JPS61249643A - Composition for casting mold having good collapsing property - Google Patents

Composition for casting mold having good collapsing property

Info

Publication number
JPS61249643A
JPS61249643A JP9252985A JP9252985A JPS61249643A JP S61249643 A JPS61249643 A JP S61249643A JP 9252985 A JP9252985 A JP 9252985A JP 9252985 A JP9252985 A JP 9252985A JP S61249643 A JPS61249643 A JP S61249643A
Authority
JP
Japan
Prior art keywords
specific gravity
mold
sand
composition
high specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9252985A
Other languages
Japanese (ja)
Other versions
JPH0566224B2 (en
Inventor
Tokufusa Harada
原田 徳房
Kyoji Tominaga
富永 恭爾
Isao Kai
勲 甲斐
Kazuo Tamemoto
為本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP9252985A priority Critical patent/JPS61249643A/en
Publication of JPS61249643A publication Critical patent/JPS61249643A/en
Publication of JPH0566224B2 publication Critical patent/JPH0566224B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To obtain a compsn. for a casting mold having a good collapsing property after pouring by consisting essentially of a base material for the mold in which at least prescribed weight % of molding sand is replaced with a refractory high specific gravity granular material having a specific value or above of the true specific gravity and a curable org. binder. CONSTITUTION:At least 10wt% of the molding sand constituting the compd. for the casting mold consisting essentially of the molding sand and curable org. binder is replaced with the refractory high specific gravity granular material having >=3.4 true specific gravity. Such refractory high specific gravity granular material is selected from zircon sand, chromite sand, converter air granulated slag and granular iron. A thermosetting resin, air permeable curable resin or cold self-curing resin is used for the curable org. binder. The compsn. for the casting mold having the good collapsing property after pouring is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、注湯後の崩壊性が良好な鋳型用組成物、特に
アルミニウム合金のような軽合金鋳物の調造に好適に使
用される鋳型用組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a molding composition that has good disintegration properties after pouring, particularly for molding that is suitably used in the preparation of light alloy castings such as aluminum alloys. The present invention relates to a composition.

従来の技術 通常、鋳造に用いる鋳型は%鋳物砂と有機粘結剤とから
成る鋳型用組成物によって作られているが、この鋳型用
組成物については注湯後において容易に崩壊することが
要求され、そのためにこれまでも多くの研究がなされて
いる。
BACKGROUND OF THE INVENTION Usually, molds used for casting are made from a molding composition consisting of foundry sand and an organic binder, but this molding composition is required to easily disintegrate after pouring. A lot of research has been carried out for this purpose.

特に、アルミニウム合金のような軽合金の鋳造に際して
は、鉄の場合と異なシ、鋳型中の粘結剤が分解するのに
十分な熱履歴を与えないため、注湯後の鋳型が崩壊しに
<<、エヤハンマーなどで鋳物に大きな衝撃を与えて砂
落しを行うか、あるいは約500℃の高温下で4〜8時
間加熱処理して砂焼きしなければならず、多大の労力と
エネルギーの消費を必要としていた。ところで、最近の
自動車関連の鋳造部品は、軽量化のために、従来の鉄に
代えてアルミニウム合金のような軽合金を用いる傾向に
あシ、鋳型の崩壊性の向上の問題はいよいよ焦眉の急と
なってきている。
In particular, when casting light alloys such as aluminum alloys, unlike iron, the mold does not have enough heat history to decompose the binder in the mold, so the mold tends to collapse after pouring. <<, it is necessary to remove the sand by applying a large impact to the casting with an air hammer, etc., or heat it at a high temperature of about 500°C for 4 to 8 hours and sand-burn it, which consumes a lot of labor and energy. was needed. By the way, recent automobile-related cast parts have tended to use light alloys such as aluminum alloys instead of conventional iron in order to reduce weight, and the problem of improving the collapsibility of molds has become increasingly urgent. It is becoming.

鋳型の注湯後の崩壊性を改善する手段の1つとして、比
較的低温で熱分解する物質を配合して粘結剤の結合力を
破壊することが行われ、これまでに、このような物質と
して、含ハロゲン有機化合物、過酸化物、リン酸エステ
ル類又は無機塩化物などが提案されている(特開昭57
−139442号公報、特開昭57−149043号公
報、特開昭57−156858号公報、特開昭58−3
745号公報、特開昭58−205641号公報)。
One way to improve the disintegration of molds after pouring is to break down the binding force of the binder by adding a substance that thermally decomposes at a relatively low temperature. As the substance, halogen-containing organic compounds, peroxides, phosphoric acid esters, inorganic chlorides, etc. have been proposed (Japanese Patent Laid-Open No. 57
-139442, JP 57-149043, JP 57-156858, JP 58-3
745, JP-A-58-205641).

しかしながら、これらの物質は、粘結剤の結合力を破壊
する性質上、得られる鋳型の強度が低下するのを免れず
、このためその配合量にはおのずから限度があシ、十分
な崩壊性の向上は望めない。
However, since these substances destroy the binding force of the binder, the strength of the resulting mold inevitably decreases, and therefore there is a natural limit to the amount of these substances that can be added, and it is difficult to achieve sufficient disintegrability. There is no hope for improvement.

発明が解決しようとする問題点 本発明は、アルミニウム合金のような注湯温度の低い軽
合金の鋳造においても、注湯後に良好な崩壊性を示す鋳
型用組成物を簡単に提供することを目的とするものであ
る。
Problems to be Solved by the Invention An object of the present invention is to easily provide a mold composition that exhibits good disintegration properties after pouring, even in the casting of light alloys such as aluminum alloys whose pouring temperature is low. That is.

問題点を解決するだめの手段 本発明者らは、鋳物に振動を与えながら砂落しを行う場
合に、振動を迅速に鋳型全体に伝ばんさせ、その崩壊を
促進させる手段について鋭意研究を重ねた結果、真比重
的2.6の鋳物砂の少なくとも一部を高比重の耐火性粒
状体に置き換えることによシ、前記目的を達成しうるこ
とを見出し、この知見に基づいて本発明を完成するに至
った。
Means to Solve the Problem The inventors of the present invention have conducted intensive research on a means to quickly propagate the vibration to the entire mold and promote its collapse when removing sand while applying vibration to the casting. As a result, it was discovered that the above object could be achieved by replacing at least a portion of the foundry sand with a true specific gravity of 2.6 with refractory granules of high specific gravity, and based on this knowledge, the present invention was completed. reached.

すなわち、本発明は、鋳物砂と硬化性有機粘結剤とを主
成分とする鋳型用組成物知おいて、鋳物砂の少なくとも
10重量幅を真比重3.4以上の耐火性高比重粒状体で
置換したことを特徴とする崩壊性の良好な鋳型用組成物
を提供するものである。
That is, the present invention provides a molding composition containing foundry sand and a curable organic binder as main components, and in which at least 10% of the foundry sand is mixed with refractory high specific gravity granules having a true specific gravity of 3.4 or more. The object of the present invention is to provide a molding composition with good disintegrability, characterized in that the composition is substituted with

本発明の組成物においては、鋳物砂の全部を、真比重3
.4以上の耐火性高比重粒状体で置き換えてもよいし、
またその一部を耐火性高比重粒状体で置き換えてもよい
が、一部を置き換える場合には、少なくとも10重量係
の部分を置き換えることが必要である。この量が10重
量係未満では、振動伝ばん効果が十分に促進されない。
In the composition of the present invention, all of the foundry sand has a true specific gravity of 3
.. It may be replaced with a refractory high specific gravity granule of 4 or more,
Also, a part of it may be replaced with a fire-resistant high-density granular material, but when replacing a part, it is necessary to replace a part with a weight factor of at least 10. If this amount is less than 10% by weight, the vibration propagation effect will not be sufficiently promoted.

また、該粒状体の粒度分布については特に制限はないが
Furthermore, there is no particular restriction on the particle size distribution of the granules.

20メツシユふるいを通過しない量が20重i−4以下
で、かつ270メツシユふるい通過量が10重重量板下
であるような粒状体が好適である。
It is preferable to use a granular material in which the amount that does not pass through a 20-mesh sieve is 20 weight i-4 or less, and the amount that does not pass through a 270-mesh sieve is 10 weight i-4 or less.

さらに、前記耐火性高比重粒状体が真比重3.4未満の
ものでは、振動を伝ばんさせる作用が十分に付加されな
い。この真比重は高ければ高いほどよいが、8.0よシ
も大きな物質は、一般にコストの高い貴重な金属になる
ため実用的でない。本発明の組成物に用いられる耐火性
高比重粒状体の具体例としては、ジルコンサンド、クロ
マイトサンド、転炉風砕スラグ、粒状鉄などが挙げられ
、これらはそれぞれ単独で用いてもよいし、2株以上組
み合わせて用いてもよい。なお、ここに示す真比重はJ
工5−R−2205に準じて測定した値である。
Furthermore, if the refractory high specific gravity granules have a true specific gravity of less than 3.4, they will not have a sufficient effect of transmitting vibrations. The higher the true specific gravity, the better; however, substances higher than 8.0 are generally impractical because they become expensive and valuable metals. Specific examples of the refractory high specific gravity granules used in the composition of the present invention include zircon sand, chromite sand, pulverized converter slag, and granular iron, each of which may be used alone, or Two or more strains may be used in combination. The true specific gravity shown here is J
This is a value measured in accordance with Engineering 5-R-2205.

本発明の組成物において用いられる有機粘結剤としては
、通常鋳型の製造に際して慣用されている加熱硬化性樹
脂(シェルモールド法〕、通気硬化性樹@(コールドボ
ックス法)、常温自硬化性樹脂(常温硬化法)などであ
シ、例えばシェルモールド法においては、ノボラック型
又はレゾール型フェノール系樹脂、尿素系樹脂など、コ
ールドボックス法においては、フェノール・インシアネ
ート果樹@、フラン系樹脂など、常温硬化法においては
、フェノール系樹@17ラン系樹脂、フェノール・イン
シアネート系樹脂などが用いられる。
Examples of the organic binder used in the composition of the present invention include heat-curing resins (shell mold method), air-curing resins (cold box method), and room-temperature self-curing resins that are commonly used in the production of molds. For example, in the shell mold method, novolac type or resol type phenolic resins, urea resins, etc. are used.In the cold box method, phenol incyanate fruit trees, furan resins, etc. are used at room temperature. In the curing method, phenolic resin @17 run resin, phenol incyanate resin, etc. are used.

また、これらの樹脂に対し、崩壊性を改善する目的で各
種の添加剤、例えば臭素含有有機化合物や塩素化合物な
どを反応若しくは混合した変性樹l旨なども用いること
ができる。
Furthermore, modified resins prepared by reacting or mixing various additives such as bromine-containing organic compounds and chlorine compounds with these resins for the purpose of improving disintegration properties can also be used.

本発明の組成物においては、これらの有機粘結剤は、前
記鋳物砂及び耐火性高比重粒状体の合計に対し0.1〜
10重量憾の範囲で配合することが好ましい。
In the composition of the present invention, these organic binders are contained in an amount of 0.1 to 0.1 to
It is preferable to mix in a range of 10% by weight or less.

本発明の鋳型用組成物の製造方法としては、例えば鋳物
砂の一部又は全部を前記耐火性高比重粒状体で置換され
て成る常温又は加熱された基材と前記有機粘結剤とを、
適当な混線機を用いて混合する方法、あるいは常温又は
加熱された鋳物砂と該有機粘結剤又は耐火性高比重粒状
体と該有機粘結剤を、混練機を用いてそれぞれ別個に混
合し、次いでこれらを所望の割合で配合する方法などが
用いられる。
The method for producing the molding composition of the present invention includes, for example, using a room-temperature or heated base material in which part or all of the foundry sand has been replaced with the refractory high-density granules, and the organic binder;
A method of mixing using an appropriate mixer, or mixing the foundry sand at room temperature or heated and the organic binder or the refractory high specific gravity granules and the organic binder separately using a mixer. , and then blending these in a desired ratio.

ところで、鋳型は通常、造型時、搬送時、鋳造時などに
おける破壊防止のために、その形状や対象鋳物に応じて
一定の強度を保有するように鋳型組成物によって製造さ
れ、管理される。この場合、鋳型強度は同一有機粘結剤
でも使用される耐火性粒状物の種類や粒度分布によって
異なるため、一般的には該有機粘結剤の添加量によって
調整される0  ゛ 発明の効果 本発明の易崩壊性鋳型用組成物は、鋳型用基材として真
比重3.4以上の耐火性高比重粒状体単独若しくはこれ
と鋳物砂との混合物を用いたものであって、これから得
られた鋳型は、アルミニウム軽合金などの注湯後におけ
る崩壊性が従来のものに比べて大幅に改善され、その崩
壊に要する時間が著しく短縮されうる。したがって1本
発明の組成物を用いることによシ、生産効率が上がシ生
産性を著しく向上させることができ、その上低いノック
アウト圧で容易に砂落しをしうるので、鋳物の破壊が少
なく製品歩留りが向上し、さらに熱処理時間の短縮によ
る省エネルギーや、ノックアウト時の手作業の軽減によ
る省力化が可能となる。
By the way, molds are usually manufactured and controlled using a mold composition so as to have a certain strength depending on the shape and target casting in order to prevent destruction during molding, transportation, casting, etc. In this case, the mold strength differs depending on the type and particle size distribution of the refractory granules used even with the same organic binder, so it is generally adjusted by the amount of the organic binder added. The easily disintegrating molding composition of the invention uses refractory high specific gravity granules having a true specific gravity of 3.4 or more alone or a mixture thereof with foundry sand as a molding base material, and The mold has significantly improved disintegration properties after pouring aluminum light alloy, etc., compared to conventional molds, and the time required for its disintegration can be significantly shortened. Therefore, by using the composition of the present invention, production efficiency can be significantly improved, and since sand can be easily removed with low knockout pressure, there is less destruction of castings. Product yield is improved, and it is also possible to save energy by shortening heat treatment time and save labor by reducing manual work during knockout.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

なお、鋳型曲げ強度はJISK6910に準じて測定し
、崩壊性は次のようにして調べた。
The mold bending strength was measured according to JIS K6910, and the collapsibility was examined as follows.

すなわち、鋳型用組成物を用いてドツグボーン型中子(
巾40m’l、長さ751m、厚さ25龍)を作成し、
一方、別に前記中子よシ少し大きい寸法を有する外型を
成型して、その中に前記中子をセットし、次いで720
±5℃に溶融したアルミニウム合金を注湯する。冷却後
、鋳物の1か所にエアー圧力0.4KP/cIIのエア
ーノ・ンマーで振動を与えて鋳物の径10j11の出口
よシ中子が完全に出るまでの時間(崩壊時間)を測定し
て、崩壊性を調べた0 実施例1〜4 鋳型用基材として、第1表に示すような耐火性高比重粒
状体5000重量部を用い、ヒーターによって140〜
150℃に加熱してスピードミキサー(遠州鉄工社製)
に投入し、次いでただちに、はぼ一定の鋳型強度を得る
ための粘結剤として第2表に示すような所定量のノボラ
ック型フェノール樹脂〔旭有機材工業■製、SP 69
0 ]を投入し、ミキサー中で50秒間混練l−て該樹
脂で該粒状体を被覆したのち、鋳型用基材に対し冷却水
1.5重量%と該樹脂に対しヘキサメチレンテトラミツ
15重量%とを水溶液として投入し、約40〜60秒後
に内容物が転体自由流動的になったところで、鋳型用基
材に対して滑剤としてステアリン酸カルシウム0.1重
量%を投入して、さらに15秒間混練後にミキサーから
取シ出し、流動性に富んだ加熱硬化性の鋳型用組成物を
得たO このようにして得られた鋳型用組成物の鋳型曲げ強度及
び崩壊性を求め、その結果を第2表に示すO 実施例5,6 鋳型用基材として、耐火性高比重粒状体を単独で用いる
代りに、第1表に示すような鋳物砂と耐火性高比重粒状
体との混合物を用いる以外は、実施例1〜4と同様な方
法で加熱硬化性の鋳型用組成物を調製し、このものから
作成した鋳型の曲げ強度及び崩壊性を求めた0その結果
を第2表に示す0 実施例7 耐火性高比重粒状体の代シに鋳物砂を用いる以外は、実
施例1〜4と同様な方法で1.2重量%の7ポラツク型
フエノール樹脂を使用した樹脂被覆鋳物砂(A)を得た
。一方、前記と同様にして、耐火性高比重粒状体と1.
2重量%のノボラック型フェノール樹脂を使用した樹脂
被覆耐火性高比重粒状体(匂を得た。
That is, a dog-bone type core (
40 m'l in width, 751 m in length, and 25 m in thickness.
On the other hand, separately mold an outer mold having slightly larger dimensions than the core, set the core therein, and then
Pour molten aluminum alloy at ±5°C. After cooling, vibration was applied to one part of the casting using an air blower with an air pressure of 0.4 KP/cII, and the time (disintegration time) until the core completely came out from the exit of diameter 10j11 of the casting was measured. , the collapsibility was investigated.0 Examples 1 to 4 5000 parts by weight of the fire-resistant high specific gravity granules as shown in Table 1 were used as the base material for the mold, and
Heat to 150℃ and use a speed mixer (manufactured by Enshu Tekko Co., Ltd.)
Immediately, a predetermined amount of novolac type phenolic resin (manufactured by Asahi Yokuzai Kogyo ■, SP 69) as shown in Table 2 is added as a binder to obtain a constant mold strength.
0 ] and kneaded for 50 seconds in a mixer to coat the granules with the resin, then add 1.5% by weight of cooling water to the mold base material and 15% by weight of hexamethylenetetramite to the resin. % as an aqueous solution, and after about 40 to 60 seconds, when the contents became free-flowing, 0.1% by weight of calcium stearate was added as a lubricant to the mold base material, and an additional 15% by weight was added as a lubricant. After kneading for seconds, the mixture was taken out from the mixer to obtain a thermosetting molding composition with high fluidity. O shown in Table 2 Examples 5 and 6 Instead of using the refractory high specific gravity granules alone as the base material for the mold, a mixture of foundry sand and refractory high specific gravity granules as shown in Table 1 was used. A thermosetting mold composition was prepared in the same manner as in Examples 1 to 4, except that the composition was used, and the bending strength and collapsibility of molds made from this composition were determined.The results are shown in Table 2. 0 Example 7 Resin-coated molding sand (using 1.2% by weight of 7-Pollack type phenolic resin) was prepared in the same manner as in Examples 1 to 4, except that foundry sand was used instead of the refractory high specific gravity granules. A) was obtained. On the other hand, in the same manner as above, the fire-resistant high specific gravity granules and 1.
Resin-coated fire-resistant high-density granules using 2% by weight novolac type phenolic resin (obtained odor).

次に、このようにして得られた(A)と(B)とを重量
比50:50の割合で混合して加熱硬化性の鋳型用組成
物を製造し、このもので作成した鋳型の曲げ強度及び崩
壊性を求めた。その結果を第2表に示す。
Next, (A) and (B) thus obtained were mixed at a weight ratio of 50:50 to produce a thermosetting mold composition, and a mold made with this composition was bent. Strength and collapsibility were determined. The results are shown in Table 2.

比較例1.2 鋳型用基材として、耐火性高比重粒状体の代シに鋳物砂
を用いる以外は、実施例1〜4と同様にして加熱硬化性
の鋳型用組成物を製造し、このものの鋳型曲げ強度及び
崩壊性を求めた。その結果を第2表に示す。
Comparative Example 1.2 A thermosetting mold composition was produced in the same manner as in Examples 1 to 4, except that foundry sand was used as a substitute for the refractory high-density granular material as a base material for the mold. The mold bending strength and collapsibility of the material were determined. The results are shown in Table 2.

(注)崩壊時間が0秒とは、外型の解枠時の振動のみで
鋳型が崩壊したことを示す。
(Note) A collapse time of 0 seconds indicates that the mold collapsed only due to vibrations when the outer mold was disassembled.

第2表から明らかなように、本発明の組成物は従来のも
のに比べて、崩壊時間が大幅に短縮されておシ、崩壊性
が著しく、向上していることが分るO 実施例8 鋳型用基材として、前記第1表に示すようなジルコンサ
ンド2500重量部を用い、卓上ミキサー(品用工業社
爬)に投入し、次いでただちに、はぼ一定の鋳型強度を
得るための粘結剤として第3表に示すような所定量のフ
ェノール樹脂〔旭有機材工業■製、AP−P200]及
び硬化促進剤〔旭有機材工業■製、UA)を投入してミ
キサー中で30秒間混線後、ポリイソシアネート〔旭有
機材工業■製、AP−M750]を投入し、さらに30
秒間混練したのち、ミキサーから取シ出して常温自硬性
の鋳型用組成物を得た。
As is clear from Table 2, the disintegration time of the composition of the present invention is significantly shortened and the disintegration property is significantly improved compared to the conventional composition.Example 8 As a base material for the mold, 2500 parts by weight of zircon sand as shown in Table 1 above was charged into a tabletop mixer (manufactured by Hinayo Kogyo Co., Ltd.), and then immediately caking was carried out to obtain approximately constant mold strength. A predetermined amount of phenol resin (manufactured by Asahi Yukizai Kogyo ■, AP-P200) and a curing accelerator (manufactured by Asahi Yukizai Kogyo ■, UA) as shown in Table 3 were added as agents, and mixed for 30 seconds in a mixer. After that, add polyisocyanate [AP-M750, manufactured by Asahi Yukizai Kogyo ■], and add 30
After kneading for seconds, the mixture was taken out from the mixer to obtain a self-hardening molding composition at room temperature.

このようにして得られた鋳型用組成物で作成した鋳型に
ついて、崩壊性と圧縮強度とを求め、その結果を第3表
に示す。なお、圧縮強度は、鋳型用組成物を50Bφ×
50♂ の木型に手込めし、24時間放置後に測定した
The collapsibility and compressive strength of the molds made from the mold compositions thus obtained are determined, and the results are shown in Table 3. The compressive strength of the mold composition is 50Bφ×
It was hand molded into a 50♂ wooden mold and measured after being left for 24 hours.

実施例9 鋳型用基材として、ジルコンサンドの代シにジルコンサ
ンドと鋳物砂との混合物を用いる以外は、実施例8と同
様にして常温自硬性の鋳型用組成物を製造し、このもの
についての崩壊性と圧縮強度を求めた0その結果を第3
表に示す。
Example 9 A self-hardening mold composition at room temperature was produced in the same manner as in Example 8, except that a mixture of zircon sand and foundry sand was used instead of zircon sand as the base material for the mold. The collapsibility and compressive strength of
Shown in the table.

比較例3% 4 鋳型用基材として、ジルコンサンドの代シに鋳物砂を用
いる以外は、実施例8と同様にして常温自硬性の鋳型用
組成物を製造し、このものについての崩壊性及び圧縮強
度を求めた。その結果を第3表に示す。
Comparative Example 3% 4 A self-hardening mold composition at room temperature was produced in the same manner as in Example 8, except that foundry sand was used in place of zircon sand as the base material for the mold, and the disintegrability and Compressive strength was determined. The results are shown in Table 3.

実施例11 鋳型用基材として、前記第1表に示すようなジルコンサ
ンド2500重量部を用い、卓上ミキサー(品用工業社
製)に投入し、次いでただちに、はぼ一定の鋳型強度を
得るための粘結剤として第4表に示すような所定量のフ
ェノール樹脂〔旭有機材工業■製、0B−P〕及びポリ
インシアネート〔旭有機材工業■製% aB−yt ]
を投入して60秒間混線後、ミキサーから取シ出して通
気硬化性の鋳型用組成物を得たのち、トリエチルアミン
ガスを通気させて鋳型を作成し、崩壊性と圧縮強度を求
めた。その結果を第4表に示す。
Example 11 2,500 parts by weight of zircon sand as shown in Table 1 above was used as a base material for the mold, put into a tabletop mixer (manufactured by Shinyo Kogyo Co., Ltd.), and then immediately mixed to obtain a constant mold strength. As a binder, a predetermined amount of phenol resin (manufactured by Asahi Yikizai Kogyo ■, 0B-P) as shown in Table 4 and polyincyanate (manufactured by Asahi Yikizai Kogyo ■% aB-yt) is used as a binder.
After mixing for 60 seconds, the mixture was taken out from the mixer to obtain an aeration-curing mold composition. Triethylamine gas was aerated to create a mold, and the collapsibility and compressive strength were determined. The results are shown in Table 4.

比較例5 鋳型用基材として、ジルコンサンドの代シにフリーマン
トルサンドを用いる′以外は、実施例11と同様にして
通気硬化性の鋳型用組成物を製造し。
Comparative Example 5 An air-curable molding composition was produced in the same manner as in Example 11, except that freemantle sand was used instead of zircon sand as the molding substrate.

このものの崩壊性と圧縮強度を求めた。その結果を第4
表に示す。
The collapsibility and compressive strength of this material were determined. The result is the fourth
Shown in the table.

第     4     表 手続補正書 昭和61年7月29日 特許庁長官  黒 1)明 雄 殿 1、事件の表示            九区昭和60
年特許願第92529号 2、発明の名称 崩壊性の良好な鋳型用組成物 3、補正をする者 、事件との関係   特許出願人 宮崎県延岡市中の瀬町2丁目5955番地旭有機材工業
株式会社 代表者 川 並 勇 男 4、代理人  。
Table 4 Procedural Amendments July 29, 1985 Commissioner of the Patent Office Black 1) Akio Tono 1, Indication of the case Ninth Ward 1988
Patent Application No. 92529 2, Title of the invention: Molding composition with good disintegration properties 3, Person making the amendment, Relationship to the case Patent applicant: 2-5955 Nakanose-cho, Nobeoka City, Miyazaki Prefecture Asahi Yokuzai Kogyo Co., Ltd. Representative Isao Kawanami 4, Agent.

5、補正命令の日付  自 発 6、補正により増加する発明の数 0 7、補正の対象   明細書の発明の詳細な説明の欄8
゜補正の内容 (1)明細書第13ページの第2表、比較例の欄の「8
」を「2」に訂正します。
5. Date of amendment order Initiated 6. Number of inventions increased by amendment 0 7. Subject of amendment Detailed explanation of the invention in the specification column 8
゜Amendment details (1) Table 2 on page 13 of the specification, "8" in the comparative example column
" will be corrected to "2".

(2)同第18ページ第4表の次に以下の文章を加入し
ます。
(2) Add the following sentence next to Table 4 on page 18.

「 比較例6 鋳型用基材として、真比重3.06の耐火性高比重粒状
体(7エロクロムスラグ)を用い、粘結剤量を1.5重
量%とする以外は、実施例1〜4と同様にして加熱硬化
性の鋳型用組成物を製造し、このものの鋳型曲げ強度及
び崩壊性を求めた結果、曲げ強度は34.2kg/cx
2、崩壊時間は14秒であった。」
"Comparative Example 6 Examples 1 to 6 except that fire-resistant high specific gravity granules (7Erochrome slag) with a true specific gravity of 3.06 were used as the base material for the mold, and the amount of binder was 1.5% by weight. A thermosetting mold composition was produced in the same manner as in 4, and the mold bending strength and collapsibility of this material were determined. As a result, the bending strength was 34.2 kg/cx.
2. The disintegration time was 14 seconds. ”

Claims (1)

【特許請求の範囲】 1 鋳物砂と硬化性有機粘結剤とを主成分とする鋳型用
組成物において、鋳物砂の少なくとも10重量%を真比
重3.4以上の耐火性高比重粒状体で置換したことを特
徴とする崩壊性の良好な鋳型用組成物。 2 耐火性高比重粒状体がジルコンサンド、クロマイト
サンド、転炉風砕スラグ及び粒状鉄の中から選ばれた少
なくとも1種である特許請求の範囲第1項記載の鋳型用
組成物。 3 硬化性有機粘結剤が熱硬化性樹脂、通気硬化性樹脂
又は常温自硬性樹脂である特許請求の範囲第1項又は第
2項記載の鋳型用組成物。
[Scope of Claims] 1. In a molding composition containing foundry sand and a curable organic binder as main components, at least 10% by weight of the foundry sand is composed of refractory high specific gravity granules having a true specific gravity of 3.4 or more. A molding composition with good disintegrability, characterized in that it contains a substituted metal. 2. The molding composition according to claim 1, wherein the refractory high specific gravity granules are at least one selected from zircon sand, chromite sand, blasted converter slag, and granular iron. 3. The mold composition according to claim 1 or 2, wherein the curable organic binder is a thermosetting resin, an air-curing resin, or a room-temperature self-hardening resin.
JP9252985A 1985-04-30 1985-04-30 Composition for casting mold having good collapsing property Granted JPS61249643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9252985A JPS61249643A (en) 1985-04-30 1985-04-30 Composition for casting mold having good collapsing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9252985A JPS61249643A (en) 1985-04-30 1985-04-30 Composition for casting mold having good collapsing property

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18612694A Division JPH0768343A (en) 1994-08-08 1994-08-08 Production of aluminum alloy casting

Publications (2)

Publication Number Publication Date
JPS61249643A true JPS61249643A (en) 1986-11-06
JPH0566224B2 JPH0566224B2 (en) 1993-09-21

Family

ID=14056875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9252985A Granted JPS61249643A (en) 1985-04-30 1985-04-30 Composition for casting mold having good collapsing property

Country Status (1)

Country Link
JP (1) JPS61249643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466037A (en) * 1987-09-04 1989-03-13 Asahi Organic Chem Ind Material for resin coated casting mold
JP2003010944A (en) * 2001-06-28 2003-01-15 Asahi Organic Chem Ind Co Ltd Organic composition for foaming fluid self-strengthening mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466037A (en) * 1987-09-04 1989-03-13 Asahi Organic Chem Ind Material for resin coated casting mold
JP2003010944A (en) * 2001-06-28 2003-01-15 Asahi Organic Chem Ind Co Ltd Organic composition for foaming fluid self-strengthening mold

Also Published As

Publication number Publication date
JPH0566224B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JP2000514364A (en) Procedure for manufacturing ferrules and other feeding heads and feeding elements for molds, and compositions for making the ferrules and elements
JP3457213B2 (en) Manufacturing method of exothermic material for casting
JPWO2005053876A1 (en) Heating element molding material for casting, heating element for casting, and manufacturing method thereof
JPS61249643A (en) Composition for casting mold having good collapsing property
JP3239209B2 (en) Manufacturing method of heating element for casting
JPH0768343A (en) Production of aluminum alloy casting
JPS61245938A (en) Compound for casting mold
JPS61245937A (en) Compound for casting mold material
US3960798A (en) Process for regulating hardening speed of self-hardening mold
JPS62142048A (en) Production of acid curing type organic self-curing sand
RU2369462C1 (en) Exothermal mixture for heating heads of steel and iron castings
JPS645979B2 (en)
JPS6199536A (en) Resin coated sand for casting
JPS6015417B2 (en) Coated sand composition for light alloy casting
JP2023152693A (en) Method for manufacturing highly collapsible mold
JPS60108138A (en) Mold composition for casting
JPH06179044A (en) Binder composition for gas curing casting mold and production of casting mold
JP2001286977A (en) Mold and method for manufacturing mold
RU1792789C (en) Mixture for ingot mold and rods making
JP2986192B2 (en) Easily collapsible core for casting
JP2004130380A (en) Mold composition, and method for producing mold
JPS6021144A (en) Binder for molding sand
JP2003275844A (en) Mold composition and method of producing mold
JPS5832539A (en) Composition for molding sand
JPS62124046A (en) Molding material for shell mold