JPS61249939A - Production of oxygen-containing 2c compound - Google Patents

Production of oxygen-containing 2c compound

Info

Publication number
JPS61249939A
JPS61249939A JP60090099A JP9009985A JPS61249939A JP S61249939 A JPS61249939 A JP S61249939A JP 60090099 A JP60090099 A JP 60090099A JP 9009985 A JP9009985 A JP 9009985A JP S61249939 A JPS61249939 A JP S61249939A
Authority
JP
Japan
Prior art keywords
catalyst
compound
cobalt
alkaline earth
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60090099A
Other languages
Japanese (ja)
Other versions
JPS6319492B2 (en
Inventor
Kazuhiko Takeuchi
和彦 竹内
Takehiko Matsuzaki
松崎 武彦
Hironori Arakawa
裕則 荒川
Yoshihiro Sugi
義弘 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60090099A priority Critical patent/JPS61249939A/en
Publication of JPS61249939A publication Critical patent/JPS61249939A/en
Publication of JPS6319492B2 publication Critical patent/JPS6319492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To improve the selectivity of an oxygen-containing 2C compound such as ethanol, acetaldehyde, acetic acid, etc., CO and H2, by carrying out the reaction in the presence of a Co catalyst modified with Ru and an alkaline earth metal. CONSTITUTION:An oxygen-containing 2C compound is produced by reacting CO with H2 in the presence of a Co catalyst modified with Ru and an alkaline earth metal. The compositional ratio of the catalyst is 1/10-10pts.wt. of the alkaline earth metal per 1pt.wt. of Co in terms of metal. The catalyst can be produced by impregnating solutions of a cobalt compound (e.g. cobalt nitrate), a Ru compound (e.g. ruthenium chloride) and alkaline earth metal compound successively or at the same time to a carrier or by the ion-exchange process, dry-mixing process, etc. The catalyst is preferably reduced in H2 or CO atmosphere before reaction. EFFECT:The selectivity of the objective compound can be improved remarkably by the addition of the above elements.

Description

【発明の詳細な説明】 本発明は、ルテニウムおよびアルカリ土類金属から選ば
れた少くとも1種の元素により改質されたコバルト触媒
のもとで、−酸化炭素と水素との反応により、エタノー
ル、アセトアルデヒド、酢酸等の炭素数2の含酸素化合
物(C2含酸素化合物)を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to producing ethanol by reacting carbon oxide with hydrogen under a cobalt catalyst modified with at least one element selected from ruthenium and alkaline earth metals. , acetaldehyde, acetic acid, and other oxygen-containing compounds having 2 carbon atoms (C2 oxygen-containing compounds).

合成ガスよりエタノール、アセトアルデヒド、酢酸およ
び酢酸エステル等のC2含酸素化合物の直接製造法とし
ては、一定の助触媒を伴うロジウム触媒が既に公知であ
る(ドイツ国特許出願公告第250.233.特開昭5
1−80806および特開昭52−14706)。しか
し、この触媒はロジウムが高価格でありかつ地球上に少
量しか存在しない貴重な資源であるので多量に用いるこ
とができないという欠点を有する。従ってロジウムを用
いる必要のない安価な触媒の開発が強く望まれている。
Rhodium catalysts with certain co-catalysts are already known for the direct production of C2 oxygenated compounds such as ethanol, acetaldehyde, acetic acid and acetic esters from synthesis gas (German Patent Application No. 250.233. Showa 5
1-80806 and JP-A-52-14706). However, this catalyst has the disadvantage that it cannot be used in large quantities because rhodium is expensive and is a valuable resource that exists only in small quantities on earth. Therefore, there is a strong desire to develop an inexpensive catalyst that does not require the use of rhodium.

また、安価なコバルトを主成分とする触媒が合成ガス反
応に活性であることが知られている(フィッシャー・ト
ロプシュ反応)が、この際の主要な生成物は炭化水素で
あり、含酸素化合物の生成量は極めて僅かである。
In addition, it is known that inexpensive cobalt-based catalysts are active in synthesis gas reactions (Fischer-Tropsch reactions), but the main products in this case are hydrocarbons and oxygenated compounds. The amount produced is extremely small.

最近、銅、クロム、亜鉛、アルカリ土類金属、アルミニ
ウム、稀土類または鉄により改質されたコバルト触媒(
フランス国特許第4,122,110およびドイツ国特
許出願公告第2,748.097 ’)および金および
/または銀および/またはレニウムにより改質されたコ
バルト触媒(欧州特許第21330および特開昭56−
25124)が発表された。これらの触媒は含酸素化合
物を生じさせるが、それらのU禦造並びに運転に関して
は非常にデリケートであ、−る。それ故に、概ねそれら
は製造・運転に関して特殊かつ高度な技術を必要とする
上に、得られた触媒の寿命も永くない。
Recently, cobalt catalysts modified with copper, chromium, zinc, alkaline earth metals, aluminum, rare earths or iron (
French Patent No. 4,122,110 and German Patent Application No. 2,748,097') and cobalt catalysts modified with gold and/or silver and/or rhenium (European Pat. −
25124) was announced. Although these catalysts produce oxygenated compounds, they are very delicate in their production and operation. Therefore, they generally require special and advanced techniques for production and operation, and the life of the obtained catalyst is also short.

従って、調製が容易でかつ頑丈、長寿命で、かつ高選択
率で合成ガスから02含酸素化合物を与える触媒の開発
が当該技術分野における課題である。
Therefore, it is a challenge in the art to develop catalysts that are easy to prepare, robust, long-lived, and provide O2 oxygenates from synthesis gas with high selectivity.

本発明者らは鋭意研究に努めた結果、コバルトをルテニ
ウムで改質することによりC2含酸素化合物の生成活性
が本質的に高められることを見出した。更に助触媒とし
てルテニウムの他にアルカリ土類金属から選ばれた少く
とも1種の元素を加えることにより、C2含酸素化合物
の選択率が飛躍的に高められることも見出した。従って
、本発明は一酸化炭素と水素からコバルト触媒のもとで
C2含酸素化合物を製造する方法において、触媒がコバ
ルトのほかにルテニウムおよびアルカリ土類金属の少な
くとも1種を含むことを特徴とする方法である。
As a result of intensive research, the present inventors have discovered that the activity of producing C2 oxygen-containing compounds can be essentially enhanced by modifying cobalt with ruthenium. Furthermore, it has been found that the selectivity of C2 oxygen-containing compounds can be dramatically increased by adding at least one element selected from alkaline earth metals in addition to ruthenium as a promoter. Therefore, the present invention provides a method for producing a C2 oxygen-containing compound from carbon monoxide and hydrogen using a cobalt catalyst, characterized in that the catalyst contains at least one of ruthenium and an alkaline earth metal in addition to cobalt. It's a method.

C2含酸素化合物の選択率が上述の元素の添加により著
しく向上するという事実は実に驚くべきことであり、か
つ予見され得ぬことであった。何故ナラ、コバルト触媒
上およびルテニウム触媒上での合成ガス反応の主生成物
はそれぞれ炭化水素か、も明らかではない。しかしその
活性の中心となるものは、本質的には互いに共存する元
素種であり、従って、触媒自体の形態や触媒中の各成分
の形は原則的には何ら制限はない。また、触媒の各成分
は担体なしでも良いが、通常は担体上に担持して用いる
のが好ましい。即ち、コバルト化合物およびルテニウム
化合物、更にアルカリ土類金属のうちの少なくとも1種
の元素の化合物の溶液を順次あるいは同時に担体上に浸
漬し、ついで溶媒を除去する、いわゆる含浸法で調製さ
れるか、またはイオン交換法、あるいはいわゆるドライ
ミキシング法で調製されても良い。
The fact that the selectivity of C2 oxygenates is significantly improved by the addition of the above-mentioned elements was indeed surprising and could not have been foreseen. It is also not clear why the main products of the syngas reactions on oak, cobalt and ruthenium catalysts, respectively, are hydrocarbons. However, what plays a central role in its activity is essentially the elemental species that coexist with each other, and therefore there is no restriction in principle on the form of the catalyst itself or the form of each component in the catalyst. Further, although each component of the catalyst may be used without a carrier, it is usually preferable to use it by supporting it on a carrier. That is, it is prepared by a so-called impregnation method, in which a solution of a cobalt compound, a ruthenium compound, and a compound of at least one element selected from alkaline earth metals is immersed onto the carrier sequentially or simultaneously, and then the solvent is removed. Alternatively, it may be prepared by an ion exchange method or a so-called dry mixing method.

触媒調製上使用されるコバルト化合物としては、例えば
、硝酸コバルト、塩化コバルト、臭化コバルト、沃化コ
バルト、炭酸コバルト、硫酸コバルトTどの無機酸塩や
、またギ酸コバルト、酢酸コバルト、蓚酸コバルトなど
の有機酸塩、酸化物、コバルトカルボニルなどが適当で
ある。また、同様にルテニウム化合物としては、例えば
塩化ルテニウム、臭化ルテニウム、沃化ルテニウム、塩
化ルテニウム酸アンモニウム、硝酸ルテニウム、水酸化
ルテニウムなどの無機酸塩、酢酸ルテニウム、ギ酸ルテ
ニウム、蓚酸ルテニウムなどの有機酸塩、酸化物、アン
ミン錯塩、クラスター、有機錯体化合物などが用いられ
る。アルカリ土類金属元素、即ち、ベリリウム、マグネ
シウム、カルシウム、ストロンチウム、バリウム、ラジ
ウムの化合物としてはフッ化物、塩化物、臭化物、沃化
物、硝酸塩、硫酸塩、炭酸塩、水酸化物などの無機酸塩
、ギ酸塩、酢酸塩などの有機酸塩などが用いられる。
Cobalt compounds used in catalyst preparation include, for example, inorganic acid salts such as cobalt nitrate, cobalt chloride, cobalt bromide, cobalt iodide, cobalt carbonate, and cobalt T sulfate, as well as cobalt formate, cobalt acetate, and cobalt oxalate. Organic acid salts, oxides, cobalt carbonyl, etc. are suitable. Similarly, examples of ruthenium compounds include inorganic acid salts such as ruthenium chloride, ruthenium bromide, ruthenium iodide, ammonium ruthenate chloride, ruthenium nitrate, and ruthenium hydroxide, and organic acids such as ruthenium acetate, ruthenium formate, and ruthenium oxalate. Salts, oxides, ammine complex salts, clusters, organic complex compounds, etc. are used. Compounds of alkaline earth metal elements, namely beryllium, magnesium, calcium, strontium, barium, and radium, include inorganic acid salts such as fluorides, chlorides, bromides, iodides, nitrates, sulfates, carbonates, and hydroxides. , organic acid salts such as formate, acetate, etc. are used.

ただし、これらの化合物を担体上への担持を容易ならし
めるため、水または他の適当な溶媒に可本発明の触媒に
おいて、その成分組成比は、金属換算テ、コバルト1重
量部、アルカリ土類金属部である。
However, in order to make it easier to support these compounds on a carrier, water or other suitable solvents may be used.In the catalyst of the present invention, the component composition ratio is 1 part by weight of cobalt, 1 part by weight of cobalt, and 1 part by weight of alkaline earth. It is a metal part.

本発明の実施にあたっては、触媒をあらかじめ水素ある
いは一酸化炭素などの雰囲気中で還元処理を行うことが
好ましい。原料の合成ガス中には一酸化炭素および水素
の他にアルゴン、窒素、二酸化炭素などの不活性成分を
含んでも良い。
In carrying out the present invention, it is preferable that the catalyst is previously subjected to a reduction treatment in an atmosphere of hydrogen or carbon monoxide. The raw material synthesis gas may contain inert components such as argon, nitrogen, and carbon dioxide in addition to carbon monoxide and hydrogen.

本方法で特に主成分として生成するエタノール、アセト
アルデヒドなどの混合物は蒸留により容易に分離・精製
できるので、これらの製品の製造プロセスとしての実用
性があり、更に石油資源の節約の大きな一助を成すもの
と期待される。
In particular, the mixture of ethanol, acetaldehyde, etc. that is produced as the main component in this method can be easily separated and purified by distillation, so it is practical as a manufacturing process for these products, and it also contributes greatly to the conservation of petroleum resources. It is expected that

以下に実施例および比較例により本発明をさらに詳細に
説明する。
The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1゜ 市販シリカゲル担体(ダビソン+57.比表面積250
〜350m/9、細孔容積0.95〜120m1/17
.見掛比重0.35〜0.43117Fill) 10
 gを、Co (OAC)2・4H202,119ヨU
M1/ (OAC)、 −4H,01,22,9を含む
水溶液12ffi/で浸漬し、ロータリーエバポレータ
ーを用いて溶媒除去・乾燥し、さらに300℃で水素処
理してコバルト−マグネシウム−シリカ触媒(I)を得
た。さらに、これをRu3 (Co)tz O,571
のn−ヘキサン溶液中に浸漬し、溶媒除去・乾燥シ、コ
バルト−ルテニウム−マグネシウム−シリカ触媒(n)
を得た。この触媒(II)のうち3dを固定床式高圧流
通反応装置(5O8−31611!、内径11mm中)
に充填し、水素気流中450℃で水素還元を行った。還
元後、合成ガス(−酸化炭素:水素:アルボ:/=30
:60:10、体積比) t 20kll/an”(ゲ
ージ圧)で導入し、空間速度2,000/hで触媒に接
触させた。生成物は全てガス状のままガスクロマトグラ
フに導入して分析した。
Example 1 Commercially available silica gel carrier (Davison+57. Specific surface area 250
~350m/9, pore volume 0.95~120m1/17
.. Apparent specific gravity 0.35~0.43117Fill) 10
g, Co (OAC)2・4H202,119yoU
The cobalt-magnesium-silica catalyst (I ) was obtained. Furthermore, this is Ru3 (Co)tz O,571
The cobalt-ruthenium-magnesium-silica catalyst (n) was immersed in an n-hexane solution, and the solvent was removed and dried.
I got it. 3d of this catalyst (II) was added to a fixed-bed high-pressure flow reactor (5O8-31611!, inside diameter 11 mm)
and hydrogen reduction was performed at 450°C in a hydrogen stream. After reduction, synthesis gas (-carbon oxide: hydrogen: albo: /=30
:60:10, volume ratio) t 20 kll/an" (gauge pressure) and brought into contact with the catalyst at a space velocity of 2,000/h. All the products were introduced in a gaseous state into a gas chromatograph for analysis. did.

実施例2゜ 実施例1と同様にシリカゲル担体1og、Co (OA
C)2・4H202,11、!lit 、Ca (OA
C)2−H2O1,011およびR”5(CO)lz 
0.57 gヨリコバルトA、 テニウムーカルシウム
ーシリカ触媒(I[I)を得た。触媒(Iff)を実施
例1と同様に前処理および反応を行った。
Example 2゜Similarly to Example 1, 1 og of silica gel carrier, Co (OA
C) 2・4H202,11,! lit, Ca (OA
C) 2-H2O1,011 and R”5(CO)lz
0.57 g of yoricobalt A and thenium-calcium-silica catalyst (I[I) were obtained. The catalyst (Iff) was pretreated and reacted in the same manner as in Example 1.

実施例3゜ 実施例1と同様にシリカゲル担体10I、1.22gお
よびRu3(CO)1.0.57 、jil ヨ9 コ
ハル) −ルテニウム−ストロンチウム−シリカ触媒(
IV)を得た。触媒<rv>を実施例1と同様に前処理
および反応を行った。
Example 3 Same as in Example 1, 1.22 g of silica gel carrier 10I and 1.0.57 g of Ru3(CO), ruthenium-strontium-silica catalyst (
IV) was obtained. The catalyst <rv> was pretreated and reacted in the same manner as in Example 1.

実施例4、 実施例1と同様にシリカゲル担体10,9、CO(OA
C)2 ・4H202,11Jil 、 Ba (OA
C)22.119 kよびRu3(CO)120.57
9 ヨ9 コハル)−kfニウム−バリウム−シリカ触
媒(V)を得た。触媒(V)を実施例1と同様に前処理
および反応を行った。
Example 4, similar to Example 1, silica gel carrier 10,9, CO (OA
C) 2 ・4H202,11Jil, Ba (OA
C) 22.119 k and Ru3(CO) 120.57
9 yo9 Kohar)-kf nium-barium-silica catalyst (V) was obtained. The catalyst (V) was pretreated and reacted in the same manner as in Example 1.

比較例1゜ 実施例1と同様のシリカゲル担体loyをCo (OA
C)2・4HzO2,11Ji’ O水溶液12I11
1K浸漬し、ロータリーエバポレータを用いて溶媒を除
去乾燥してコバルト−シリカ触媒(VI)を調製し、こ
れをそのまま実施例1と同様に前処理および反応を行っ
た。
Comparative Example 1゜The same silica gel carrier loy as in Example 1 was used as Co(OA
C) 2.4HzO2,11Ji' O aqueous solution 12I11
The cobalt-silica catalyst (VI) was prepared by immersing it for 1K and drying by removing the solvent using a rotary evaporator, and pretreated and reacted in the same manner as in Example 1.

比較例2゜ 実施例1と同様のシリカゲル担体10gを、Ru5(C
o)tz 0.571 (D n−ヘ*+7溶液中17
CFlaし、ロータリーエバポレータを用いて溶媒除去
乾燥し、ルテニウム−シリカ触媒(■)を得た。触媒(
■)をそのまま実施例1と同様に前処理および反応を行
った。
Comparative Example 2 10 g of the same silica gel carrier as in Example 1 was mixed with Ru5 (C
o) tz 0.571 (D n-he*+17 in solution
CFla, and the solvent was removed and dried using a rotary evaporator to obtain a ruthenium-silica catalyst (■). catalyst(
(2) was subjected to pretreatment and reaction in the same manner as in Example 1.

比較例3゜ 実施例1と同様のシリカゲル担体1oIをF3r 0A
C)z +  n、o 1.22 J’の水溶液12t
l中17CF!潰し、ロータリーエバポレータを用いて
溶媒を除去・乾燥し、ストロンチウム−シリカ触媒(V
ll)を得た。触媒(■)をそのまま実施例1と同様に
前処実施例1と同様にシリカゲル担体1011Co (
OAC)z ・4HzO2,1111オjびRua (
Co)12 o、s 7gよりコバルト−ルテニウム触
媒(IX)を得た。触媒(IX) t−実施例1と同様
に前処理および反応を行った。
Comparative Example 3゜The same silica gel carrier as in Example 1 was used as F3r 0A.
C) 12 tons of aqueous solution of z + n, o 1.22 J'
17 CF in l! The solvent was removed and dried using a rotary evaporator, and the strontium-silica catalyst (V
ll) was obtained. The catalyst (■) was treated as it was in Example 1, and the silica gel carrier 1011Co (
OAC)z ・4HzO2,1111Oj and Rua (
A cobalt-ruthenium catalyst (IX) was obtained from 7 g of Co)12o,s. Catalyst (IX) t-Pretreatment and reaction were performed in the same manner as in Example 1.

次に前記実験結果を次表に示す。Next, the experimental results are shown in the following table.

なお表中に示した各符号は次のことを示す。Each code shown in the table indicates the following.

(a)反応条件:原料合成ガスA r : Co : 
H2= 10 :30:60、圧力20に9/art”
  (ゲージ圧)、空間速度2.000/h0 (切−酸化炭素転化率(チ) (C)生成物炭素効率(%) (6)その他の炭化水素としてはC,C,。の炭化水素
から成る。
(a) Reaction conditions: Raw material synthesis gas A r : Co :
H2 = 10:30:60, pressure 20 to 9/art”
(gauge pressure), space velocity 2.000/h0 (cut-oxidation carbon conversion rate (chi) (C) product carbon efficiency (%) (6) Other hydrocarbons include C, C, etc. Become.

(e)C2含酸素化合物とはエタノール、アセトアルデ
ヒド、酢酸および酢酸エステルの和を表わす。
(e) C2 oxygenated compound represents the sum of ethanol, acetaldehyde, acetic acid and acetic acid ester.

Claims (1)

【特許請求の範囲】[Claims] (1)一酸化炭素と水素から触媒を用いて炭素数2の含
酸素化合物を直接製造する方法において、該触媒がコバ
ルトおよびルテニウムの両元素を含み、更にアルカリ土
類金属から選ばれる少なくとも1種の元素を含むことを
特徴とする方法。
(1) A method for directly producing an oxygen-containing compound having 2 carbon atoms from carbon monoxide and hydrogen using a catalyst, wherein the catalyst contains both cobalt and ruthenium, and further includes at least one element selected from alkaline earth metals. A method characterized by containing an element.
JP60090099A 1985-04-26 1985-04-26 Production of oxygen-containing 2c compound Granted JPS61249939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090099A JPS61249939A (en) 1985-04-26 1985-04-26 Production of oxygen-containing 2c compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090099A JPS61249939A (en) 1985-04-26 1985-04-26 Production of oxygen-containing 2c compound

Publications (2)

Publication Number Publication Date
JPS61249939A true JPS61249939A (en) 1986-11-07
JPS6319492B2 JPS6319492B2 (en) 1988-04-22

Family

ID=13989073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090099A Granted JPS61249939A (en) 1985-04-26 1985-04-26 Production of oxygen-containing 2c compound

Country Status (1)

Country Link
JP (1) JPS61249939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200099105A (en) * 2019-02-13 2020-08-21 서강대학교산학협력단 HETEROGENEOUS CATALYST FOR THE PRODUCTION OF C2-oxygenates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180436A (en) * 1982-04-16 1983-10-21 Agency Of Ind Science & Technol Preparation of compound containing oxygen
JPS59164738A (en) * 1983-03-10 1984-09-17 Agency Of Ind Science & Technol Production of ethanol and acetic acid
JPS61143333A (en) * 1984-12-17 1986-07-01 Agency Of Ind Science & Technol Production of oxygen-containing 2c compound from synthetic gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180436A (en) * 1982-04-16 1983-10-21 Agency Of Ind Science & Technol Preparation of compound containing oxygen
JPS59164738A (en) * 1983-03-10 1984-09-17 Agency Of Ind Science & Technol Production of ethanol and acetic acid
JPS61143333A (en) * 1984-12-17 1986-07-01 Agency Of Ind Science & Technol Production of oxygen-containing 2c compound from synthetic gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200099105A (en) * 2019-02-13 2020-08-21 서강대학교산학협력단 HETEROGENEOUS CATALYST FOR THE PRODUCTION OF C2-oxygenates

Also Published As

Publication number Publication date
JPS6319492B2 (en) 1988-04-22

Similar Documents

Publication Publication Date Title
US6559093B2 (en) Process for catalytic ammonia production-preparation and recovery of ammonia synthesis catalyst
EP0253924A1 (en) Synthesis gas conversion using ROR-activated catalyst
JP2002516749A (en) Vinyl acetate catalyst containing metal palladium, copper and gold and method for producing the same
KR940000864B1 (en) Process for the preparation of a silver-containing catalyst
US4659686A (en) Method for treating carbon supports for hydrogenation catalysts
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
EP0898494B1 (en) A two step gold addition method for preparing a vinyl acetate catalyst
JP4121459B2 (en) Process for producing 1,2-dichloroethane
US4318829A (en) Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts
US4288558A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
JPS61249939A (en) Production of oxygen-containing 2c compound
US4393144A (en) Method for producing methanol
CN1250688A (en) Process for preparing catalyst and its application in preparing of enester acetate
US4568699A (en) Process for producing oxygen-containing hydrocarbon compounds
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds
JPS6341893B2 (en)
JPS6341892B2 (en)
JPH01128948A (en) Production of oxygen-containing organic compound
JPS61143333A (en) Production of oxygen-containing 2c compound from synthetic gas
JPS6144847B2 (en)
JP2704165B2 (en) Method for preparing catalyst for producing organic oxygenated compound
JPS60199841A (en) Production of oxygen-containing c2 compound
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound
JPH0769605A (en) Production of hydrogen peroxide
JPS6238336B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term