JPS61250993A - El element - Google Patents

El element

Info

Publication number
JPS61250993A
JPS61250993A JP60092884A JP9288485A JPS61250993A JP S61250993 A JPS61250993 A JP S61250993A JP 60092884 A JP60092884 A JP 60092884A JP 9288485 A JP9288485 A JP 9288485A JP S61250993 A JPS61250993 A JP S61250993A
Authority
JP
Japan
Prior art keywords
layer
thin film
dielectric constant
light emitting
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092884A
Other languages
Japanese (ja)
Inventor
布村 恵史
佐野 與志雄
和明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60092884A priority Critical patent/JPS61250993A/en
Priority to US06/857,374 priority patent/US4757235A/en
Publication of JPS61250993A publication Critical patent/JPS61250993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は発光表示装置や面光源として利用されるKL(
エレクトロルミネセンス)素子に関するものである。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a KL (KL) used as a light emitting display device or a surface light source.
The invention relates to electroluminescent (electroluminescent) elements.

(従来技術とその問題点) 螢光体物質に電圧を印加することによシ発光を呈する、
所謂、エレクトロルミネセンスが発見されて以来、面光
源や表示装置への応用を目的として多くの研究開発が行
なわれてきた。EL素子の構成も種々のものが提案検討
されてきたが、薄膜のEL発光層を両側から絶縁体薄膜
で挾み込んだ交流駆動の薄膜EL素子が発光特性、安定
性に優れ情報端末用のディスプレイ等として実用に供さ
れている。第3図にこの代表的な2重絶縁型薄膜EL素
子の基本構造を示す。(ニス・、アイ・ディ・74・ダ
イジェスト・オプ・テクニカル・ペーパーズ・84頁、
 5ID74 digest of technica
l papers)。
(Prior art and its problems) A fluorescent material that emits light by applying a voltage to it.
Since the discovery of so-called electroluminescence, much research and development has been conducted with the aim of applying it to surface light sources and display devices. Various configurations of EL elements have been proposed and studied, but AC-driven thin-film EL elements, in which a thin-film EL light-emitting layer is sandwiched between insulating thin films from both sides, have excellent light-emitting characteristics and stability, and are the most suitable for information terminals. It is put into practical use as a display, etc. FIG. 3 shows the basic structure of this typical double-insulated thin film EL device. (Niss, I.D. 74 Digest Op Technical Papers, p. 84,
5ID74 digest of technica
l papers).

ガラス基板3工上にITOやネサ膜等の透明電極32゜
薄膜第1絶緑体層33 、 Zn8 : Mn +Zn
8 :’rbi’。
A transparent electrode such as ITO or Nesa film 32° thin film first anti-green body layer 33 on the glass substrate 3, Zn8: Mn + Zn
8: 'rbi'.

薄膜等の発光層34.更にその上に薄膜第2絶緑体層3
5 、 AJ薄膜等の背面電極36からなる多層薄膜構
造を有している。第1及び第2絶緑体層はY、0.。
Light emitting layer 34, such as a thin film. Furthermore, a thin second permanent green body layer 3 is formed thereon.
5. It has a multilayer thin film structure consisting of a back electrode 36 such as an AJ thin film. The first and second green body layers are Y, 0. .

Ta20H、A7205 y8i3N4 、 BaTi
O3、、5rTi03等の0.2μ〜1μ程度の厚さの
透明誘電体薄膜であシスバッタリングや真空蒸着等によ
り形成されている。 この薄膜絶緑体層は高電圧の印加
による過大な電流が発光層内を流れることを防止し、破
壊を防ぐと共に湿気や有害なイオンの汚染から発光層を
保護し信頼性を向上させるはかシではなく、素子の発光
輝度や発光効率の向上をももたらす役割を担っている。
Ta20H, A7205y8i3N4, BaTi
It is a transparent dielectric thin film of O3, 5rTi03, etc. with a thickness of about 0.2 μm to 1 μm, and is formed by cis battering, vacuum evaporation, or the like. This thin film insulating layer prevents excessive current from flowing within the light emitting layer due to the application of high voltage, preventing destruction, and protecting the light emitting layer from moisture and harmful ion contamination, improving reliability. It also plays a role in improving the luminance and luminous efficiency of the device.

しかしながら、このような素子構成においても実用上多
くの問題がある。即ち表示装置や面光源への用途では相
当広い面積にわたって素子の絶縁破壊の核となる欠陥を
皆無にすることが非常に困難であり初期の電圧印加によ
シ素子破壊を生じるために製造の歩走シが低いことであ
る。また、素子を発光させるに必要な駆動電圧は絶緑体
層にも分割印加されるために高くならざるを得す、駆動
回路も高コストなものになる欠点がある。
However, even in such an element configuration, there are many practical problems. In other words, in applications such as display devices and surface light sources, it is extremely difficult to completely eliminate defects that can cause dielectric breakdown of the device over a fairly wide area, and manufacturing steps are required because the initial voltage application causes device breakdown. The reason is that the running distance is low. In addition, the drive voltage required to cause the device to emit light must be high because it is applied to the non-green material layer in parts, and the drive circuit also has the disadvantage of being expensive.

これらの従来の薄膜EL素子の欠点を低減するために絶
緑体層として薄膜絶緑体層の替わりに粉末原料を焼成し
た高誘電率のセラミック層を採用したEL素子を検討し
てきた。この型のII、素子の例を第4図に示す。基板
41上に電極42、高誘電率セラミック絶緑体層43、
薄膜発光層44、薄膜第2絶緑体層45、透明電極46
からなる基本構造を有している。なお薄膜第2絶緑体層
45は必ずしもなくてもよい。このような構造のEL素
子は積層セラミック技術や厚膜技術と薄膜技術の併用に
よシ製造することができる。ここで高誘電率セラミ、り
絶緑体層としてBaTi0j系やpbを含む複合ペロプ
スカイト系の材料を使用することによシ数1000から
20000以上もの比誘電率が実現される。従って、こ
のセラミック絶緑体層の厚さを10μm以上の厚さにし
ても、従来の薄膜絶緑体層を採用した場合と同等以上の
大容量の絶緑体層とすることができる。またこのように
厚い層厚では絶縁耐圧が非常に高(、EL素子とした場
合も実用的な印加電圧では絶縁破壊による素子破壊を皆
無にすることができる。更に、このセラミック絶緑体層
の容量が大きいために駆動電圧の容量分割分が減少し有
効に発効層に電圧印加されるために駆動電圧の低電圧化
を図ることもできる。
In order to reduce the drawbacks of these conventional thin-film EL devices, studies have been conducted on EL devices that employ a high dielectric constant ceramic layer made from fired powder raw materials instead of the thin-film non-green material layer. An example of this type II device is shown in FIG. On the substrate 41, an electrode 42, a high dielectric constant ceramic material layer 43,
Thin film light emitting layer 44, thin film second evergreen layer 45, transparent electrode 46
It has a basic structure consisting of. Incidentally, the thin film second evergreen body layer 45 does not necessarily have to be provided. An EL element having such a structure can be manufactured by using laminated ceramic technology or a combination of thick film technology and thin film technology. Here, by using a high dielectric constant ceramic or a composite perovskite material containing BaTi0j or PB as the dielectric layer, a dielectric constant of from 1,000 to 20,000 or more can be realized. Therefore, even if the thickness of the ceramic ceramic layer is 10 .mu.m or more, the ceramic layer can have a large capacity equivalent to or higher than that obtained when a conventional thin film layer is used. In addition, with such a thick layer, the dielectric strength voltage is extremely high (and even in the case of an EL element, there will be no breakdown of the element due to dielectric breakdown at a practical applied voltage. Since the capacitance is large, the capacitance division of the driving voltage is reduced and the voltage is effectively applied to the effective layer, so that the driving voltage can be lowered.

以上のように高誘電率セラミック層をEL素子の絶緑体
層として採用することにより歩止ルや駆動電圧の大巾な
改善が実現される。しかしこのような素子を長時間発光
させたところ輝度の低下があシ実用上の問題となってい
る。
As described above, by employing a high dielectric constant ceramic layer as a non-green material layer of an EL element, a significant improvement in yield and driving voltage can be realized. However, when such an element is allowed to emit light for a long time, the luminance decreases, which poses a practical problem.

(発明の目的) 本発明の目的は上述したように高誘電率セラミック層を
絶緑体層としたEL素子の長所を損うことなく、輝度低
下を防止したEL素子を提供することにある。
(Objective of the Invention) As described above, the object of the present invention is to provide an EL element that prevents a decrease in brightness without impairing the advantages of an EL element in which a high dielectric constant ceramic layer is used as an antigreen layer.

(発明の構成とその詳細な説明) 本発明によれば2枚の電極間に発光層と高誘電率セラミ
ック絶緑体層が挾持されたEL素子、あるいは2枚の電
極間に高誘電率セラミック絶緑体層、発光層、薄膜絶緑
体層が積層挾持されてなるEL素子において、前記高誘
電率セラミック絶緑体層と発光層の間に薄膜の絶、縁体
層を介在させてなることを特徴とするEL素子が得られ
る。
(Structure of the Invention and Detailed Description thereof) According to the present invention, there is provided an EL element in which a light-emitting layer and a high-permittivity ceramic insulating layer are sandwiched between two electrodes, or a high-permittivity ceramic layer is sandwiched between two electrodes. In an EL device in which a green insulator layer, a light emitting layer, and a thin film insulator layer are laminated and sandwiched, a thin film insulator layer is interposed between the high dielectric constant ceramic insulator layer and the light emitting layer. An EL element characterized by this can be obtained.

本発明のKL素子の基本構造を第1図に示す。The basic structure of the KL element of the present invention is shown in FIG.

基板11上に電極12、高誘電率セラミック絶緑体層1
3、薄膜絶縁体介在層17、発光層14、薄膜第2絶緑
体層15、透明電極16から構成される。要するに、第
4図に示した高誘電率セラミック層を使用したEL素子
構造に薄膜絶縁体介在層を挿入したものである。なお、
本発明は高誘電率セラミック層と発光層の間に介在層を
設けることを特徴とするものであシ、EL素子の他の構
成部分は第1図に示した通シである必要はない。
An electrode 12 on a substrate 11 and a high dielectric constant ceramic material layer 1
3. It is composed of a thin film insulator intervening layer 17, a light emitting layer 14, a thin film second evergreen layer 15, and a transparent electrode 16. In short, a thin film insulator intervening layer is inserted into the EL element structure using the high dielectric constant ceramic layer shown in FIG. In addition,
The present invention is characterized by providing an intervening layer between the high dielectric constant ceramic layer and the light emitting layer, and the other constituent parts of the EL element need not be as shown in FIG. 1.

例えば薄!の第2絶緑体層15を排除した、所謂、片絶
縁構造としてもよ七、また高誘電率セラミック層を厚め
にして基板11を排除した構造でもよい。また薄膜絶縁
体介在層はスパッタ法や慕空蒸着法、プラズマCVD法
等の手段で成膜される絶縁体薄膜であり、かならずしも
透明である必要はなく、コントラストを向上させるため
に着色された薄膜でもよい。一般的にはTa105 、
Y2O3,8i02 。
For example, thin! A so-called single insulation structure may be used, in which the second insulating layer 15 is eliminated, or a structure in which the high dielectric constant ceramic layer is made thicker and the substrate 11 is eliminated. In addition, the thin film insulator intervening layer is an insulator thin film formed by sputtering, air vapor deposition, plasma CVD, etc., and does not necessarily have to be transparent, but may be a thin film that is colored to improve contrast. But that's fine. Generally Ta105,
Y2O3,8i02.

8i0 、 SmzOB 、 Al2O3,BaTiO
315rTi03等の安定な酸化物や8i3N4等の絶
縁体窒化物やCaF1等フッ化物等を使用することがで
きる。また、この介在層の厚さはあt、b厚くする必要
はな(’0.02〜0.2μm程度が適当である。厚く
した場合は介在層での電圧低下があシ駆動電圧を高くす
る必要がある。また非常に薄くした場合はEL素子の輝
度低下を十分防止することができない。なを、高誘電率
セラミック層を絶緑体層としたEL素子が長時間の使用
により輝度低下をきたす原因は不明であるが、有害なイ
オンがセラミック層から発光層や発光層との界面に拡散
するためと思われる。
8i0, SmzOB, Al2O3, BaTiO
Stable oxides such as 315rTi03, insulating nitrides such as 8i3N4, fluorides such as CaF1, etc. can be used. Also, it is not necessary to increase the thickness of this intervening layer (approximately 0.02 to 0.2 μm). Also, if it is made very thin, it will not be possible to sufficiently prevent the brightness of the EL element from decreasing.Furthermore, an EL element that uses a high dielectric constant ceramic layer as an anti-green layer will decrease its brightness after long-term use. Although the cause of this is unknown, it is thought to be due to the diffusion of harmful ions from the ceramic layer to the luminescent layer and the interface with the luminescent layer.

本発明の薄膜絶縁体介在層の採用により、この有害イオ
ンの拡散が防止されるものと思われる。また、介在層の
厚さを特に0.1μm程度以下にした場合は介在層を挿
入してもほとんど駆動電圧を高くする必要はなく、かえ
りて若干の輝度向上が図られる場合もあった。
It is believed that the adoption of the thin film insulator intervening layer of the present invention prevents the diffusion of these harmful ions. Moreover, when the thickness of the intervening layer is particularly set to about 0.1 μm or less, there is almost no need to increase the driving voltage even if the intervening layer is inserted, and in some cases, the brightness is slightly improved.

(実施例) 第1図に示す断面構造を有する]13L素子を作成した
。製造の各工程は次の通シである。
(Example) A 13L element having the cross-sectional structure shown in FIG. 1 was prepared. Each manufacturing process is as follows.

アルミナとホウケイ酸鉛ガラスからなる粉末にバインダ
ー混合し、泥 とした後キャスティング成膜によシ厚さ
0.7 Mのセラミック基体となるグリーンシートを作
成した。このセラミック生シート上にスクリーン印刷に
よ#)Agが85原子、パーセント、Pbが15原子パ
ーセントからなるAg−Pdペーストを0.55ミリ巾
、ピッチ1.1ミリのストライプ状のパターンに形成し
電極12とした。
A powder made of alumina and lead borosilicate glass was mixed with a binder to form a slurry, and then cast to form a film to create a green sheet with a thickness of 0.7 M that would serve as a ceramic substrate. On this ceramic green sheet, an Ag-Pd paste consisting of 85 atomic percent Ag and 15 atomic percent Pb was formed into a striped pattern with a width of 0.55 mm and a pitch of 1.1 mm. It was set as electrode 12.

低湿焼成用のPbを含む複合ペロブスカイト材料として
Pb (Fet7s w、7. )。R(Fe1/2 
Nb、/、 )oyosの予焼粉末にバインダ混合、キ
ャスティング成膜を行ない40μm厚さの間誘電率セラ
ミック絶緑体層13用のグリーンシートを作成した。こ
のグリーンシートを前述の電極12パターンが印刷され
た基体用のグリーンシート上に積層圧着し、端部の不用
部分を切断したのち950℃で焼成し積層セラミック構
造体を作成した。この焼成により約10%の収縮があっ
たがそりの発生はなかった。
Pb (Fet7s w, 7.) as a Pb-containing composite perovskite material for low humidity firing. R(Fe1/2
A green sheet for the dielectric ceramic constant green material layer 13 having a thickness of 40 μm was prepared by mixing a binder with a pre-fired powder of Nb, /, ) oyos and casting a film. This green sheet was laminated and crimped onto the substrate green sheet on which the 12 electrode patterns described above were printed, the unnecessary portions at the ends were cut off, and then fired at 950° C. to produce a laminated ceramic structure. This firing caused about 10% shrinkage, but no warping occurred.

次に高周波マグネトロンスパッタにより Ta20B膜
を0.05μmの厚さに成膜し薄膜絶縁体介在層17と
した。
Next, a Ta20B film was formed to a thickness of 0.05 μm by high frequency magnetron sputtering to form a thin film insulator intervening layer 17.

次にZn8とMnの共蒸着法によ、!l) ZnS :
 Mn 10.3μmの厚さに真空蒸着した。特性の改
善のためにAr中で550℃、2時間の熱処理を行なっ
た。この後、再び高周波マグネトロンスパッタ法により
Taxes薄膜を0.3μmの厚さに成膜し薄膜第2絶
緑体層15とした。更に、スパッタ法によfi、ITO
膜を0.3μmの厚さに高周波マグネトロンスパッタに
よシ成膜した。この際、レジストによシあらかじめ前記
λg−Pd厚膜ストライプ電極と直交する配置でパター
ン化しておき、リフトオフ法で前記ITO膜をストライ
プ状にし透明電極16とした。
Next, by the co-evaporation method of Zn8 and Mn,! l) ZnS:
Mn was vacuum deposited to a thickness of 10.3 μm. In order to improve the characteristics, heat treatment was performed at 550° C. for 2 hours in Ar. Thereafter, a Taxes thin film was formed again to a thickness of 0.3 μm by high-frequency magnetron sputtering to form a thin second permanent green body layer 15. Furthermore, fi, ITO was deposited by sputtering method.
A film was formed to a thickness of 0.3 μm by high frequency magnetron sputtering. At this time, the ITO film was patterned in advance with a resist so as to be orthogonal to the λg-Pd thick film stripe electrode, and the ITO film was formed into a stripe shape using a lift-off method to form the transparent electrode 16.

このようにして作成したEL素子に交流パルス電圧を印
加したところ50Vから発光を開始し、80V、200
Hzで約200 cd/−の低電圧で高輝度を得た。セ
ラミック層が暗褐色であり、コントラストの高い発光表
示ができた。また、150vの過大な電圧を印加しても
絶縁破壊による素子破壊は皆無であった。
When an AC pulse voltage was applied to the EL element created in this way, it started emitting light at 50V, then at 80V and 200V.
High brightness was obtained at a low voltage of about 200 cd/- at Hz. The ceramic layer was dark brown, allowing for a high-contrast luminescent display. Further, even when an excessive voltage of 150 V was applied, there was no element breakdown due to dielectric breakdown.

この素子を乾燥窒素雰囲気中で200Hz 、  80
 Vで長時間発光させた場合の輝度変化を第2図に示す
。1000時間の点灯でもほとんど輝度低下は見られな
かった。なお、第2図に薄膜絶縁体介在層を排除した従
来のEL素子の長時間点灯試験の結果をも比較のために
示す。試験条件は同一である。
This element was heated at 200 Hz, 80 Hz in a dry nitrogen atmosphere.
Figure 2 shows the change in brightness when emitting light at V for a long time. Almost no decrease in brightness was observed even after 1000 hours of lighting. For comparison, FIG. 2 also shows the results of a long-time lighting test of a conventional EL element without a thin film insulator intervening layer. Test conditions are the same.

この素子では100時間程度の駆動で相当の輝度低下が
アシ、その後も徐々に輝度低下しつづける傾向を示した
。以上のように薄膜絶縁体介在層の採用により輝度低下
は著しく少なくなった。このような介在層の効果はTa
105以外にAJ、O,、Y、0. 。
This element exhibited a considerable decrease in brightness after approximately 100 hours of driving, and showed a tendency for the brightness to continue to decrease gradually thereafter. As described above, the reduction in brightness has been significantly reduced by employing the thin film insulator intervening layer. The effect of such an intervening layer is Ta
In addition to 105, there are AJ, O,, Y, 0. .

8iN等でもほぼ同であった。またZn8 : Mn 
以外に絶縁発光のZn8 : TbF3や赤色発光のZ
n8 :SmF3等を発光層とした・場合でも薄膜絶縁
体介在層の効果は同様であり本発明のKL素子構造の有
効性が示された。
8iN etc. were almost the same. Also Zn8: Mn
In addition, insulated light emitting Zn8: TbF3 and red light emitting Z
n8: Even when SmF3 or the like is used as the light emitting layer, the effect of the thin film insulator intervening layer is the same, demonstrating the effectiveness of the KL element structure of the present invention.

(発明の効果) 以上説明したように本発明のEL素子は低電圧駆動、高
輝度発光、高コントラストであり、絶縁破壊による素子
破壊がなく歩出シも高い高誘電セラミック絶緑体層を採
用したKL素子の利点を損なうことなく輝度特性の長期
安定化をもたらすものであり工業的価値は大である。
(Effects of the Invention) As explained above, the EL element of the present invention is driven at low voltage, emits light with high brightness, has high contrast, and employs a high-permittivity ceramic non-green material layer that does not cause element breakdown due to dielectric breakdown and has high walkthrough. This provides long-term stabilization of brightness characteristics without sacrificing the advantages of the KL element, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のEL素子の断面構造図である。 第2図は本実施のEL素子と従来品の発光輝度特性の時
間変化を示したものである。第3図は一般的なりL素子
である2重絶縁型薄膜EL素子の断面構造図であシ、第
4図は高誘電率セラミック絶緑体層を採用したEL素子
の断面構造図である。 11.41・・・基板、12.42・・・電極、13.
43・・・高誘電率セラミック絶緑体層、14,34.
44・・・発光層、15,35.45・・・薄膜第2絶
緑体層、16.32.46・・・透明電極、17・・・
薄膜絶縁体介在層、31・・・ガラス基板、33・・・
薄膜第1絶緑体層、36・・・背面電極。 オ 1 図 オ 2 図 +    10  10210310’時  間 71−3 図 OI
FIG. 1 is a cross-sectional structural diagram of the EL element of the present invention. FIG. 2 shows changes over time in the luminance characteristics of the EL device of this embodiment and the conventional product. FIG. 3 is a cross-sectional structural diagram of a double-insulated thin film EL element, which is a general L element, and FIG. 4 is a cross-sectional structural diagram of an EL element employing a high dielectric constant ceramic non-green material layer. 11.41... Substrate, 12.42... Electrode, 13.
43... High dielectric constant ceramic permanent green layer, 14,34.
44...Light emitting layer, 15,35.45...Thin film second evergreen layer, 16.32.46...Transparent electrode, 17...
Thin film insulator intervening layer, 31... glass substrate, 33...
Thin film first evergreen body layer, 36... back electrode. O 1 Figure O 2 Figure + 10 10210310' Time 71-3 Figure OI

Claims (1)

【特許請求の範囲】[Claims]  2枚の電極間にEL発光層と高誘電率セラミック絶縁
体層が挾持されたEL素子、あるいは2枚の電極間に高
誘電率セラミック絶縁体層、EL発光層、薄膜絶縁体層
が積層挾持されたEL素子において、前記高誘電率セラ
ミック絶緑体層とEL発光層の間に薄膜の絶縁体層を介
在させてなることを特徴とするEL素子。
An EL element in which an EL light emitting layer and a high dielectric constant ceramic insulator layer are sandwiched between two electrodes, or a high dielectric constant ceramic insulator layer, an EL light emitting layer, and a thin film insulator layer are stacked and sandwiched between two electrodes. An EL device characterized in that a thin insulating layer is interposed between the high dielectric constant ceramic constant green layer and the EL light emitting layer.
JP60092884A 1985-04-30 1985-04-30 El element Pending JPS61250993A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60092884A JPS61250993A (en) 1985-04-30 1985-04-30 El element
US06/857,374 US4757235A (en) 1985-04-30 1986-04-30 Electroluminescent device with monolithic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092884A JPS61250993A (en) 1985-04-30 1985-04-30 El element

Publications (1)

Publication Number Publication Date
JPS61250993A true JPS61250993A (en) 1986-11-08

Family

ID=14066879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092884A Pending JPS61250993A (en) 1985-04-30 1985-04-30 El element

Country Status (1)

Country Link
JP (1) JPS61250993A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577059B2 (en) 2000-11-17 2003-06-10 Tdk Corporation Thin-film EL device, and its fabrication process
US6650046B2 (en) 2000-11-17 2003-11-18 Tdk Corporation Thin-film EL device, and its fabrication process
US6677059B2 (en) 2000-12-12 2004-01-13 Tdk Corporation EL device and making method
US6734469B2 (en) 2000-11-17 2004-05-11 Tdk Corporation EL phosphor laminate thin film and EL device
US6793962B2 (en) 2000-11-17 2004-09-21 Tdk Corporation EL phosphor multilayer thin film and EL device
US6803122B2 (en) 2000-12-12 2004-10-12 Tdk Corporation EL device
US7011896B2 (en) 2002-02-06 2006-03-14 The Westaim Corporation Phosphor thin film, preparation method, and EL panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577059B2 (en) 2000-11-17 2003-06-10 Tdk Corporation Thin-film EL device, and its fabrication process
US6650046B2 (en) 2000-11-17 2003-11-18 Tdk Corporation Thin-film EL device, and its fabrication process
US6734469B2 (en) 2000-11-17 2004-05-11 Tdk Corporation EL phosphor laminate thin film and EL device
US6793962B2 (en) 2000-11-17 2004-09-21 Tdk Corporation EL phosphor multilayer thin film and EL device
KR100506833B1 (en) * 2000-11-17 2005-08-10 더 웨스타임 코퍼레이션 Thin Film EL Device and Preparation Method
US6677059B2 (en) 2000-12-12 2004-01-13 Tdk Corporation EL device and making method
US6803122B2 (en) 2000-12-12 2004-10-12 Tdk Corporation EL device
US7011896B2 (en) 2002-02-06 2006-03-14 The Westaim Corporation Phosphor thin film, preparation method, and EL panel

Similar Documents

Publication Publication Date Title
JPS61250993A (en) El element
JPS61230296A (en) El element and manufacture thereof
EP0327355B1 (en) Thin film electroluminescent device
JPH0156517B2 (en)
JPS6369193A (en) El device and manufacture of the same
JPS6359519B2 (en)
JPH0290489A (en) Distributed el element
JPH0541284A (en) El element
JPS59228397A (en) Thin film light emitting element
JPS62278791A (en) Manufacture of electroluminescence light emission device
JPS61250992A (en) El element
JPS63232296A (en) Thin film electroluminescence device
JPS6345797A (en) Thin film light emitting device
JPS62278792A (en) Manufacture of electroluminescence light emission device
JPS6147097A (en) Electroluminescent element
JPS5994395A (en) Method of producing light emitting device
JPS6338982A (en) Electroluminescence element
JPS61269894A (en) Manufacture of thin film luminescence element
JPS63146396A (en) Manufacture of ac electroluminescence display device
JPS62213091A (en) El device
JP2004296415A (en) Grooved thin film electroluminescent element for matrix display and its manufacturing method
JPS5832393A (en) Thin film electric field light emitting element
JPS61230294A (en) El element and manufacture thereof
JPS63264894A (en) Thin membrane el element
JPS6151797A (en) Thin film el element