JPS6125089B2 - - Google Patents

Info

Publication number
JPS6125089B2
JPS6125089B2 JP54028351A JP2835179A JPS6125089B2 JP S6125089 B2 JPS6125089 B2 JP S6125089B2 JP 54028351 A JP54028351 A JP 54028351A JP 2835179 A JP2835179 A JP 2835179A JP S6125089 B2 JPS6125089 B2 JP S6125089B2
Authority
JP
Japan
Prior art keywords
pyroelectric
infrared
pyroelectric element
film
infrared detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54028351A
Other languages
Japanese (ja)
Other versions
JPS55121125A (en
Inventor
Masaharu Fujii
Kenichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2835179A priority Critical patent/JPS55121125A/en
Priority to US06/125,987 priority patent/US4300047A/en
Priority to CA000347155A priority patent/CA1147426A/en
Priority to DE3009161A priority patent/DE3009161C2/en
Priority to FR8005459A priority patent/FR2451575A1/en
Priority to GB8008199A priority patent/GB2054836B/en
Publication of JPS55121125A publication Critical patent/JPS55121125A/en
Publication of JPS6125089B2 publication Critical patent/JPS6125089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は膜状の焦電体層を有する焦電素子によ
つて赤外線の検知若しくは強度を測定し、赤外螢
光体により可視化することを特徴とする装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that detects or measures the intensity of infrared rays using a pyroelectric element having a film-like pyroelectric layer, and visualizes the detected infrared rays using an infrared phosphor.

赤外レーザ光線を可視化する事によつて赤外レ
ーザの発振モードを判別することが可能であるが
同時にレーザの発振出力を検知することによつて
多くの重要な情報が得られる。
By visualizing the infrared laser beam, it is possible to determine the oscillation mode of the infrared laser, and at the same time, by detecting the oscillation output of the laser, a lot of important information can be obtained.

赤外レーザ光線を可視化し、発振モードを判別
する方法として、あらかじめ刺激されても残光を
呈している間に赤外線を照射すると、その部分だ
け明るくあるいは暗く、また場合によつては残光
と異なる色の発光を示す解尽現象を顕著に呈する
螢光体としての赤外燐光体を使用する方法があ
る。赤外燐光体としては例えば硫化亜鉛螢光体が
あり、これに硫化亜鉛(ZnS)を主成分として、
重金属賦活剤として銅、銀、鉛が添加された螢光
体である。その他の赤外線螢光体としてSrSeを
Tlで賦活したもの、及びCdSをEuで賦活したも
の等が用いられる。螢光体を刺激する方法とし
て、長波紫外線、陰極線、X線、α線、β線等が
用いられる。
As a method of visualizing infrared laser beams and determining the oscillation mode, if you irradiate infrared rays while there is an afterglow even after being stimulated in advance, only that part will become brighter or darker, and in some cases, there may be an afterglow. There is a method of using an infrared phosphor as a phosphor that exhibits a remarkable depletion phenomenon that shows emission of different colors. Examples of infrared phosphors include zinc sulfide phosphors, which contain zinc sulfide (ZnS) as the main component.
This is a phosphor containing copper, silver, and lead as heavy metal activators. SrSe as another infrared phosphor
Those activated with Tl and CdS activated with Eu are used. Long-wave ultraviolet rays, cathode rays, X-rays, α-rays, β-rays, etc. are used to stimulate the phosphor.

特に螢光状態にある際に赤外線が照射されると
急激に螢光がなくなる消尽効果を示す螢光体、例
えばCuで活性化されたZnSを主成分とする赤外螢
光体の場合は、ネガテイブな写真フイルムをポジ
テイブに観察することが出来る。
In particular, in the case of a phosphor that exhibits an exhaustion effect where the fluorescence rapidly disappears when irradiated with infrared rays while in a fluorescent state, for example, an infrared phosphor whose main component is Cu-activated ZnS, You can view negative photographic film in a positive light.

また、この際照射される赤外線量を測定する方
法として赤外線パワーメータが用いられる。既存
の赤外線パワーメータの具体例としては(i)熱電対
(ii)ゴーレイセル(iii)ボロメータ(iv)パイロ電気検出

型の熱性検出器及び(v)光電導検出器(vi)光起電力検
出器(vii)光電磁検出器型の光検出器がある。しかし
これら既存の赤外線パワーメータを使用すると、
これらの装置を赤外線が透過しないために、赤外
レーザ光線の発振モード又は先に述べた、ネガテ
イブの写真フイルムをポジテイブに観察すること
を同時に行うことが困難となるのみならず不加視
光線であるためにパワーメータを光線通路上に正
確に設置するのに手間がかかる等の問題がある。
Further, an infrared power meter is used as a method of measuring the amount of infrared rays irradiated at this time. Specific examples of existing infrared power meters include (i) thermocouples;
(ii) Golay cells; (iii) bolometers; (iv) thermal detectors of the pyroelectric detector type; (v) photoconductive detectors; (vi) photovoltaic detectors; and (vii) photodetectors of the photoelectromagnetic detector type. . However, using these existing infrared power meters,
Since infrared rays do not pass through these devices, it is not only difficult to simultaneously observe the oscillation mode of the infrared laser beam or the above-mentioned negative photographic film in a positive manner, but also the non-observable light beam. Therefore, there are problems such as that it takes time and effort to accurately install the power meter on the optical path.

本発明者等は光線の形成する像を赤外螢光体を
用いて解尽し可視化するとともに光線の全体の強
度及び/又は光線の形成する像の強度分布を同時
に測定する装置を鋭意研究を行なつた結果発明し
た。
The inventors of the present invention have conducted intensive research into a device that can simultaneously measure the overall intensity of the light beam and/or the intensity distribution of the image formed by the light beam, while using an infrared phosphor to deplete and visualize the image formed by the light beam. As a result of my efforts, I invented it.

次に本発明による好ましい実施例を図に基づい
て説明する。
Next, preferred embodiments of the present invention will be described based on the drawings.

第1図は本発明装置の好ましい具体例であり、
1は光源、2は光チヨツパー、3は焦電性膜4に
電極5,5′が付された焦電素子6はオシロスコ
ープ、7はシリコン板、8はネガテイブ写真フイ
ルム、9は解尽効果を有する螢光板10及び紫外
線ランプ11からなる赤外可視化装置、12は前
記オシロスコープ6及び増巾器等からなる検出回
路である。
FIG. 1 shows a preferred embodiment of the device of the present invention,
1 is a light source, 2 is an optical chopper, 3 is a pyroelectric element 6 having electrodes 5 and 5' attached to a pyroelectric film 4, is an oscilloscope, 7 is a silicon plate, 8 is a negative photographic film, and 9 is an exhaust effect. An infrared visualization device includes a fluorescent plate 10 and an ultraviolet lamp 11, and 12 is a detection circuit including the oscilloscope 6, an amplifier, and the like.

このような装置においては、光源1より放射さ
れる赤外線を含む略々平行な白色光を、光チヨツ
パー2〔チヨツプ周波数20Hz〕の後に置かれた
焦電素子3に通電させ焦電素子3を発熱させ焦電
素子3に焦電気を生起させ、この焦電気を検出回
路12により測定すると、焦電素子3を通過する
光線の強度を測定し得る。またこの焦電素子3を
通過した光線をシリコン板7により赤外光線のみ
に変え、次にネガテイブ写真フイルム8を通して
写真フイルム8の陰画を赤外可視化装置9に映写
することによりポジテイブ映像が観察される。
In such a device, substantially parallel white light including infrared radiation emitted from a light source 1 is energized to a pyroelectric element 3 placed after an optical chopper 2 (chop frequency 20 Hz), causing the pyroelectric element 3 to generate heat. By causing the pyroelectric element 3 to generate pyroelectricity and measuring this pyroelectricity using the detection circuit 12, the intensity of the light beam passing through the pyroelectric element 3 can be measured. Furthermore, the light beam passing through the pyroelectric element 3 is converted into only infrared light by a silicon plate 7, and then a negative image on the photographic film 8 is projected onto an infrared visualization device 9 through a negative photographic film 8, whereby a positive image is observed. Ru.

焦電素子3に用いた焦電素子4は例えば23℃に
おける焦電率dPS/dT=4×10-9C/cm2・deg・
を有する厚さ8μの透明なポリフツ化ビニリデン
(PVDF)フイルムからなり、その両面に電極
5,5′としてネサガラスが設けられて構成され
ている。この場合の検出回路12で得られる焦電
気出力電圧のS/N比は約30倍であつた。尚、
PVDF焦電性フイルムをネサガラスにより完全に
サンドイツチ状態にすると、風等による圧電性に
よる雑音電圧及び雰囲気温度の緩慢な変化による
焦電性による雑音電圧を除去し得る。
For example, the pyroelectric element 4 used for the pyroelectric element 3 has a pyroelectric constant dP S /dT=4×10 -9 C/cm 2 deg・ at 23°C.
It is made of a transparent polyvinylidene fluoride (PVDF) film with a thickness of 8 μm, and Nesa glass is provided as electrodes 5 and 5' on both sides of the film. In this case, the S/N ratio of the pyroelectric output voltage obtained by the detection circuit 12 was about 30 times. still,
When the PVDF pyroelectric film is completely made into a sandwich state using Nesa Glass, noise voltage due to piezoelectricity due to wind and the like and noise voltage due to pyroelectricity due to slow changes in ambient temperature can be removed.

また、この場合における赤外可視化装置9に転
写されるポジテイプ像の鮮明度は、焦電素子3を
挿入しない時とほとんど差がなかつた。従つてこ
の方法によつて、赤外可視化装置の性能に何等の
悪影響に与える事なく、照射光線の強度を同時に
測定する事が出来る。
Further, in this case, the sharpness of the positive image transferred to the infrared visualization device 9 was almost the same as when the pyroelectric element 3 was not inserted. This method therefore allows the intensity of the irradiated light to be measured simultaneously without any negative effect on the performance of the infrared visualization device.

尚、あらかじめ螢光板10を刺激する紫外線ラ
プ11は螢光板10の前に置くこともできる。ま
た検出回路12は、増巾器およびオシロスコープ
6を含むものであるが、オシロスコープ6は例え
ば電圧計などの別の計器と交換乃至併用すること
ができ、また更に記録装置、記憶装置または伝達
装置などを組合せてもよい。
Incidentally, the ultraviolet light lamp 11 that stimulates the fluorescent plate 10 in advance can also be placed in front of the fluorescent plate 10. Further, the detection circuit 12 includes an amplifier and an oscilloscope 6, but the oscilloscope 6 can be replaced with or used in combination with another meter such as a voltmeter, and can also be combined with a recording device, a storage device, a transmission device, etc. It's okay.

第2図はネガテイブ写真フイルム8を通過した
光線の強度分布の測定とネガポジ反転を同時に行
ない得る本発明装置の好ましい具体例である。
FIG. 2 shows a preferred embodiment of the apparatus of the present invention, which is capable of simultaneously measuring the intensity distribution of the light beam passing through the negative photographic film 8 and reversing the negative to positive.

この例では焦電性高分子フイルム14の一方に
設けた電極板15は例えば第3図のように透明ガ
ラス板16の表面にネサ蒸着膜の点座標電極17
が複数個設けられて構成され、また他方の電極板
15′は少なくともこの点座標電極と対向する位
置に同様なネサ蒸着膜の点座標電極又はベタ電極
が設けられて構成されている。尚、20はインピ
ーダンス変換用の電界効果トランジスタである。
これら圧電性高分子フイルム14と両電極板1
5,15′とが一組になつた焦電素子13がネガ
テイブフイルム8と赤外可視化装置9との間に置
かれ、ネガテイブフイルム8上の陰画は焦電素子
13を透過した後、可視化装置に映写される。焦
電素子13を透過する際に電極板15,15′上
の各点座標電極17に陰画の濃淡に応じた焦電気
を生ずるのでこれを別々に検出回路12′に導
き、赤外線の強度分布を測定することにより陰画
の形状を認識することができる。
In this example, the electrode plate 15 provided on one side of the pyroelectric polymer film 14 is, for example, as shown in FIG.
The other electrode plate 15' is constructed with a point coordinate electrode or a solid electrode of a similar Nesa vapor deposited film provided at least at a position facing this point coordinate electrode. Note that 20 is a field effect transistor for impedance conversion.
These piezoelectric polymer films 14 and both electrode plates 1
A pyroelectric element 13 having a set of 5 and 15' is placed between the negative film 8 and the infrared visualization device 9, and after the negative image on the negative film 8 passes through the pyroelectric element 13, it is transferred to the visualization device. will be projected on. When transmitted through the pyroelectric element 13, pyroelectricity is generated at each point coordinate electrode 17 on the electrode plates 15, 15' in accordance with the density of the negative image, and this is led separately to the detection circuit 12' to detect the intensity distribution of the infrared rays. By measuring, the shape of the negative image can be recognized.

尚、焦電素子13の代りに第1図で用いた両極
共ベタ電極の焦電素子3を用いれば、可視化装置
上の映像の陽影部および陰影部の面積に対応する
それぜれの値を算出することができる。従つて例
えば地図や統計グラフ、実験値の測定グラフ等の
面積を測定しようとする図形を塗りつぶしたもの
を写真にとつてこのフイルムを使用するとか、或
いはこれらの図形を切り取つたもの更には切り取
つたあとの切り抜き枠をフイルムの代りに用いれ
ば、これらの形の可視化と同時にその面積の測定
を行なうことができる。
In addition, if the pyroelectric element 3 with solid electrodes on both poles used in FIG. can be calculated. Therefore, for example, this film can be used to take photographs of maps, statistical graphs, measurement graphs of experimental values, etc. in which the area of the figure whose area is to be measured has been filled in, or even cut out of these figures. If the remaining cutout frames are used in place of the film, it is possible to visualize these shapes and measure their areas at the same time.

螢光板としては例えば透明なガラスまたはプラ
スチツク板の片面に解尽効果を有する螢光塗料を
塗布したものを使用してもよい。
The fluorescent plate may be, for example, a transparent glass or plastic plate coated on one side with a fluorescent paint having a depleting effect.

焦電素子の構造は以上の例に限定されるもので
はなく、第1図および第2図のように可視化装置
の前に置く場合は例えば焦電性膜上に直接ネサ膜
などの透明電極や、薄い金蒸着膜等の半透明電極
を設けたものを使用することができる。
The structure of the pyroelectric element is not limited to the above example, and when placed in front of a visualization device as shown in Figures 1 and 2, for example, a transparent electrode such as a Nesa film or a transparent electrode such as a Nesa film may be placed directly on the pyroelectric film. , one provided with a semitransparent electrode such as a thin gold vapor-deposited film can be used.

また点座標電極は同一面上のものは夫々平行で
異なる面上の線は互に交叉するように両面に複数
本づつの平行な導体膜を設け、その交点を電極座
標点としてもよく、更に片面にベタ電極よりなる
アース電極を、その対面に夫々平行な線状の導体
膜を有する2枚の焦電性膜をアース電極を挾んで
互の膜の平行線同志が交叉するように積層したも
のを用い、両膜の平行導体線の交差点を電極座標
点とすることもでき、その他任意の構造を取るこ
とができる。
In addition, for point coordinate electrodes, a plurality of parallel conductor films may be provided on both sides so that lines on the same plane are parallel and lines on different planes intersect with each other, and the intersection point may be used as the electrode coordinate point. A ground electrode consisting of a solid electrode is placed on one side, and two pyroelectric films each having a parallel linear conductor film on the opposite side are stacked with the ground electrode sandwiched in between so that the parallel lines of the films intersect. The intersection of the parallel conductor lines of both films can be used as the electrode coordinate point, or any other structure can be used.

また焦電素子3に用いる焦電性膜はポリフツ化
ビニリデンに限定されず、例えばフツ化ビニル、
フツ化ビニリデン、クロロフロロビニリデン、塩
化ビニル、塩化ビニリデン、アクリロニトリル、
メチルメタクリレートその他の極性の単量体を主
成分とする重合体乃至共重合体の膜を成極して得
られた高分子焦電性フイルムや、チタン酸鉛、チ
タン酸バリウム、ジルコン酸鉛、チタンジルコン
酸鉛、その他任意の無機焦電体膜などを使用し得
る、これらの焦電性膜は焦電素子を第1図または
第2図の如く可視化装置の前に置く場合は透明又
は半透明であることが好ましい。焦電性膜上の電
極は例えば蒸着または接着等により焦電性膜と一
体化していても、或いは単に電極層を接触させる
だけでもよい。
Furthermore, the pyroelectric film used in the pyroelectric element 3 is not limited to polyvinylidene fluoride, and for example, vinyl fluoride,
Vinylidene fluoride, chlorofluorovinylidene, vinyl chloride, vinylidene chloride, acrylonitrile,
Polymer pyroelectric films obtained by polarizing films of polymers or copolymers whose main component is methyl methacrylate or other polar monomers, lead titanate, barium titanate, lead zirconate, Lead titanium zirconate or any other inorganic pyroelectric film may be used, and these pyroelectric films may be transparent or semi-transparent if the pyroelectric element is placed in front of a visualization device as shown in Figure 1 or Figure 2. Preferably, it is transparent. The electrodes on the pyroelectric film may be integrated with the pyroelectric film, for example by vapor deposition or adhesion, or may simply be brought into contact with the electrode layer.

尚焦電性膜は必ずしも全面が均一な焦電性を有
する必要はなく、点座標電極が組合せられた焦電
素子では各電極座標点のみが均一な焦電性を有し
ていればよい。
Note that the pyroelectric film does not necessarily have to have uniform pyroelectricity over the entire surface, and in a pyroelectric element in which point coordinate electrodes are combined, it is sufficient that only each electrode coordinate point has uniform pyroelectricity.

加えて、チヨツパー2は焦電素子では温度変化
のみしか観測されないので、観測時に温度変化を
与えるためのものであるが、シヤツターに代える
こともでき、また光源をオン―オフすることによ
り全く除くこともできる。
In addition, since the pyroelectric element only observes temperature changes, Chopper 2 is intended to give temperature changes during observation, but it can also be replaced with a shutter, and it can be completely removed by turning the light source on and off. You can also do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明装置の好ましい具体
例の説明図、第3図は電極板等の好ましい他の具
体例の説明図である。 1……赤外光源、2……チヨツパー、3……焦
電素子、4……焦電性膜、5……電極、6……オ
シロスコープ、7……シリコン板、8……フイル
ム、9……赤外可視化装置、10……螢光板、1
1……紫外線ランプ、12……検出回路。
1 and 2 are explanatory diagrams of a preferred specific example of the device of the present invention, and FIG. 3 is an explanatory diagram of another preferred specific example of the electrode plate, etc. DESCRIPTION OF SYMBOLS 1... Infrared light source, 2... Chopper, 3... Pyroelectric element, 4... Pyroelectric film, 5... Electrode, 6... Oscilloscope, 7... Silicon plate, 8... Film, 9... ...Infrared visualization device, 10... Fluorescent plate, 1
1... Ultraviolet lamp, 12... Detection circuit.

Claims (1)

【特許請求の範囲】 1 少なくとも各電極座標点が均一な焦電性を有
する膜状の焦電体層を有する焦電素子からなる赤
外線検知手段と、この焦電素子と同一の赤外光路
上に当該焦電素子に対して離間配置された赤外螢
光体を用いて赤外線を可視化する手段とからな
り、前記焦電素子は透明または半透明とすると共
に赤外線を部分的に透過させ、赤外螢光体は前記
焦電素子の透過光を受けるようにしたことを特徴
とする赤外線検知及び可視化装置。 2 焦電体層が焦電性分極を有するフツ化ビニリ
デン重合体、フツ化ビニル重合体若しくはフツ化
ビニリデンまたはフツ化ビニルを主成分とする共
重合体のフイルムであることを特徴とする特許請
求の範囲第1項記載の赤外線検知及び可視化装
置。 3 検知及び可視化される光線光路が断続または
開閉されるべくチヨツプ装置またはシヤツターが
焦電素子の受光前に設けられていることを特徴と
する特許請求の範囲第1項または第2項に記載の
赤外線検知及び可視化装置。
[Scope of Claims] 1. An infrared detection means comprising a pyroelectric element having a film-like pyroelectric layer in which at least each electrode coordinate point has uniform pyroelectricity, and an infrared detection means on the same infrared optical path as the pyroelectric element. and a means for visualizing infrared rays using an infrared phosphor spaced apart from the pyroelectric element, and the pyroelectric element is transparent or translucent and partially transmits infrared rays, and An infrared detection and visualization device characterized in that the outer phosphor receives transmitted light from the pyroelectric element. 2. A patent claim characterized in that the pyroelectric layer is a film of a vinylidene fluoride polymer, a vinyl fluoride polymer, or a copolymer mainly composed of vinylidene fluoride or vinyl fluoride, which has pyroelectric polarization. The infrared detection and visualization device according to item 1. 3. The device according to claim 1 or 2, characterized in that a chopping device or shutter is provided before the pyroelectric element receives the light so that the optical path of the light beam to be detected and visualized is interrupted or opened/closed. Infrared detection and visualization equipment.
JP2835179A 1979-03-12 1979-03-12 Beam detecting and beam visualizing method Granted JPS55121125A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2835179A JPS55121125A (en) 1979-03-12 1979-03-12 Beam detecting and beam visualizing method
US06/125,987 US4300047A (en) 1979-03-12 1980-02-29 Method and apparatus for detecting infrared rays and converting infrared rays to visible rays
CA000347155A CA1147426A (en) 1979-03-12 1980-03-06 Method and apparatus for detecting infrared rays and converting infrared rays to visible rays
DE3009161A DE3009161C2 (en) 1979-03-12 1980-03-10 Device for the detection and visualization of infrared rays
FR8005459A FR2451575A1 (en) 1979-03-12 1980-03-11 METHOD AND APPARATUS FOR DETECTING INFRARED RAYS AND CONVERTING THEM INTO VISIBLE RAYS
GB8008199A GB2054836B (en) 1979-03-12 1980-03-11 Detecting and visualizing infrared

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2835179A JPS55121125A (en) 1979-03-12 1979-03-12 Beam detecting and beam visualizing method

Publications (2)

Publication Number Publication Date
JPS55121125A JPS55121125A (en) 1980-09-18
JPS6125089B2 true JPS6125089B2 (en) 1986-06-13

Family

ID=12246174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2835179A Granted JPS55121125A (en) 1979-03-12 1979-03-12 Beam detecting and beam visualizing method

Country Status (1)

Country Link
JP (1) JPS55121125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237591U (en) * 1988-09-02 1990-03-13

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375820U (en) * 1986-11-04 1988-05-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237591U (en) * 1988-09-02 1990-03-13

Also Published As

Publication number Publication date
JPS55121125A (en) 1980-09-18

Similar Documents

Publication Publication Date Title
US4300047A (en) Method and apparatus for detecting infrared rays and converting infrared rays to visible rays
Piccinini et al. Solid state detectors based on point defects in lithium fluoride for advanced proton beam diagnostics
TWI698905B (en) Photomultiplier tubes, photomultiplier tube arrays,night vision device, and methods for making a photomultiplier tubes
US4164374A (en) Spectrophotometer utilizing a solid state source of radiant energy having a controllable frequency spectra characteristic
Straube et al. Infrared lock-in thermography through glass substrates
JPS6125089B2 (en)
Doyle et al. Implementation of a system of optical calibration based on pyroelectric radiometry
JP4175500B2 (en) Radiation energy detection apparatus and method using polymer dispersed liquid crystal cell
FR2645652A1 (en) INDIVIDUAL DEVICE FOR MEASURING NEUTRON DOSE EQUIVALENT
US2991363A (en) Neutron detection and measuring devices
JPH11118934A (en) Radiation detector
US5469424A (en) Electronic device utilizing a material capable of storing information which is readable by illumination
EP0620451A1 (en) Particle dosimeter
JPS5952375B2 (en) Temperature sensing element and temperature change detection device using this element
JPS58137781A (en) Thin film type solid-state x-ray sensor
Webster et al. PVDF sensors with low-temperature bonding techniques
Ewald On the Photo-Conductivity of Thallous Sulfide Cells
JPH06101576B2 (en) Amorphous Silicon X-ray sensor
US4082951A (en) Compton effect thermally activated depolarization dosimeter
JPH1048042A (en) Pyroelectric type infrared ray sensor
JPWO2022234849A5 (en)
Ilchenko et al. Detection of CBRN Agents at the Interface with P (VDF–TRFE) Film by Scanning Third Harmonic Generation
JPH0476509B2 (en)
JP3535925B2 (en) Temperature measuring device
JPH02242190A (en) Semiconductor radiation sensor and sensor array