JPS5952375B2 - Temperature sensing element and temperature change detection device using this element - Google Patents

Temperature sensing element and temperature change detection device using this element

Info

Publication number
JPS5952375B2
JPS5952375B2 JP6060274A JP6060274A JPS5952375B2 JP S5952375 B2 JPS5952375 B2 JP S5952375B2 JP 6060274 A JP6060274 A JP 6060274A JP 6060274 A JP6060274 A JP 6060274A JP S5952375 B2 JPS5952375 B2 JP S5952375B2
Authority
JP
Japan
Prior art keywords
temperature
sensing element
single crystal
detection device
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6060274A
Other languages
Japanese (ja)
Other versions
JPS50152786A (en
Inventor
栄知 岡本
勝俊 武藤
潤二郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6060274A priority Critical patent/JPS5952375B2/en
Publication of JPS50152786A publication Critical patent/JPS50152786A/ja
Publication of JPS5952375B2 publication Critical patent/JPS5952375B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は、ニオブ酸リチウム単結晶片又はタンタル酸
リチウム単結晶片を温度変化検出子として使用する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of using a lithium niobate single crystal piece or a lithium tantalate single crystal piece as a temperature change detector.

室温からほぼ200℃までの温度範囲である物体の温度
を測定する場合、熱電対を用いるのが一般的な方法であ
る。
When measuring the temperature of an object, which ranges from room temperature to approximately 200 degrees Celsius, a common method is to use a thermocouple.

熱電灯を使用すれば、物体の温度を正確に測定でき、し
かも物体の微少な温度変化も測定できるが、この場合、
熱電対の一端は、物体に接触させておかねばならず、物
体に非接触でその温度変化を測定することはできない。
Using a thermoelectric lamp, it is possible to accurately measure the temperature of an object, and it is also possible to measure minute changes in the temperature of the object, but in this case,
One end of the thermocouple must be in contact with an object, and temperature changes cannot be measured without contacting the object.

物体の温度変化を非接触で検知する方法には、たとえば
、ZnS : Ag、 ZnS : CI等の蛍光体の
熱刺激発光を利用して、温度の上昇を検知することがで
きる。
As a non-contact method for detecting a temperature change in an object, a rise in temperature can be detected using thermally stimulated luminescence of a phosphor such as ZnS:Ag or ZnS:CI.

この場合は、物体の温度上昇を検知せんとするたびごと
に、前もってその蛍光体に紫外線、もしくは電子線を照
射しておき、照射をやめた後、その蛍光体の温度が上昇
したときに発光する現象を利用する。
In this case, each time you want to detect a rise in the temperature of an object, the phosphor is irradiated with ultraviolet rays or electron beams in advance, and after the irradiation is stopped, the phosphor emits light when its temperature rises. Take advantage of phenomena.

しかしながら、一度上記蛍光体が発光した後、冷却され
て再び温度が上昇してもその蛍光体は発光しない。
However, once the phosphor emits light, even if it is cooled and the temperature rises again, the phosphor does not emit light.

これを再び発光させる為には、その蛍光体に改めて紫外
線又は電子線を照射する必要がある。
In order to cause the phosphor to emit light again, it is necessary to irradiate the phosphor with ultraviolet rays or electron beams again.

又、このような蛍光体によれば、温度上昇の過程ですで
に発光してしまっているから温度下降時の発光は不能で
あり、従って物体の温度下降を検知する事が出来なかっ
た。
Furthermore, since such a phosphor has already emitted light during the process of temperature rise, it is impossible to emit light when the temperature falls, and therefore it has been impossible to detect a fall in the temperature of the object.

一方、LiNbO3,LiTaO3ノ熱刺激発光現象は
、すでに発見されている。
On the other hand, the thermally stimulated luminescence phenomenon of LiNbO3 and LiTaO3 has already been discovered.

この熱刺激発光現象は、紫外線、X線などを結晶に照射
してニレクロトンを高エネルギ状態にトラップしたのち
、熱を与えると、トラップされていたエレクトロンが元
の状態に戻り、このとき発光する現象である。
This thermally stimulated luminescence phenomenon is a phenomenon in which the crystal is irradiated with ultraviolet rays, X-rays, etc. to trap Nirecroton in a high-energy state, and then when heat is applied, the trapped electrons return to their original state and emit light at this time. It is.

したがって、前記蛍光体と同様に、1度発光したのちに
は、紫外線、X線などで再び照射してエネルギを与えな
い限り、発光を示すことはなく、温度上昇、下降を繰り
返えすような物体の温度を検出するのに雁当七よない。
Therefore, like the phosphor mentioned above, once it has emitted light, it will not emit light unless energy is given by irradiation with ultraviolet rays, X-rays, etc., and the temperature will repeatedly rise and fall. There is no way to detect the temperature of an object.

1しかし本発明者らは、紫外線、X線などの照射を
受けていないLiNbO3,LiTaO3について発光
現象を観測した結果、この発光が従来から知られている
ような熱刺激発光によるものではなく、マイクロ放電に
よるものであり、1度発光したのち、紫外線、X線など
で照射しなくても、温度変化に応して何度で゛も同じ発
光現象を観測できることを見出すに至った。
1 However, as a result of observing the luminescence phenomenon of LiNbO3 and LiTaO3 that have not been irradiated with ultraviolet rays or They discovered that the phenomenon is caused by electrical discharge, and that after emitting light once, the same light-emitting phenomenon can be observed over and over again in response to temperature changes, even without irradiation with ultraviolet rays, X-rays, etc.

この発明は、この新たな知見にもとづいて、LiNbO
3,LiTaO3の単結晶を感温素子として利用するよ
うにしたものである。
This invention is based on this new knowledge.
3. A single crystal of LiTaO3 is used as a temperature sensing element.

以下、この発明の一実施例を詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail.

単分域化されたニオブ酸リチウム (LiNbO3)、又はタンタル酸リチウム(LiTa
O3)の単結晶を、結晶のC軸に垂直におよそ1mm厚
に切り出した結晶片(C板)を、室温付近から温めてい
くと、第1図に示されるように40℃から170℃の温
度範囲で発光が観測される。
Single domain lithium niobate (LiNbO3) or lithium tantalate (LiTa
When a crystal piece (C plate) cut from a single crystal of O3) to a thickness of approximately 1 mm perpendicular to the C-axis of the crystal is warmed from around room temperature, the temperature ranges from 40°C to 170°C as shown in Figure 1. Luminescence is observed over a temperature range.

この発光は同じ温度範囲で、温度下降時にも観測される
This luminescence is also observed in the same temperature range when the temperature drops.

この発光の特徴を記すと、次のようになる。The characteristics of this light emission are as follows.

(イ)、発光を生じさせるために、前もって結晶に紫外
線、もしくは電子線等を照射させる必要はない。
(a) In order to cause light emission, it is not necessary to irradiate the crystal with ultraviolet rays or electron beams in advance.

(ロ)、温度上昇・下降を幾回くり返しても同じように
発光する。
(b) No matter how many times the temperature rises and falls, it emits light in the same way.

(ハ)、発光強度とそのスペクトルは雰囲気に依存し、
空気中では青白色の発光である。
(c) The emission intensity and its spectrum depend on the atmosphere,
In the air, it emits blue-white light.

に)、発光はスパイク(Spike)状であるが、その
頻度は温度変化の速度に依存する。
), the light emission is spike-like, the frequency of which depends on the rate of temperature change.

(ホ)、結晶の温度を一定に保てば発光は生じない。(e) If the temperature of the crystal is kept constant, no light will emit light.

(へ)、透明な導電性薄膜が表面に蒸着された結晶では
発光はみられない。
(f) No light emission is observed in crystals with a transparent conductive thin film deposited on their surfaces.

以上のことより、この発光は、焦電効果に起因するマイ
クロ放電による結晶表面での発光と考えられる。
From the above, this light emission is considered to be light emission at the crystal surface due to micro-discharge caused by the pyroelectric effect.

この発明による感温素子は、この単分域化されたLiN
bO3又はLiTaO3の単結晶片の、上記の放電現象
による結晶表面での発光現象を利用したちのである。
The temperature sensing element according to the present invention is made of this single-domain LiN
This method utilizes the luminescence phenomenon on the crystal surface of a bO3 or LiTaO3 single crystal piece due to the above-mentioned discharge phenomenon.

第2図はこの発明に係るの感温素子を用いた温度変化検
出装置の構成の一例を示す概念図で、1は被測定物体、
2は単分域化されたLiNbO3又はLtTaOaの単
結晶片よりなる感温素子、3は光検出器で゛ある。
FIG. 2 is a conceptual diagram showing an example of the configuration of a temperature change detection device using a temperature sensing element according to the present invention, in which 1 indicates an object to be measured;
2 is a temperature sensing element made of a single-domain LiNbO3 or LtTaOa single crystal piece, and 3 is a photodetector.

この感温素子2は、上記の結晶のC板で形成され、その
厚さは、0.1mmから1mm程でよく、その直径はお
よそ2mmφ以上の面積を有すればよい。
The temperature sensing element 2 is formed of the above-mentioned crystal C plate, and its thickness may be about 0.1 mm to 1 mm, and its diameter may have an area of about 2 mmφ or more.

この感温素子2は、その6面が、光検知器3に対向する
ように被測定物体面に接着される。
The temperature sensing element 2 is bonded to the surface of the object to be measured so that its six sides face the photodetector 3.

感温素子2の発光強度は、結晶のC板を用いた場合が最
も強い。
The emission intensity of the temperature sensing element 2 is strongest when a crystal C plate is used.

しかし結晶片の形状によっては、必ずしもC板に限る必
要はない。
However, depending on the shape of the crystal piece, it is not necessarily limited to the C plate.

以上述べたように、この発明によればほぼ40℃〜17
0℃の範囲内における温度変化に応じてスパイク状に発
光する単分域化されたニオブ酸リチウム単結晶片又はタ
ンタル酸リチウム単結晶片を温度変化検出子として使用
するようにしたので、被測定物体の温度上昇時及び温度
下降時にかかわらず、その温度変化を非接触で検知する
ことができる。
As described above, according to the present invention, approximately 40°C to 17°C
We used single-domain lithium niobate single crystal pieces or lithium tantalate single crystal pieces that emit light in spikes in response to temperature changes within the range of 0°C as temperature change detectors. Regardless of whether the temperature of an object is rising or falling, temperature changes can be detected without contact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る感温素子の発光特性図、第2図
はこの発明による感温素子を用いた温度変化検出装置の
構成を示す概念図である。 図において1は被測定物体、2は感艙素子、3は光検知
器である。
FIG. 1 is a light emission characteristic diagram of the temperature sensing element according to the present invention, and FIG. 2 is a conceptual diagram showing the configuration of a temperature change detection device using the temperature sensing element according to the present invention. In the figure, 1 is an object to be measured, 2 is a sensing element, and 3 is a photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1 あらかじめ紫外線もしくは電子線等の照射をうける
ことなく所定の温度範囲で発光する単分域化されたニオ
ブ酸リチウム単結晶片、゛又は、タンタル酸リチウム単
結晶片を温度変化検出子として使用する事を特徴とする
ニオブ酸リチウム単結晶片又はタンタル酸リチウム単結
晶片の使用方法。
1. Use a single domain lithium niobate single crystal piece or lithium tantalate single crystal piece that emits light in a predetermined temperature range without being irradiated with ultraviolet rays or electron beams as a temperature change detector. A method of using a lithium niobate single crystal piece or a lithium tantalate single crystal piece, characterized by:
JP6060274A 1974-05-29 1974-05-29 Temperature sensing element and temperature change detection device using this element Expired JPS5952375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6060274A JPS5952375B2 (en) 1974-05-29 1974-05-29 Temperature sensing element and temperature change detection device using this element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6060274A JPS5952375B2 (en) 1974-05-29 1974-05-29 Temperature sensing element and temperature change detection device using this element

Publications (2)

Publication Number Publication Date
JPS50152786A JPS50152786A (en) 1975-12-09
JPS5952375B2 true JPS5952375B2 (en) 1984-12-19

Family

ID=13146948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6060274A Expired JPS5952375B2 (en) 1974-05-29 1974-05-29 Temperature sensing element and temperature change detection device using this element

Country Status (1)

Country Link
JP (1) JPS5952375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285778U (en) * 1985-11-15 1987-06-01
CN104390721A (en) * 2014-11-24 2015-03-04 南京信息工程大学 Temperature sensor, temperature measuring method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285778U (en) * 1985-11-15 1987-06-01
CN104390721A (en) * 2014-11-24 2015-03-04 南京信息工程大学 Temperature sensor, temperature measuring method and device

Also Published As

Publication number Publication date
JPS50152786A (en) 1975-12-09

Similar Documents

Publication Publication Date Title
Zimmerman The radiation-induced increase of the 100 C thermoluminescence sensitivity of fired quartz
Bøtter-Jensen et al. Al2O3: C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates
Bulur et al. OSL from BeO ceramics: new observations from an old material
Ghormley et al. Some Observations of Luminescence of Alkali Halide Crystals Subjected to Ionizing Radiation
JP3181594B2 (en) Radiation detection methods and measurements with increased sensitivity
Akselrod et al. Thermal quenching of F-centre luminescence in Al2O3: C
Crandall Electron Capture by α and F Centers in KBr
US3610926A (en) Dosimeter formed of a radiation sensitive thermoluminescent material and method of reading the same
Teegakden et al. Trapped charge and the low-temperature luminescence of undoped KI
JPS5952375B2 (en) Temperature sensing element and temperature change detection device using this element
US4429999A (en) Method for calorimetric absorption spectroscopy and device for working the method
US20140264045A1 (en) Optically Stimulated Luminescence Dosimetry Using Doped Lithium Fluoride Crystals
US3484605A (en) Thermoluminescent dosimeter
Engin Thermoluminescence parameters and kinetics of irradiated inorganic dust collected from black peppers
Bulur et al. Infrared (IR) stimulated luminescence from α Al2O3: C
Brocklehurst et al. Thermoluminescence of solid nitrogen after electron bombardment at 4.2 K
Gildart et al. Electron mobility and luminescence efficiency in cadmium sulfide
Lengfellner et al. Anharmonic Decay of Zone-Boundary Phonons Observed by a New Method of Phonon Detection
Chynoweth Behavior of space charge in diamond crystal counters under illumination. I
Aluker et al. Thermoluminescent dosimeters based on aluminum oxide and aluminum nitride ceramics
US2843748A (en) Inspection device
US3375372A (en) Photo-stimulated radiation dosimetry
KR950001738B1 (en) Detection of nuclear radiation
Halperin et al. The Absorption Spectrum of Excited Crystals of Cadmium Sulphide
US5469424A (en) Electronic device utilizing a material capable of storing information which is readable by illumination