JPS61250036A - Bonding of copper and resin - Google Patents

Bonding of copper and resin

Info

Publication number
JPS61250036A
JPS61250036A JP60090862A JP9086285A JPS61250036A JP S61250036 A JPS61250036 A JP S61250036A JP 60090862 A JP60090862 A JP 60090862A JP 9086285 A JP9086285 A JP 9086285A JP S61250036 A JPS61250036 A JP S61250036A
Authority
JP
Japan
Prior art keywords
copper
oxide layer
resin
bonding
metallic copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60090862A
Other languages
Japanese (ja)
Other versions
JPH0449855B2 (en
Inventor
Haruo Akaboshi
晴夫 赤星
Kanji Murakami
敢次 村上
Kiyonori Furukawa
古川 清則
Ritsuji Toba
鳥羽 律司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60090862A priority Critical patent/JPS61250036A/en
Publication of JPS61250036A publication Critical patent/JPS61250036A/en
Publication of JPH0449855B2 publication Critical patent/JPH0449855B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To enable bonding to be accomplished between copper and resin and allow to be applied for production of multi-layered printed wiring board, by forming oxide layer on copper surface followed by reducing said layer to convert into metallic copper to effect both increased bond strength and acid resistance. CONSTITUTION:Copper surface is treated with an aqueous alkaline solution containing such an oxidizing agent as sodium chlorite to form an oxide layer followed by partly eliminating said layer to allow metallic copper to be exposed, which is then treated with a reducing agent (e.g., formaldelyde, boron sodium hydride) -contg. solution, thus enabling the objective bonding to be accomplished.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、接着力と耐酸性とを両立させた銅と樹脂との
接着方法に係り、特に、銅回路層と樹脂層を積層接着し
て作成する多層印刷配線板の製造に好適な、銅と樹脂と
の接着方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of adhering copper and resin that achieves both adhesive strength and acid resistance, and particularly relates to a method of adhering copper and resin by laminating and adhering a copper circuit layer and a resin layer. The present invention relates to a method for adhering copper and resin, which is suitable for manufacturing multilayer printed wiring boards.

〔発明の背景〕[Background of the invention]

従来、銅と樹脂の接着に際しては、直接銅表面& 6 
p p 96〜99(1982年6月)に記載のように
、銅表面に接着力を向上させるための酸化物層を形成す
る方法が知られていた。しかしながら、これら鋼の酸化
物は、酸化水溶液に接触すると容易に加水分解して銅イ
オンとして溶解するという問題があった。
Conventionally, when adhering copper and resin, it was necessary to directly bond the copper surface & 6
P p 96-99 (June 1982), a method of forming an oxide layer on a copper surface to improve adhesion was known. However, these steel oxides have a problem in that when they come into contact with an oxidizing aqueous solution, they are easily hydrolyzed and dissolved as copper ions.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐酸性が良好で、かつ十分高い接着力
を与える銅と樹脂との接着方法を提供することにあり、
特に、高い信頼性を要求される多層印刷配線板の積層接
着に好適な、銅と樹脂との接着方法を提供することにあ
る。
An object of the present invention is to provide a method for bonding copper and resin that has good acid resistance and provides sufficiently high adhesive strength.
In particular, it is an object of the present invention to provide a method for bonding copper and resin, which is suitable for laminating bonding of multilayer printed wiring boards that require high reliability.

〔発明の概要〕[Summary of the invention]

従来より、銅と樹脂との接着のための銅、の表面処理法
として1種々の方法が検討されてきた、例えば、プリン
ト配線板に使用されている銅張積層板においては、接着
面(いわゆるマットサイダ)は大きな凹凸を有する粗面
となっており、投錨効果により十分な接着力を与えうろ
ことが知られている。これに対し、研磨した銅表面、通
常のめつき表面、エツチング面等平担な表面を有する銅
表面では、そのまま樹脂と接着しても十分な接着力を得
ることは困難であった。このため、接着力を向上させる
目的で銅の表面処理法として、種々の方法で鋼表面に、
酸化第1銅、酸化第2銅等の銅の酸化物層を形成する方
法が検討されている0例えば、過硫酸カリウムを含むア
ルカリ性水溶液。
Conventionally, various methods have been studied as surface treatment methods for copper for bonding copper and resin. For example, in copper-clad laminates used for printed wiring boards, the adhesive surface (so-called Matt cider) has a rough surface with large irregularities, and is known to provide sufficient adhesive strength due to its anchoring effect. On the other hand, with flat copper surfaces such as polished copper surfaces, ordinary plated surfaces, etched surfaces, etc., it is difficult to obtain sufficient adhesion force even if the copper surfaces are directly bonded to a resin. For this reason, various methods are used to treat the surface of copper to improve its adhesion.
Methods of forming copper oxide layers such as cuprous oxide and cupric oxide have been studied. For example, an alkaline aqueous solution containing potassium persulfate.

あるいは、亜塩素酸ナトリウムを含むアルカリ性水溶液
を用いて、接着する銅表面を処理し、酸化物層を形成す
る方法が知られていた。このような、銅酸化物層を形成
する方法は、接着力の向上にはきわめて有効な方法であ
った。しかしながら、一般に銅の酸化物は酸と接触する
と加水分解により容易に溶解してしまうため、処理後接
着までの間に酸との接触を避ける必要があった。また接
着後においても、酸処理工程により、接着面を貫通する
穴の内面や切断面端部に露出した接着界面の酸化物層が
溶解して界面に酸がしみ込み、接着界面の酸化物層が失
なわれるという、接着上好ましくない現象が起ることが
指摘されていた。この現象は、特に、接着後に、接着界
面を貫通するスルーホール孔あけ工程と、スルーホール
めっきのための各種酸処理工程とを有する。多層印刷配
線板の積層接着工程における、銅回路とプリプレグ樹脂
め接着において、大きな問題であった。
Alternatively, a method has been known in which an oxide layer is formed by treating the copper surface to be bonded using an alkaline aqueous solution containing sodium chlorite. This method of forming a copper oxide layer was an extremely effective method for improving adhesive strength. However, since copper oxides generally easily dissolve due to hydrolysis when they come into contact with acids, it has been necessary to avoid contact with acids after treatment and before adhesion. In addition, even after bonding, the acid treatment process dissolves the oxide layer at the bonding interface exposed on the inner surface of the hole penetrating the bonding surface and the edge of the cut surface, and the acid soaks into the interface, causing the oxide layer at the bonding interface to dissolve. It has been pointed out that an undesirable phenomenon in terms of adhesion occurs, in which the adhesive is lost. This phenomenon involves, in particular, after bonding, a through-hole drilling step that penetrates the bonding interface, and various acid treatment steps for through-hole plating. This was a major problem in the adhesion of copper circuits and prepreg resin in the lamination adhesion process of multilayer printed wiring boards.

本発明は、上記のような、耐酸性の問題を本質的に解決
し、かつ十分な接着力を与える接着方法を提供するもの
である。
The present invention provides an adhesive method that essentially solves the problem of acid resistance as described above and provides sufficient adhesive strength.

酸化物層の形成による接着力の向上は、銅酸化物と樹脂
との化学的親和性が、金属銅と樹脂との化学的親和性よ
り高いことが寄与していると考えられていた。一方、前
述のような処理により形成された酸化物層は微細な凹凸
を持った表面となっている。この微細な凹凸による機械
的投錨効果が接着力の向上の主因であるとすれば、必ず
しも酸化物層を形成しなくとも十分な接着力を得ること
が可能なはずである。例えば、酸によって溶解しない金
属銅によってこのような微細な凹凸を実現し、十分な接
着力を得ることができれば、前述した耐酸性の問題を回
避することができると考えられる。このような観点から
種々検討を行った結果、発明者らは、鋼表面に一但酸化
物層を形成した後、この酸化物層を還元して金属化する
ことにより。
It was thought that the improvement in adhesive strength due to the formation of an oxide layer was due to the fact that the chemical affinity between copper oxide and resin was higher than the chemical affinity between copper metal and resin. On the other hand, the oxide layer formed by the above-described treatment has a surface with fine irregularities. If the mechanical anchoring effect of these fine irregularities is the main reason for the improvement in adhesive strength, it should be possible to obtain sufficient adhesive strength without necessarily forming an oxide layer. For example, if such fine irregularities can be realized using copper metal, which does not dissolve in acids, and sufficient adhesive strength can be obtained, it is thought that the above-mentioned problem of acid resistance can be avoided. As a result of various studies from this point of view, the inventors found that by forming a temporary oxide layer on the steel surface and then reducing this oxide layer to metallize it.

良好な耐酸性と、酸化物層を介して接着した場合と同等
の接着力を実現できることを見出した。このことは、酸
化物層の形成による接着力向上の主因が、酸化物層形成
に伴って生じた表面の微細な凹凸による機械的投錨効果
にあるという前記推論をうらづけるものである。この場
合、はじめに銅酸化物層を形成する方法としては、既に
述べた。
It has been found that it is possible to achieve good acid resistance and adhesive strength equivalent to that achieved by bonding through an oxide layer. This supports the above-mentioned speculation that the main reason for the improvement in adhesive strength due to the formation of the oxide layer is the mechanical anchoring effect due to the fine irregularities on the surface caused by the formation of the oxide layer. In this case, the method of first forming the copper oxide layer has already been described.

従来の接着用前処理法として行われている方法。This method is used as a conventional adhesive pretreatment method.

例えば、亜塩素酸ナトリウム、過硫酸カリウム等の酸化
剤を含むアルカリ性水溶液で処理する方法が接着力の点
で良好な結果を与えた。また、形成される酸化物層は酸
化第1#f、酸化第2飼いずれでも良い。
For example, a method of treating with an alkaline aqueous solution containing an oxidizing agent such as sodium chlorite or potassium persulfate gave good results in terms of adhesive strength. Further, the oxide layer to be formed may be either the oxidized first #f or the second oxidized #f.

一方、形成した酸化物層を還元する方法とじては、電解
質溶液中で外部より電流を通じ電気化学的に還元する方
法が考えられる。しかしながら電気化学的な還元方法を
適用するためには、処理部分がすべて電気的に接続され
ていることが必要であり、電気的に独立した部分のある
場合には適用できない0例えば、プリント配線板を例に
とると、配線パターンを形成した後では、多くの場合外
周部とは電気的に接続されていない島状部分が存在する
ために、電気化学的な還元方法を全面にわたって適用す
ることは困難である。これらの場合には、化学的な薬品
処理により、酸化物層を金属銅に還元することが望まし
い、水溶液として用いる還元剤としては、ホルムアルデ
ヒド、次亜リン酸塩、ヒドラジン等が良く知られており
、ホルムアルデヒドは、無電解鋼めっきの還元剤として
広く用いられている。しかし、発明者らが検討した結果
によれば、これらの還元剤によっては、前記酸化物層を
金属銅に還元することは、通常の条件下では困難であっ
た。例えば、 の溶液で処理して表面全体に銅酸化物層を形成した銅箔
を、 からなる温度70℃の水溶液に、20分以上浸漬しても
、銅酸化物層の金属銅への還元は観測されなかった。銅
箔の表面は、酸化物層の形成によって焦茶色を呈したが
、ホルマリン処理後も同じ焦茶色を呈していた。しかし
、これを1:1塩酸に浸漬すると、焦茶色は容易に消失
し、金属銅特有の明るい肌色に変化した。これは、酸化
物層が金属化されずに酸と接触し、溶解したためである
On the other hand, as a method of reducing the formed oxide layer, a method of electrochemical reduction by passing an electric current from the outside in an electrolyte solution can be considered. However, in order to apply the electrochemical reduction method, it is necessary that all the processing parts are electrically connected, and it cannot be applied when there are electrically independent parts.For example, it cannot be applied when there are electrically independent parts. For example, after forming a wiring pattern, it is difficult to apply an electrochemical reduction method to the entire surface because in many cases there are island-shaped parts that are not electrically connected to the outer periphery. Have difficulty. In these cases, it is desirable to reduce the oxide layer to metallic copper by chemical treatment.Formaldehyde, hypophosphite, hydrazine, etc. are well-known reducing agents used in aqueous solutions. , formaldehyde is widely used as a reducing agent in electroless steel plating. However, according to the results of studies conducted by the inventors, it is difficult to reduce the oxide layer to metallic copper using these reducing agents under normal conditions. For example, even if a copper foil treated with a solution of to form a copper oxide layer on the entire surface is immersed in an aqueous solution of at a temperature of 70°C for 20 minutes or more, the copper oxide layer will not be reduced to metallic copper. Not observed. The surface of the copper foil had a dark brown color due to the formation of the oxide layer, and the same dark brown color remained even after formalin treatment. However, when this was immersed in 1:1 hydrochloric acid, the dark brown color easily disappeared and changed to a bright skin color characteristic of metallic copper. This is because the oxide layer came into contact with the acid and dissolved without being metallized.

ホルムアルデヒドは、無電解鋼めっきの還元剤として広
く用いられていることからもわかるように。
As can be seen from the fact that formaldehyde is widely used as a reducing agent in electroless steel plating.

金属銅表面では、2価の銅イオンを金属銅に還元するに
十分な還元力を持っており、熱力学的には、銅酸化物を
金属銅に還元するに十分環な標準電極電位を持っている
。それにもかかわらず銅表面に形成された銅酸化物層が
金属銅に還元されないのは、銅酸化物表面が、ホルムア
ルデヒドの酸化反応に対して金属銅表面のように十分な
触媒能を持たないためであると考えられる。このことは
、ホルムアルデヒド以外の還元剤、ホウ水素化ナトリウ
ムやヒドラジについても同様と考えられる。一方、一旦
還元反応が進行しはじめれば、触媒能のある金属銅が主
成するため、その後の還元反応は、ホルムアルデヒド等
の還元剤を用いてもすみやかに進行すると予想される0
本発明は、このような観点に立ってなされたものであり
、自触媒的に還元反応を進行させるための反応開始法に
関するものである。
The surface of metallic copper has sufficient reducing power to reduce divalent copper ions to metallic copper, and thermodynamically, it has a sufficiently circular standard electrode potential to reduce copper oxide to metallic copper. ing. Despite this, the copper oxide layer formed on the copper surface is not reduced to metallic copper because the copper oxide surface does not have sufficient catalytic ability for the formaldehyde oxidation reaction like the metallic copper surface. It is thought that. This is considered to be the same for reducing agents other than formaldehyde, such as sodium borohydride and hydrazide. On the other hand, once the reduction reaction begins to proceed, it is expected that the subsequent reduction reaction will proceed quickly even if a reducing agent such as formaldehyde is used, since metallic copper with catalytic ability is the main constituent.
The present invention has been made from this viewpoint, and relates to a reaction initiation method for autocatalytically proceeding a reduction reaction.

本発明の要点は、銅素地上に形成した鋼酸化物層を還元
する際に、部分的に金属銅を露出させておく点にある。
The key point of the present invention is to partially expose metallic copper when reducing the steel oxide layer formed on the copper base.

従来、行なわれていたように、酸化剤を含むアルカリ溶
液に浸漬して銅酸化物層を形成する方法を用いると、既
溶液に接触した銅表面全体が銅酸化物で被われるため、
ホルムアルデヒド等の還元剤で還元することが困難であ
った。
When using the conventional method of forming a copper oxide layer by immersing it in an alkaline solution containing an oxidizing agent, the entire copper surface that came into contact with the solution is covered with copper oxide.
It was difficult to reduce with reducing agents such as formaldehyde.

しかしながら、連続した銅回路部の少なくとも1部分に
金属銅を露出させておけば、金属銅の露出した部分と銅
酸化物で被われた部分とで局部電池が形成され、金属銅
上で還元剤の酸化反応が進行するため、銅酸化物層が逐
次還元され、銅酸化物層をすべて金属銅に還元すること
が可能になる。
However, if metallic copper is exposed in at least one portion of a continuous copper circuit, a local battery will be formed between the exposed metallic copper and the copper oxide-covered region, and the reducing agent will form on the metallic copper. As the oxidation reaction progresses, the copper oxide layer is successively reduced, making it possible to reduce all of the copper oxide layer to metallic copper.

以下、酸化物層形成処理後に、連続した銅回路上に金属
銅を露出させる方法について、例を示すが、これらの方
法は、本発明の形態を限定するものではない0例えば、
酸化物層形成処理に際して、銅素地表面の一部分を耐薬
品性のレジストにより被覆することにより、そのような
状態をもたらすことができる。他の方法としては、一旦
、全面に銅酸化物層を形成した後、金属銅を露出させる
部分を除いて耐酸性のレジストで被覆し、酸で処理して
、酸化物層を除去することもできる。以上のような化学
的な方法の他に、酸化物層を機械的にはく離して除去す
ることも可能である。このようにして、還元処理に先立
って金属銅を露出させた部分は、酸化物層を形成した後
にこれを還元した部分に較べ、十分な接着力を得ること
は、当然のことながら困難である。従って、金属銅を露
出させる部分は、特に高い接着力を必要としない部分に
設けることが望ましく、多層印刷配線板を例にとると、
接着後1貫通スルーホール孔明けで除かれる部分に設け
ることができる。一方、金属銅の露出部分は、還元反応
の開始にのみ必要であり、一旦還元反応が起ると、反応
の進行と共に金属銅部分の面積は増加してゆく。従って
、露出させる金属銅部分の面積は、接着する銅表面の面
積に対して、きわめてわずかで十分であり、この面積を
必要最少限に抑えることにより、実質的には、全体の接
着力を十分高い水準に保つことが可能である。
Examples of methods for exposing metallic copper on a continuous copper circuit after oxide layer forming treatment will be shown below, but these methods are not intended to limit the embodiments of the present invention.For example,
Such a state can be achieved by covering a portion of the surface of the copper base with a chemically resistant resist during the oxide layer forming process. Another method is to first form a copper oxide layer over the entire surface, then cover the areas where metallic copper is exposed with an acid-resistant resist, and then treat with acid to remove the oxide layer. can. In addition to the chemical methods described above, it is also possible to mechanically peel off and remove the oxide layer. In this way, it is naturally more difficult to obtain sufficient adhesion in areas where metallic copper is exposed prior to reduction treatment than in areas where an oxide layer is formed and then reduced. . Therefore, it is desirable to expose the copper metal in areas that do not require particularly high adhesion. Taking a multilayer printed wiring board as an example,
It can be provided in the part that is removed by drilling one through hole after adhesion. On the other hand, the exposed portion of metallic copper is necessary only for the initiation of the reduction reaction, and once the reduction reaction occurs, the area of the metallic copper portion increases as the reaction progresses. Therefore, it is sufficient that the area of the exposed metal copper part is extremely small compared to the area of the copper surface to be bonded, and by keeping this area to the minimum necessary, in effect, the overall adhesive strength can be sufficiently increased. It is possible to maintain high standards.

本発明に用いる還元剤としては、ホルムアルデヒド、水
素化ホウ素ナトリウム、ヒドラジン等を用、いることが
できる、これ以外の還元剤でも、銅表面上で、銅酸化物
を金属銅に還元するのに十分な還元力を持った還元剤で
あれば、直接鋼酸化物を還元することのできないものも
使用できる。
The reducing agent used in the present invention may include formaldehyde, sodium borohydride, hydrazine, etc. Other reducing agents are also sufficient to reduce copper oxide to metallic copper on the copper surface. Reducing agents that cannot directly reduce steel oxides can also be used as long as they have sufficient reducing power.

このようにして、銅素地上に、一旦銅酸化物層を形成し
た後、これを金属銅に還元することにより、接着力と耐
酸性とが共にすぐれた銅と樹脂との接着を行うことが可
能になる。
In this way, by once forming a copper oxide layer on the copper base and reducing it to metallic copper, it is possible to bond copper and resin with excellent adhesive strength and acid resistance. It becomes possible.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例をもって本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 以下の工程により、鋼と樹脂との接着を行った。Example 1 Bonding between steel and resin was performed through the following steps.

1)#l張積暦板の表面を研磨剤により研磨した後、C
uCf12・H,Osog、”n HCffi (36%)   500g/R温度   
      40℃ の溶液に1分間浸漬して銅表面をエツチングした後水洗
を行った。
1) After polishing the surface of the #l tension calendar board with an abrasive,
uCf12・H, Osog,”n HCffi (36%) 500g/R temperature
The copper surface was etched by immersing it in a solution at 40° C. for 1 minute, followed by washing with water.

2)次に、 N a CQ Oz       30 g / fl
NaOH10g/Q Na、PO4”2H,05gzl 温度          75℃ の水溶液に2分間浸漬し、表面に銅酸化物層を形成した
2) Then N a CQ Oz 30 g/fl
It was immersed for 2 minutes in an aqueous solution of NaOH 10g/Q Na, PO4"2H, 05gzl at a temperature of 75°C to form a copper oxide layer on the surface.

3)形成した銅酸化物層の一部分を機械的に除去し、金
属銅を露出させた。
3) A portion of the formed copper oxide layer was mechanically removed to expose metallic copper.

4)次に ホルムアルデヒド   0.5M N a OHO,2M 温度          70℃ の還元液にS分間浸漬した後、水洗し、乾燥した。4) Next Formaldehyde 0.5M N a OHO, 2M Temperature 70℃ After being immersed in the reducing solution for S minutes, it was washed with water and dried.

5)次に、ガラス布にポリイミド樹脂を含浸させたプリ
プレグを介して積層し、170T:、20kgf/cm
”で80分間加熱加圧し接着した。
5) Next, a glass cloth was laminated via a prepreg impregnated with polyimide resin, and 170T:, 20kgf/cm
'' for 80 minutes to bond.

接着後、貫通孔をあけ、1:1塩酸に180分浸漬した
が、孔内壁から接着界面への酸のしみ込みは観測されな
かった。また、工程4)を終了した後、銅張積層板を直
接1:1塩酸に浸漬したが表面の変色、溶解は見られな
かったに れに対し、工程3)、4)を行なわない従来の接着方法
で接着したものは、孔内壁から接着界面への酸のしみ込
み、変色が見られた。
After adhesion, a through hole was made and immersed in 1:1 hydrochloric acid for 180 minutes, but no acid seepage from the inner wall of the hole to the adhesive interface was observed. In addition, after completing step 4), the copper-clad laminate was directly immersed in 1:1 hydrochloric acid, but no discoloration or dissolution of the surface was observed. For those bonded using the adhesive method, acid seepage from the inner wall of the hole to the adhesive interface and discoloration were observed.

工程4)を終了した銅張積層板の表面をX線回折により
分析した結果、銅酸化物は見出されず。
As a result of analyzing the surface of the copper-clad laminate after completing step 4) by X-ray diffraction, no copper oxide was found.

工程4)で銅酸化物層が金属銅に還元されているコトカ
確認された。接着した繭とポリイミド樹脂とのピーク強
度は、1.1Jf/amであり・工程3)t4)を含ま
ない従来の接の接着方法と同等の接着力が得られ、耐酸
性と接着力とを両立させた接着方法であることが示され
た。
In step 4), it was confirmed that the copper oxide layer was reduced to metallic copper. The peak strength of the bonded cocoon and polyimide resin is 1.1 Jf/am, and the adhesive force equivalent to the conventional bonding method that does not include step 3) and t4) is obtained, and it has excellent acid resistance and adhesive strength. It was shown that this is an adhesion method that achieves both.

実施例2 実施例1)において、工程5)のポリイミド樹脂をエポ
キシ樹脂におきかえて、他は実施例1)と同様にして銅
と樹脂とを接着した。ビール強度は2.2kg/cmで
あり、耐酸性については、実施例1と同様であった。
Example 2 Copper and resin were bonded together in the same manner as in Example 1) except that the polyimide resin in Step 5) was replaced with an epoxy resin. The beer strength was 2.2 kg/cm, and the acid resistance was the same as in Example 1.

比較例 実施例1)の工程3)を除いて、他は実施例1と同様に
して銅と樹脂とを接着した。接着力は、実施例1と同等
であったが、耐酸性は十分ではなかった。工程4)を終
了した銅表面を1=1塩酸に接触させると、表面は瞬時
に溶解、変色した。
Comparative Example Copper and resin were bonded together in the same manner as in Example 1 except for step 3) in Example 1). Although the adhesive strength was equivalent to that of Example 1, the acid resistance was not sufficient. When the copper surface that had undergone step 4) was brought into contact with 1=1 hydrochloric acid, the surface instantly dissolved and changed color.

表面層を分析した結果、銅酸化物が還元されずに残って
いることが確認された。
Analysis of the surface layer confirmed that copper oxide remained unreduced.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1、接着に先立って、銅表面に銅酸化物層を形成する工
程と、酸化物層を還元剤溶液で処理する工程とを含む、
銅と樹脂との加熱圧着による接着方法に於いて、還元剤
溶液で処理する際に、銅酸化物層でおおわれた銅表面の
一部分に金属銅を露出させることを特徴とした、銅と樹
脂との接着方法。 2、特許請求の範囲第一項において、還元剤溶液が、ホ
ルムアルデヒド、水素化ホウ素ナトリウム、ヒドラジン
の中から選ばれた少くとも一種以上を含むことを特徴と
する、銅と樹脂との接着方法。
[Claims] 1. Prior to adhesion, the method includes the steps of forming a copper oxide layer on the copper surface and treating the oxide layer with a reducing agent solution.
In the bonding method of copper and resin by heat and pressure bonding, the method of bonding copper and resin is characterized by exposing metallic copper to a part of the copper surface covered with a copper oxide layer when treated with a reducing agent solution. Adhesion method. 2. The method for bonding copper and resin according to claim 1, wherein the reducing agent solution contains at least one selected from formaldehyde, sodium borohydride, and hydrazine.
JP60090862A 1985-04-30 1985-04-30 Bonding of copper and resin Granted JPS61250036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090862A JPS61250036A (en) 1985-04-30 1985-04-30 Bonding of copper and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090862A JPS61250036A (en) 1985-04-30 1985-04-30 Bonding of copper and resin

Publications (2)

Publication Number Publication Date
JPS61250036A true JPS61250036A (en) 1986-11-07
JPH0449855B2 JPH0449855B2 (en) 1992-08-12

Family

ID=14010359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090862A Granted JPS61250036A (en) 1985-04-30 1985-04-30 Bonding of copper and resin

Country Status (1)

Country Link
JP (1) JPS61250036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306694A (en) * 1989-05-22 1990-12-20 Matsushita Electric Works Ltd Multilayer interconnection substrate
JPH0449855B2 (en) * 1985-04-30 1992-08-12 Hitachi Ltd
JP2003073630A (en) * 2001-09-03 2003-03-12 Taisei Plas Co Ltd Adhering method of metal
JP2009140998A (en) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd Method for treating copper surface, copper, and wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643199A (en) * 1945-12-18 1953-06-23 Hersch Paul Process of forming a layer of metallic copper on copper oxide
JPS56153797A (en) * 1980-04-28 1981-11-27 Hitachi Chemical Co Ltd Method of manufacturing multilayer printed circuit board substrate
JPS648479A (en) * 1987-07-01 1989-01-12 Toshiba Corp Machine translation system
JPS6441276A (en) * 1987-08-07 1989-02-13 Fuji Electric Co Ltd Forming method for thin film
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250036A (en) * 1985-04-30 1986-11-07 Hitachi Ltd Bonding of copper and resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643199A (en) * 1945-12-18 1953-06-23 Hersch Paul Process of forming a layer of metallic copper on copper oxide
JPS56153797A (en) * 1980-04-28 1981-11-27 Hitachi Chemical Co Ltd Method of manufacturing multilayer printed circuit board substrate
JPS648479A (en) * 1987-07-01 1989-01-12 Toshiba Corp Machine translation system
JPS6441276A (en) * 1987-08-07 1989-02-13 Fuji Electric Co Ltd Forming method for thin film
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449855B2 (en) * 1985-04-30 1992-08-12 Hitachi Ltd
JPH02306694A (en) * 1989-05-22 1990-12-20 Matsushita Electric Works Ltd Multilayer interconnection substrate
JP2003073630A (en) * 2001-09-03 2003-03-12 Taisei Plas Co Ltd Adhering method of metal
JP2009140998A (en) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd Method for treating copper surface, copper, and wiring board

Also Published As

Publication number Publication date
JPH0449855B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JPS61176192A (en) Adhesion between copper and resin
US5800859A (en) Copper coating of printed circuit boards
US4775444A (en) Process for fabricating multilayer circuit boards
JPH0713304B2 (en) Copper surface treatment method
JPS61250036A (en) Bonding of copper and resin
JP2656622B2 (en) Bonding method between copper and resin
JPH0657454A (en) Etchant for nickel or nickel alloy, method for using the same and production of wiring board using the same
JP3911797B2 (en) Manufacturing method of multilayer printed wiring board
JP2000151096A (en) Manufacture of printed wiring board
US4781788A (en) Process for preparing printed circuit boards
JPS61279531A (en) Bonding of metal with resin
JPH0636470B2 (en) Method for treating copper circuit of circuit board for inner layer
JPS61266228A (en) Bonding of copper and resin
JP3123109B2 (en) Multilayer wiring board and its manufacturing method
JP2681188B2 (en) Metal surface modification method
JPH0136997B2 (en)
JPS6199700A (en) Structure of copper wiring board
JPH0568117B2 (en)
JPH0739574B2 (en) Treatment liquid to improve acid resistance of copper oxide surface
JP2768123B2 (en) Method for manufacturing multilayer wiring board
JP2768122B2 (en) Method for manufacturing multilayer wiring board
JPS62270780A (en) Method for adhering resin to copper
JPH03129793A (en) Treating method for circuit board substrate
JPS61241329A (en) Method of bonding copper and resin
JPH05308191A (en) Surface treatment method of inner-layer circuit board for multilayer printed wiring board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees