JPS61250109A - Heat treatment of iron-base parts - Google Patents

Heat treatment of iron-base parts

Info

Publication number
JPS61250109A
JPS61250109A JP8878385A JP8878385A JPS61250109A JP S61250109 A JPS61250109 A JP S61250109A JP 8878385 A JP8878385 A JP 8878385A JP 8878385 A JP8878385 A JP 8878385A JP S61250109 A JPS61250109 A JP S61250109A
Authority
JP
Japan
Prior art keywords
parts
iron
treatment
heat treatment
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8878385A
Other languages
Japanese (ja)
Inventor
Yoshio Jinbo
嘉雄 神保
Mamoru Sayashi
鞘師 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8878385A priority Critical patent/JPS61250109A/en
Publication of JPS61250109A publication Critical patent/JPS61250109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To enhance the toughness of iron-base parts and to improve the surface characteristics by heating the parts to the austenite stabilization temp. above the A1 transformation point, infiltrating or diffusing a metallic or nonmetallic element into the surfaces of the parts and rapidly cooling the parts to the bainite formation temp. CONSTITUTION:Iron-base parts are heated to the austenite stabilization temp. above the A1 transformation point, and surface treatment for infiltrating or diffusing a metallic or nonmetallic element into the surfaces of the parts is carried out to provide characteristics such as heat and corrosion resistances to the surfaces of the parts. The treated parts are rapidly cooled to the bainite formation temp. and properly held to enhance the toughness of the parts.

Description

【発明の詳細な説明】 り発明の目的] (産業上の利用分野) この発明は、鉄系部品(製品と称される場合も含む、)
の靭性を向上させると共に、表面特性の改善をはかるの
に利用される鉄系部品の熱処理方法に関するものである
。2 (従来の技術) 従来より鉄系部品を強靭化する方法としては、合金元素
を添加する手段や、調質熱処理あるいは表面処理を施す
手段などがあり、調質熱処理を施す手段としては、オー
ステナイト安定化温度よりベイナイト化温度に急冷・保
持するオーステンパ熱処理がある−(例えば、鉄鋼便覧
(丸善発行)第3版第6巻第488頁に記載)。
[Detailed Description of the Invention] Purpose of the Invention] (Industrial Application Field) This invention relates to iron-based parts (including when they are called products).
The present invention relates to a heat treatment method for iron-based parts, which is used to improve the toughness of iron-based parts and to improve surface properties. 2 (Prior art) Conventional methods for toughening iron-based parts include adding alloying elements, heat treatment, or surface treatment. There is an austempering heat treatment in which the material is rapidly cooled and maintained at a bainitic temperature from a stabilization temperature (for example, described in Steel Handbook (published by Maruzen), 3rd edition, Vol. 6, page 488).

(発明が解決しようとする問題点) しかしながら、このような従来のオーステンパ熱処理に
あっては、被熱処理部品の組織をベイナイトにしてその
靭性を大幅に向上させることは期待できるものの、靭性
と同時に耐熱性や耐食性などの特性を当該部品に付与す
ることはほとんど困難であった。すなわち、従来のオー
ステンパ熱処理部品においてその耐熱拳耐食特性を付与
させるためには、あらかじめ優れた耐熱・耐食特性を持
つかなり高価な鉄鋼素材を用いる以外に適当な方法がな
かった。
(Problem to be solved by the invention) However, in such conventional austempering heat treatment, although it is expected that the structure of the heat-treated part will be changed to bainite and its toughness will be greatly improved, It has been difficult to impart properties such as strength and corrosion resistance to such parts. That is, in order to impart the heat-resistant and corrosion-resistant properties to conventional austempered heat-treated parts, there was no suitable method other than using a rather expensive steel material that already had excellent heat and corrosion resistance properties.

したがって、靭性を向上させると共に、耐熱性や耐食性
を付与させるためには、従来のオーステンパ熱処理と耐
熱・耐食表面処理の両方を行う必要があったが、被熱処
理部品の表面への浸透・拡散を狙う表面処理にあっては
、当該部品をかなりの高温状態に加熱して行う必要があ
るため、オーステンパ処理後に表面処理した場合には、
オーステンパの有効性が前記表面処理の過程で失われや
すく、また1表面処理後にオーステナイト化した場合に
は前記表面処理の有効性が失われやすいという問題点が
あった。
Therefore, in order to improve toughness and impart heat resistance and corrosion resistance, it was necessary to perform both conventional austempering heat treatment and heat-resistant/corrosion-resistant surface treatment. The target surface treatment requires heating the part to a considerably high temperature, so if the surface treatment is performed after austempering,
There have been problems in that the effectiveness of austempering is likely to be lost during the surface treatment process, and the effectiveness of the surface treatment is also likely to be lost when austenitization occurs after one surface treatment.

そこで、熱処理によってすぐれた靭性が得られると同時
に部品表面に耐熱性や耐食性などの特性を付与すること
が可能である鉄系部品の熱処理方法の開発が望まれてい
た。
Therefore, it has been desired to develop a heat treatment method for iron-based parts that can provide excellent toughness through heat treatment and at the same time impart properties such as heat resistance and corrosion resistance to the surface of the part.

この発明は、このような従来の問題点に着目してなされ
たもので、鉄系部品に対する熱処理によって当該部品の
靭性向上と同時に表面特性の改善を実現することが可能
である鉄系部品の熱処理方法を提供することを目的とし
ているものである。
This invention was made by focusing on such conventional problems, and it is a heat treatment method for iron-based parts that can improve the toughness of the iron-based parts and improve the surface properties at the same time. It is intended to provide a method.

[発明の構成] (問題点を解決するための手段) この発明による鉄系部品の熱処理方法は、鉄系部品をA
I変態点以上のオーステナイト安定化温度に加熱した状
態で、当該部品表面に金属元素もしくは非金属元素を浸
透φ拡散させる表面処理を行ない、耐熱性や耐食性など
の特性を当該部品表面に付与せしめた後、ベイナイト化
温度に急冷して適宜保持することにより当該部品の靭性
を向上させるようにしたすることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) A heat treatment method for iron-based parts according to the present invention provides a heat treatment method for iron-based parts.
While heated to an austenite stabilization temperature equal to or higher than the I transformation point, a surface treatment is performed to infiltrate and diffuse a metallic element or a nonmetallic element into the surface of the component, thereby imparting properties such as heat resistance and corrosion resistance to the surface of the component. After that, the toughness of the part is improved by rapidly cooling it to a bainitic temperature and holding it appropriately.

この発明による鉄系部品の熱処理方法においては、まず
、被熱処理部品である鉄系部品をA1変態点以上のオー
ステナイト安定化温度に加熱する。
In the method for heat treatment of iron-based parts according to the present invention, first, the iron-based part, which is the part to be heat-treated, is heated to an austenite stabilization temperature higher than the A1 transformation point.

次に、前記鉄系部品をA!変態点以上のオーステナイト
安定化温度に加熱した状態で、当該部品表面に金属元素
もしくは非金属元素を浸透・拡散させる。この場合、鉄
系部品の表面に金属元素もしくは非金属元素を浸透・拡
散させることによって当該部品表面で優れた耐熱性や耐
食性を得ようとする場合には、当該部品表面にアルミニ
ウムを浸透・拡散させる表面処理法であるカロライジン
グ処理や、クロムを浸透・拡散させる表面処理法である
クロマイジング処理や、けい素を浸透・拡散させる表面
処理法であるシリコナイジング処理などが採用され、通
常の場合には従来より一般に行われている方法で表面処
理を行う。
Next, the above-mentioned iron parts are A! Metallic elements or nonmetallic elements are permeated and diffused into the surface of the component while heated to an austenite stabilization temperature higher than the transformation point. In this case, when trying to obtain excellent heat resistance and corrosion resistance on the surface of iron-based parts by infiltrating and diffusing metallic elements or non-metallic elements into the surface of the part, aluminum is infiltrated and diffused into the surface of the part. These include calorizing treatment, a surface treatment method that allows chromium to penetrate and diffuse, chromizing treatment, a surface treatment method that penetrates and diffuses chromium, and siliconizing treatment, a surface treatment method that penetrates and diffuses silicon. In such cases, surface treatment is performed using conventional methods.

これらのうち、カロライジング処理を例にとって説明す
れば、アルミニウム粉末もしくはアルミニウムー鉄系合
金粉末に反応促進剤として少量の塩化アンモニウムを加
え、被熱処理物である鉄系部品とともに密閉容器内の中
性雰囲気中でA1変態点以上の温度に数時間以上加熱保
持することによって行われる。
Of these, to take calorizing treatment as an example, a small amount of ammonium chloride is added as a reaction accelerator to aluminum powder or aluminum-iron alloy powder, and the process is performed in a neutral state in a sealed container together with the iron-based parts that are to be heat-treated. This is carried out by heating and maintaining the temperature at a temperature equal to or higher than the A1 transformation point in an atmosphere for several hours or more.

次いで、上記の表面処理を行った鉄系部品を前記密閉容
器内より取り出した後、直ちにベイナイト他炉に移して
ベイナイト化温度に急冷する。なお、表面処理後のベイ
ナイト化処理条件は、一般のオーステンパ熱処理と同様
に、部品素材の変態特性等に応じて適宜状めることがで
きる。
Next, the iron-based parts subjected to the above-mentioned surface treatment are taken out from the closed container, and immediately transferred to a bainitic furnace and rapidly cooled to a bainitic temperature. Incidentally, the conditions for the bainitic treatment after the surface treatment can be determined as appropriate according to the transformation characteristics of the component material, etc., similarly to general austempering heat treatment.

この発明の熱処理方法において使用するベイナイト他炉
は、一般のオーステンパ熱処理においてベイナイト他炉
として使用されるものをそのまま用いることができる。
The bainite furnace used in the heat treatment method of the present invention can be the one used as a bainite furnace in general austempering heat treatment.

すなわち、ベイナイト他炉としては、塩浴炉もしくは流
動層炉などが用いられ、これらの炉の選択は、表面処理
温度から所定のベイナイト化温度まで冷却する際の部品
に対する冷却能力や部品の焼入れ性などを考慮すること
により行なわれる。ただし、塩浴炉の場合には熱処理後
の洗浄を十分に行って塩浴剤を除去しないと腐食の問題
が残るので注意を要する。
In other words, as a bainite furnace, a salt bath furnace or a fluidized bed furnace is used, and the selection of these furnaces depends on the cooling capacity of the parts and the hardenability of the parts when cooling from the surface treatment temperature to the predetermined bainitic temperature. This is done by taking into account the following. However, in the case of a salt bath furnace, care must be taken as corrosion problems will remain if the salt bath agent is not removed by thorough cleaning after heat treatment.

ところで、上記の表面処理によって鉄系部品の表面には
表面処理層が形成されるが、少なくとも部品の内部はオ
ーステナイト化された状態となっているため、その後の
急冷に伴うベイナイト化によってベイナイト組織が析出
し1部品の靭性が著しく向上する。
By the way, a surface treatment layer is formed on the surface of the iron-based component by the above surface treatment, but at least the inside of the component is in an austenitized state, so the bainite structure is changed by bainite formation due to subsequent rapid cooling. The toughness of the precipitated parts is significantly improved.

(実施例1) この実施例1では、第1表に示す組成の球状黒鉛鋳鉄を
素材とし、第1図に示す衝撃試験片(’L=55m■、
W=10 層層角 、 D = 2脂脂、R=is■)
1を供試品とした。
(Example 1) In this Example 1, spheroidal graphite cast iron having the composition shown in Table 1 was used as the raw material, and the impact test piece shown in Fig. 1 ('L = 55 m,
W=10 layer angle, D=2 fat, R=is■)
1 was used as a sample.

第     1     表 そして、この実施例1では、前記供試品に耐熱性と耐食
性とを付与するために、その表面にクロムを浸透・拡散
させるクロマイジング処理を行った。
Table 1 In this Example 1, in order to impart heat resistance and corrosion resistance to the sample, a chromizing treatment was performed to infiltrate and diffuse chromium into the surface of the sample.

まず、鋳鉄のような高炭素量の素材においては、クロム
の拡散が遅くなるので、クロマイジング処理前に供試品
を大気中で900℃、2時間の条件で加熱した後空冷し
2表面部分の脱炭を行った。
First, in materials with a high carbon content such as cast iron, the diffusion of chromium is slow, so before the chromizing treatment, the sample was heated in the air at 900°C for 2 hours, and then air-cooled. decarburization was carried out.

この後、クロム粉末55%とアルミナ粉末45%との混
合粉末に反応促進剤として塩化アンモニウムを1%加え
た粉体を充填した容器中に供試品950℃に加熱し、6
時間のクロマイジング処理を行った・ クロマイジング処理後、上記の供試品を直ちに350℃
に保持した塩浴中に投入し、4時間のベイナイト化処理
を行ったのち、水中に投入して急冷した。なお、塩浴と
しては、亜硝酸ナトリウム浴を用いた。
After this, the sample was heated to 950°C in a container filled with a mixed powder of 55% chromium powder and 45% alumina powder to which 1% ammonium chloride was added as a reaction accelerator.
After the chromizing treatment, the above sample was immediately heated to 350°C.
The sample was placed in a salt bath maintained at a temperature of 100 mL, and subjected to a bainitic treatment for 4 hours, and then placed in water to be rapidly cooled. Note that a sodium nitrite bath was used as the salt bath.

(比較例1) 比較のため、上記実施例1の場合と全く同一の供試品を
用い、この供試品に対し還元性雰囲気炉中で950℃、
6時間の条件でオーステナイト化した後、350℃に保
持した塩浴中に投入して4時間のベイナイト化処理を行
ったのち水中急冷する通常のオーステンバ熱処理を実施
した。
(Comparative Example 1) For comparison, the same sample as in Example 1 was used, and the sample was heated at 950°C in a reducing atmosphere furnace.
After being austenitized for 6 hours, the sample was placed in a salt bath maintained at 350° C. for 4 hours of bainite treatment, and then a normal austenite heat treatment in which it was rapidly cooled in water was carried out.

(評価例1) この評価例1では、上記実施例1の供試品と比較例1の
供試品とを対象にし、それらの評価は、衝撃値の測定と
、耐熱性評価のための耐酸化試験とにより行った。これ
らのうち、耐酸化試験は、を入れ、前記容器中に水素ガ
スを流入させながら200時間の加熱を衝撃試験片に対
して行い、加熱後の酸化スケール厚さと酸化増量とを測
定することにより行った。
(Evaluation Example 1) In this Evaluation Example 1, the sample of Example 1 and the sample of Comparative Example 1 were evaluated. It was conducted using a chemical test. Among these, the oxidation resistance test was performed by heating the impact test piece for 200 hours while flowing hydrogen gas into the container, and measuring the oxide scale thickness and oxidation weight gain after heating. went.

また、実施例1の供試品と比較例1の供試品の耐食性を
評価するため、1000cc常温の33%酢酸溶液中に
それぞれ1ケ月間(720時間)浸漬し、腐食減量を測
定した0以上の評価結果をまとめて第2表に示す。
In addition, in order to evaluate the corrosion resistance of the sample of Example 1 and the sample of Comparative Example 1, each was immersed in 1000 cc of a 33% acetic acid solution at room temperature for 1 month (720 hours), and the corrosion loss was measured. The above evaluation results are summarized in Table 2.

電気管状炉中で大気雰囲気において950℃。950° C. in an electric tube furnace at atmospheric pressure.

第2表に示す結果から明らかなように、この発明の実施
例1の熱処理を行った場合には、ベイナイト化処理によ
るすぐれた靭性を確保したまま。
As is clear from the results shown in Table 2, when the heat treatment of Example 1 of the present invention was performed, the excellent toughness due to the bainitic treatment was maintained.

耐熱性および耐食性などの表面特性を比較例のものに比
べて著しく向上させることができる。
Surface properties such as heat resistance and corrosion resistance can be significantly improved compared to those of comparative examples.

(実施例2) この実施例2では、実施例1において用いたものと全く
同じ材質および形状の衝撃試験片を供試品とした。
(Example 2) In this Example 2, an impact test piece having exactly the same material and shape as that used in Example 1 was used as a sample.

そして、この実施例2では、この供試品に対して耐熱性
と耐食性とを付与するため、アルミニウムを浸透・拡散
させるカロライジング処理を行った。
In this Example 2, in order to impart heat resistance and corrosion resistance to this sample, a colorizing treatment was performed to penetrate and diffuse aluminum.

そこで、アルミニウムー鉄合金(Ai−50%;Fe−
50%)の粉末に反応促進剤として塩化アンモニウムを
1%加えた粉体を充填した容器中に供試品を入れ、前記
容器中に水素ガスを流入させながら950℃に加熱し、
6時間のカロライジング処理を行った。
Therefore, aluminum-iron alloy (Ai-50%; Fe-
The sample was placed in a container filled with powder prepared by adding 1% ammonium chloride as a reaction accelerator to the powder (50%), and heated to 950 ° C. while flowing hydrogen gas into the container.
Calorizing treatment was performed for 6 hours.

一小仏 曲饋掛廿旦も歯上−りζ0や一瓜姑稼た塩浴中
に投入し、4時間のベイナイト化処理を行ったのち、水
中に投入して急冷した。
A small Buddha was placed in a salt bath prepared with a tooth top, ζ0, and a bainite, and after 4 hours of bainitic treatment, it was placed in water and rapidly cooled.

(評価例2) この評価例2では、上記実施例2の供試品と比較例1の
供試品とを対象にし、前記評価例1の場合と全く同様に
して衝撃値、耐酸化試験および耐食試験を行ってそれぞ
れの評価をした。この評価結果をまとめて第3表に示す
(Evaluation Example 2) In this Evaluation Example 2, the sample of Example 2 and the sample of Comparative Example 1 were subjected to the impact value, oxidation resistance test and Corrosion resistance tests were conducted and each was evaluated. The evaluation results are summarized in Table 3.

第3表に示す結果から明らかなように、この発明の実施
例2の熱処理を行った場合には、通常のオーステンパ熱
処理による靭性を確保したまま。
As is clear from the results shown in Table 3, when the heat treatment of Example 2 of the present invention was performed, the toughness achieved by normal austempering heat treatment was maintained.

同時に比較例1に比べて著しくすぐれた耐熱性および耐
食性などの表面特性を有していることが確かめられた。
At the same time, it was confirmed that it had significantly superior surface properties such as heat resistance and corrosion resistance compared to Comparative Example 1.

[発明の効果] 以上説明してきたように、この発明の鉄系部品の熱処理
方法によれば、鉄系部品をA1変態点以上のオーステナ
イト安定化温度に加熱した状悪で、当該鉄系部品表面に
金属元素もしくは非金属元素を浸透−拡散させた後、ベ
イナイト化温度に急冷するようにしたから、熱処理後の
鉄系部品は、オーステンパ処理によるベイナイト析出に
甚く靭性の向上と、表面処理による表面特性の改善とを
同時に実現することが可能であるという非常に優れた効
果がもたらされる。
[Effects of the Invention] As explained above, according to the heat treatment method for iron-based parts of the present invention, the surface of the iron-based parts is heated to an austenite stabilization temperature of A1 transformation point or higher. After infiltrating and diffusing metallic or non-metallic elements into the steel, the steel parts are rapidly cooled to the bainitic temperature, so that the iron-based parts after heat treatment are significantly improved in toughness due to bainite precipitation due to austempering treatment, and toughness is significantly improved due to surface treatment. This brings about a very excellent effect in that it is possible to simultaneously improve the surface properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例および比較例において用いた
シャルピー衝撃試験片の形状を示す説明図である。
FIG. 1 is an explanatory diagram showing the shape of Charpy impact test pieces used in Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄系部品をA_1変態点以上のオーステナイト安
定化温度に加熱した状態で、当該鉄系部品表面に金属元
素もしくは非金属元素を浸透・拡散させた後、ベイナイ
ト化温度に急冷することを特徴とする鉄系部品の熱処理
方法。
(1) After heating the iron-based part to an austenite stabilization temperature higher than the A_1 transformation point, infiltrating and diffusing metallic elements or non-metallic elements into the surface of the iron-based part, and then rapidly cooling it to the bainitic temperature. Characteristic heat treatment method for iron parts.
JP8878385A 1985-04-26 1985-04-26 Heat treatment of iron-base parts Pending JPS61250109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8878385A JPS61250109A (en) 1985-04-26 1985-04-26 Heat treatment of iron-base parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8878385A JPS61250109A (en) 1985-04-26 1985-04-26 Heat treatment of iron-base parts

Publications (1)

Publication Number Publication Date
JPS61250109A true JPS61250109A (en) 1986-11-07

Family

ID=13952442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8878385A Pending JPS61250109A (en) 1985-04-26 1985-04-26 Heat treatment of iron-base parts

Country Status (1)

Country Link
JP (1) JPS61250109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910223A (en) * 1997-11-25 1999-06-08 Caterpillar Inc. Steel article having high hardness and improved toughness and process for forming the article
JP2020122212A (en) * 2019-01-31 2020-08-13 アイシン高丘株式会社 Method for producing spheroidal graphite cast iron product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192241A (en) * 1981-05-20 1982-11-26 Mazda Motor Corp Abrasion resistant ductile cast iron parts and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192241A (en) * 1981-05-20 1982-11-26 Mazda Motor Corp Abrasion resistant ductile cast iron parts and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910223A (en) * 1997-11-25 1999-06-08 Caterpillar Inc. Steel article having high hardness and improved toughness and process for forming the article
JP2020122212A (en) * 2019-01-31 2020-08-13 アイシン高丘株式会社 Method for producing spheroidal graphite cast iron product

Similar Documents

Publication Publication Date Title
Chatterjee-Fischer Internal oxidation during carburizing and heat treating
US3943010A (en) Process for producing austenitic ferrous alloys
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
Qu et al. Third generation 0.3 C-4.0 Mn advanced high strength steels through a dual stabilization heat treatment: austenite stabilization through paraequilibrium carbon partitioning
JPS61250109A (en) Heat treatment of iron-base parts
JPS61147815A (en) Production of roll having high hardened depth
JPH0254403B2 (en)
JPH0116886B2 (en)
SU812835A1 (en) Method of treatment of parts
JPS59110719A (en) Heat treatment of cast iron
JP2583776B2 (en) Non-heat treated steel for hot forging
JPS6176612A (en) Manufacture of high strength spheroidal graphite cast iron
JPS61166922A (en) Manufacture of wire rod for carburization
JPS5816033A (en) Heat treatment for wire rod
JPS60243216A (en) Heat treatment of spheroidal graphite cast iron
SU825654A1 (en) Tempering medium
JPS60110842A (en) High strength spheroidal graphite cast iron for austempering
Mantel et al. Hardening response of carbonitrided rimmed and aluminum-killed SAE 1010 steels
JPS61157672A (en) Heat treatment method
JPS62253750A (en) High strength and high toughness cast iron
SU870460A2 (en) Method of thermal treatment of rolled wire and carbon and low-alloy steel wire
JPS6056215B2 (en) Heat treatment method for wire rod
JPS61163246A (en) Steel for carbonitriding
RU2090647C1 (en) Method for dry chromizing of forming chilled cast iron rolls