JP2010156227A (en) * 2008-12-26 2010-07-15 Starting Ind Co Ltd Recoil starter

Also Published As

Publication number Publication date
JPH0691715B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US6104117A (en) Motor with reduced clogging torque incorporating stator salient poles and rotor magnetic poles
US5510662A (en) Permanent magnet motor
US7034424B2 (en) Permanent magnetic rotating machine
US4011479A (en) Stator construction for a permanent magnet-excited d-c machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JPH0219695B2 (en)
JP2006087283A (en) Permanent magnet type rotation motor
JPH01234038A (en) Revolving-field type synchronous machine
JPS61251463A (en) Rotary electric machine
JP3796609B2 (en) Permanent magnet motor
JP3350971B2 (en) PM type vernier motor
JPH11299143A (en) Rotor of electric rotary machine
JPH01231645A (en) Multi-phase permanent magnet type synchronous machine
JP2598770Y2 (en) Rotating electric machine
JPH034133Y2 (en)
JPH07212994A (en) Permanent-magnet motor
JPH0345140A (en) Permanent magnet moving body
JPS6198143A (en) Permanent magnet rotary electric machine
JP3503983B2 (en) Electric motor
JPH04271258A (en) Motor
JPH0783577B2 (en) Rotating electric machine
JPH07322537A (en) Rotor for salient pole rotating machine
JPS62114454A (en) Brushless motor
JP2002300758A (en) Permanent magnet motor
JPS5842707B2 (en) rotating electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees