JPS61249392A - Immobilization of cell bodies of microorganism - Google Patents

Immobilization of cell bodies of microorganism

Info

Publication number
JPS61249392A
JPS61249392A JP60092106A JP9210685A JPS61249392A JP S61249392 A JPS61249392 A JP S61249392A JP 60092106 A JP60092106 A JP 60092106A JP 9210685 A JP9210685 A JP 9210685A JP S61249392 A JPS61249392 A JP S61249392A
Authority
JP
Japan
Prior art keywords
water
microbial cells
fibroin
soluble compound
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60092106A
Other languages
Japanese (ja)
Other versions
JPH0456593B2 (en
Inventor
Hiroshi Nakayama
博 中山
Shinichi Fukunaga
真一 福永
Hiroshi Jinno
神野 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60092106A priority Critical patent/JPS61249392A/en
Publication of JPS61249392A publication Critical patent/JPS61249392A/en
Publication of JPH0456593B2 publication Critical patent/JPH0456593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:Cell bodies of a microorganism are mixed and dispersed in an aqueous fibroin solution containing a specific water-soluble compound such as polyol and made into a membrane to give an immobilized membrane free from elimination of cell bodies with the passage of time. CONSTITUTION:Cell bodies of a microorganism are mixed with an aqoueous fibroin solution of 1-20wt%, preferably 5-15wt% concentration and dispersed therein and a water-soluble compound such as polyol, polycarboxylate or polyamide is added thereto, before making a membrane. The formed membrane becomes insoluble in water without inactivation of the enzymes in the cell bodies.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微生物菌体の固定化法に9Aシ、更に詳細には
ポリオール、ポリカルボキシレート、及びポリアミドの
群よシ選ばれた水溶性化合物によシ水溶液中にフィブロ
インを析出せしめ該フィブロインによシ徽生物菌体を薄
膜状に包括固定化する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for immobilizing microbial cells using water-soluble compounds selected from the group of polyols, polycarboxylates, and polyamides. The present invention relates to a method for precipitating fibroin in an aqueous solution and entrapping and immobilizing fibroin cells in a thin film.

(従来の技術) 微生物の化合物変換や生産能を利用し、有用な化合物を
生産することは、近年益々盛んになっている。また微生
物を反復使用可能な形態とし、且つ、生産物と微生物菌
体との分離を容易にする為、微生物を固定化して用いる
研究が活発に行われ−ておシ、種々の方法が知られてい
る。
(Prior Art) Production of useful compounds by utilizing the compound conversion and production abilities of microorganisms has become increasingly popular in recent years. In addition, in order to make microorganisms into a form that can be used repeatedly and to facilitate the separation of microbial cells from products, research is actively being conducted on the use of immobilized microorganisms, and various methods are known. ing.

従来、微生物の固定化方法としては、微生物が酵素や抗
体等の蛋白質分子と比較して、遥かに大きいため、ポリ
アクリルアミド、ポリヒドロキシエテルメタク、リレー
ト等の合成高分子化合物、アルギン酸、カラギーナン等
の天然高分子化合物のゲルによる包括固定化が有利であ
ると請われている。しかし、ポリアクリルアミドゲル等
の合成高分子化合物を用うる方法の場合、七ツマ−の毒
性に起因して微生物が死滅したシ、菌体内酵素の失活等
が生起し易い。更に重合開始剤や光重合架橋法で用いる
増悪剤が1体に損傷を与えたシ、この同定化微生物を用
いて食品や医薬品等の製造を行う場合、生産物にこれ勢
が混入する等の開−がある。更にまた、これ勢の架橋性
4!!f脂の多くは、脆く、換状勢に成型した場合、折
損したシ、fiI?損したりする欠点がある。天然高分
子化合物ゲル、即ち、アルギン酸のカルシウムイオン架
橋ゲルや、力2ギーナンのカリウムイオンによるゲルで
固定化する方法は、安全な天然物を利用し徳利な条件下
で行う方法があるか、条件によってはi詩的に架橋が切
断され解膠して1111悴時の漏出が起こることがある
。又、これ等の方法によって得られるもの紘、所論、拡
散体速製の固定化物となる為、これを薄膜として用いる
のが有利であるか、強度が不十分である。
Conventional methods for immobilizing microorganisms include synthetic polymer compounds such as polyacrylamide, polyhydroxyethermethac, rylate, alginic acid, carrageenan, etc., since microorganisms are much larger than protein molecules such as enzymes and antibodies. The entrapping immobilization of natural polymeric compounds by gels is claimed to be advantageous. However, in the case of a method using a synthetic polymer compound such as polyacrylamide gel, microorganisms are likely to be killed and intracellular enzymes may be deactivated due to the toxicity of the sucrose. Furthermore, the polymerization initiator and the exacerbating agent used in the photopolymerization crosslinking method may have caused damage to one of the microorganisms, and when these identified microorganisms are used to manufacture foods, medicines, etc., there is a possibility that the products may be contaminated with these microorganisms. There is an opening. Furthermore, this type of crosslinking property is 4! ! Most of the resins are brittle and break when molded into a flat shape. There are drawbacks that can lead to losses. Is there a method of immobilization using natural polymer compound gels, i.e., calcium ion cross-linked gels of alginic acid or potassium ion gels of 2-gianan? In some cases, the crosslinks may be cleaved and peptized, resulting in leakage of 1111. Moreover, since the products obtained by these methods are, of course, immobilized products made of diffusers, it is advantageous to use them as thin films, or the strength is insufficient.

(発明が解決しようとする問題点) 本発明者時は、上述の諸欠陥を改良し、効率良く、且、
安定性に優れると共に、十分な1強度を有する微生物の
固定化法に就いて鋭意研究の結果、本発明を完成したも
のである。
(Problems to be Solved by the Invention) The inventors of the present invention have improved the above-mentioned defects to efficiently and
The present invention was completed as a result of intensive research into a method for immobilizing microorganisms that has excellent stability and sufficient strength.

本発明の目的は、微生物菌体に損傷を与えることなく、
高活性を保持したまま或いは死滅することなく固定化す
る事が可能であると共に、経時的な脱落がない安、定な
微生物の固定化方法を提供するにある。他の目的は、上
記特長を備えると共に、膜強度の物理的性質に優れ、可
撓性を有し、且つ、拡散律速の影響が少ない固定化微生
物膜の製造方法を提供するKある。
The purpose of the present invention is to
It is an object of the present invention to provide a stable method for immobilizing microorganisms, which can immobilize microorganisms while maintaining high activity or without dying, and which does not fall off over time. Another object is to provide a method for producing an immobilized microbial membrane that has the above-mentioned features, has excellent physical properties of membrane strength, is flexible, and is less affected by diffusion rate limiting.

(問題点を解決するための手段) 上述の目的は、ポリオール、ポリカルボキシ、レート、
ポリアミドの群よ9遍ばれた少く共1種の水溶性化合物
を含むフィブロイン水溶液に微生物菌体を混合、分散し
た後成膜することを特徴とする微生物菌体の固定化方法
により達成される。
(Means for solving the problem) The above-mentioned purpose is to solve the problem by
This is achieved by a method for immobilizing microbial cells, which is characterized in that microbial cells are mixed and dispersed in an aqueous fibroin solution containing at least one type of water-soluble compound in a group of polyamides, and then a film is formed.

上記本発明方法に於いて微生物とフィブロインを含有す
る水溶液は種々の方法でll1iiI製されるが好まし
い調製方法の一例を示すと次の通シである。
In the method of the present invention, the aqueous solution containing microorganisms and fibroin can be prepared by various methods, but one preferred method of preparation is as follows.

生糸、まゆ、生糸屑、キキ、ビス、ブーレット等の絹原
料を常法に従い、セリシンを精練除去したものを、フィ
ブロインを溶解し得る例えばアルカリ金属塩又はアルカ
リ土類金属塩の水浴液あるいは銅−エチレンジアミン水
溶液辱に溶解せしめ、更にそれを透析脱塩し、フィブロ
インのmEt、を通常1〜20重量%、好ましくは6〜
15]f麓%に調整し、予めフィブロイン水溶液を調製
しておく。
Silk raw materials such as raw silk, cocoon, raw silk scraps, kiki, bis, boulet, etc. are scoured to remove sericin according to a conventional method, and then treated with a water bath solution of an alkali metal salt or alkaline earth metal salt capable of dissolving fibroin, or a copper-copper solution. The mEt of fibroin is usually 1 to 20% by weight, preferably 6 to 20% by weight, by dissolving it in an aqueous solution of ethylenediamine and desalting it by dialysis.
15] A fibroin aqueous solution is prepared in advance by adjusting the f foot%.

上記のアルカリ金属塩及びアルカリ土類金属塩としては
、I、1c12、LiBr2、Na12、LiNo、、
MgCl2 %MgBr2、Mg (NO8’) 2、
znc12、Zn(NOa)2等が使用されるが、溶解
性並びにフィブロインの分子量を出来る限シ高く保つた
めに0aC12又は(3a (NOg ) 2の使用が
好ましい。
The above alkali metal salts and alkaline earth metal salts include I, 1c12, LiBr2, Na12, LiNo,
MgCl2%MgBr2, Mg(NO8')2,
Znc12, Zn(NOa)2, etc. are used, but it is preferable to use OaC12 or (3a (NOg)2) in order to keep the solubility and molecular weight of fibroin as high as possible.

又、該金li4塩濃度は5〜80重童%、好ましくは2
0〜70重量%、特に好ましくは40〜50重量%であ
る。又溶解性をよ〕一層ならしめる為に、該水溶液にメ
チルアルコール、エチルアルコール、フロビルアルコー
ル等のアルコール知の添加が好ましい。添加時期は、絹
の溶解の前又は途中が良く、又添加量は該金属極浴液に
対し、20〜50重量%、好ましくは26〜50重量%
である。
Further, the concentration of the gold li4 salt is 5 to 80%, preferably 2%.
0 to 70% by weight, particularly preferably 40 to 50% by weight. In order to further improve the solubility, it is preferable to add an alcohol such as methyl alcohol, ethyl alcohol, or flobyl alcohol to the aqueous solution. The addition time is preferably before or during the dissolution of the silk, and the addition amount is 20 to 50% by weight, preferably 26 to 50% by weight, based on the metal electrode bath liquid.
It is.

□本発明で固定化する微生物菌体は、酵母、細菌、放線
菌等が適宜用いられ例えばアクロモバクタ−属、ヅラボ
バクテリウムー、エスシエリシア属、アエロバクタ−属
、ブレビバクテリウム属、ストレプトコツカス属、コリ
ネバクテリウム属、アルスロバクタ−属、セラチア属、
シュードモナス属、アセトン(フタ−属、ストレプトミ
セス鵬、サツカロマイセス属、ロドトルラ属に属する細
菌、放線菌、酵母が好ましいものとして挙けられる。こ
れ等の微生物菌体は、凍結乾燥や有機溶謀処珈を行なっ
た処理菌体でもよく、又、培養された生菌体でもよい。
□ The microorganisms to be immobilized in the present invention include yeast, bacteria, actinomycetes, etc., such as Achromobacter genus, Durabobacterium genus, Escherichia genus, Aerobacter genus, Brevibacterium genus, Streptococcus genus, Corynebacterium, Arthrobacter, Serratia,
Preferred examples include bacteria belonging to the genus Pseudomonas, acetone (genus Futa, genus Streptomyces, genus Satucharomyces, and genus Rhodotorula), actinomycetes, and yeast. The microbial cells may be treated cells that have been subjected to the above treatment, or they may be live microbial cells that have been cultured.

生菌体は、固定化後、培地中で増殖させることも出来る
After immobilization, viable bacterial cells can also be grown in a culture medium.

固定化される微生物菌体量は、その目的に応じ適宜法め
ればよいが、多過ぎると、得られた固定化物からの菌体
の脱落及び強度の低下が起こる為、通常フィブロイン蛋
白量に対し、乾燥重麓にして好ましくは50重量%以下
、特に好ましくは0.5〜80重量%である。
The amount of microorganisms to be immobilized may be determined as appropriate depending on the purpose, but if it is too large, the bacteria will fall off from the immobilized product and its strength will decrease, so it is usually On the other hand, it is preferably 50% by weight or less, particularly preferably 0.5 to 80% by weight on a dry basis.

微生物菌体は、そのまま或いは懸濁液として前記フィブ
ロイン水溶液と混合する。
The microbial cells are mixed with the fibroin aqueous solution either as they are or as a suspension.

本発明においては得られた菌体含有フィブロイン膜を水
不溶性する為、成膜以前の段階で予め、水溶性化合物を
添加するのがよい。水溶性化合物としては例えば、エチ
レングリコール、プロピレングリコール、ブタンジオー
ル、ジエチレングリコール、トリエチレングリコール、
テトラエチレングリコール、ポリエチレングリコール、
ポリビニルアルコール等のポリオール類、カルボキシメ
チルセルロース等のポリカルボキシレート類、ポリビニ
ルピロリドンのポリアミド類等が使用し得る。該水溶性
化合物を添加せずに成膜した膜は、水中で半溶解し崩壊
する状態を呈する。この様にして得た膜は、エチルアル
コールやメチルアルコール等に浸漬する事によシ水不溶
性膜とする事が出来るが、同時に微生物菌体が死滅した
シ損偽を受ける。又、菌体中の酵素等も著しく失活等の
影響を受ける。
In the present invention, in order to make the obtained bacterial cell-containing fibroin film water-insoluble, it is preferable to add a water-soluble compound in advance at a stage before film formation. Examples of water-soluble compounds include ethylene glycol, propylene glycol, butanediol, diethylene glycol, triethylene glycol,
Tetraethylene glycol, polyethylene glycol,
Polyols such as polyvinyl alcohol, polycarboxylates such as carboxymethylcellulose, polyamides such as polyvinylpyrrolidone, etc. can be used. A film formed without adding the water-soluble compound exhibits a state of being semi-dissolved and disintegrating in water. The membrane thus obtained can be made into a water-insoluble membrane by immersing it in ethyl alcohol, methyl alcohol, etc., but at the same time it suffers from damage in which the microbial cells are killed. In addition, enzymes in the bacterial cells are also significantly affected by deactivation.

然し、該水溶性化合物を添加して成膜した膜は、水中で
不溶性膜となるばかシでなく、菌体内酵素の失活は見ら
れず、又、生菌体を固定化した場合、適当な培地中に膜
を浸漬し、培養すると菌体が増殖する事が確認され、又
、保存時に於いて安定化効果が見られる場合もある。該
水溶性化合物の添加量は、種類によっても異なるが、多
過ぎると、成膜以前に分離、凝集が生起したり、得られ
た固定化膜の強度が低く、場合によっては菌体の同定化
率も低くなる傾向があるので、通常3〜300゛重量%
が好ましい。そして一般に上記の水浴性化合物を添加す
るとフィブロインの結晶化が促進される。例えばグリセ
リンを添加して得られた菌体含有膜は、高い引会シ強度
を有すると共に耐水性に優れた膜であり、xIfA(a
I折によシ高い結晶性が認められる1゜ 本発明の成膜方法は、通常、ガラ、ス板、テフロン板、
アクリル板等の上に上記水溶液を流蝿し、温度2〜70
°C下、好ましくは10〜50℃下、放置又は通風する
ことにより、乾燥固化し膜状に成形する。この際、水浴
性化合物を加えたフィブロイン−菌体混合水溶液をその
まま、或いは必要に応じてこれに増粘剤を加えて増粘し
、谷樋の形状を有する面上に塗布、乾燥し、薄膜状に成
形することも出来る。
However, the film formed by adding the water-soluble compound does not become an insoluble film in water, and no deactivation of intracellular enzymes was observed. When the membrane is immersed in a suitable medium and cultured, it has been confirmed that the bacterial cells proliferate, and a stabilizing effect may also be observed during storage. The amount of the water-soluble compound added varies depending on the type, but if it is too large, separation or aggregation may occur before film formation, the strength of the immobilized film obtained may be low, and in some cases, bacterial identification may be difficult. Since the percentage also tends to be low, it is usually 3 to 300% by weight.
is preferred. Generally, the addition of the above-mentioned water bath compound promotes the crystallization of fibroin. For example, a bacterial cell-containing membrane obtained by adding glycerin has high attraction strength and excellent water resistance, and xIfA (a
In the film forming method of the present invention, glass, a steel plate, a Teflon plate,
Pour the above aqueous solution onto an acrylic plate, etc., and heat it to a temperature of 2 to 70℃.
It is dried and solidified by being left to stand or ventilated at a temperature of 10 to 50 °C, preferably 10 to 50 °C, and then formed into a film. At this time, the fibroin-bacteria mixed aqueous solution to which a water bathing compound has been added is used as it is, or if necessary, it is thickened by adding a thickener to it, and then applied onto the gutter-shaped surface, dried, and formed into a thin film. It can also be formed into a shape.

次に得られた微生物確体固定化換は、必要に応じて水洗
する事によシ、水溶性化合物を除去することが出来る。
Next, water-soluble compounds can be removed from the obtained microorganism-determined immobilized product by washing with water, if necessary.

(発明の効果) 本発明は、常温及び中性領域を含む温和な条件での固定
化法である為、固定化による微生物菌体の損傷はなく、
生菌体の場合はその増殖能を保ったまま、又処理菌体中
の酵素活性も殆んど失われることなく固定化される。
(Effects of the invention) Since the present invention is an immobilization method under mild conditions including room temperature and neutral range, there is no damage to microorganisms due to immobilization.
In the case of living bacterial cells, they are immobilized while maintaining their growth ability and with almost no loss of enzyme activity in the treated bacterial cells.

又一般に包括型の固定化の場合、その基質や培地成分の
透過性が問題となシ、拡散律速となるがフィブロイン膜
の場合、この影響を受けにくい薄膜とした場合に於いて
も可撓性がIり、強度が大きい特長がある。そして、か
−る性質を有することがら膜厚は50μm以下“が好ま
しく、特に80μm以下では、低分子基質に対する活性
は、尤の菌体と殆んど変わらない。又、生菌体を固定化
し増殖させて用いることが出来るが、この場合、固定化
物の内部では殆んど増殖が見られないことから、菌体含
量によっても異なるが、800μm以下程度の膜厚とす
るのが効率的である。更に、静止菌体の場合、固定化物
からの菌体脱落は見られず、安定な活性を示す。
In general, in the case of enveloping immobilization, the permeability of the substrate and medium components is a problem, and diffusion is rate-limiting, but in the case of fibroin membranes, even when made into a thin film that is not susceptible to this effect, it is flexible. It has the characteristics of high strength and high strength. Because of these properties, the film thickness is preferably 50 μm or less, and in particular, if it is 80 μm or less, the activity against low-molecular substrates is almost the same as that of normal bacterial cells. It can be grown and used, but in this case, since almost no growth is observed inside the immobilized material, it is efficient to have a film thickness of about 800 μm or less, although it depends on the bacterial cell content. Furthermore, in the case of stationary bacterial cells, no bacterial detachment from the immobilized material was observed, indicating stable activity.

本発明の方法によシ実質的に無沓なフィブロインのみに
よる微生物菌体の固定化物が得られる為、これを食品や
医薬品等の製造に用うる拳が出来る。
By the method of the present invention, it is possible to obtain an immobilized product of microbial cells using only fibroin, which is substantially free of any residue, and can therefore be used in the production of foods, medicines, and the like.

又、センサー等にも有効に利用する事が可能である。Moreover, it can be effectively used for sensors, etc.

以下、実施例を挙けて本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 プーレッ)1#gをマルセル石けん13iit%水溶液
30j中に浸漬し、98°Cで1時間撹拌混合し、実質
的にセリシンを完全に除き、充分に乾燥後、70℃で乾
燥した。次いで65][愈%の塩化カルシウム水溶液4
 kliとエチルアルコール1.6 kgの入ったニー
ダ−中に前記精練ずみの生糸0.8 kgを投入し、7
5〜80°Cで45分間撹拌溶解した。得られた粘稠な
溶解液に80°Cの温水8.2#を加え希釈し、再生セ
ルロース糸中空繊維を用いた透析装置によシ透析脱塩し
てフィブロイン水溶液を得た。該フィブロ、イン水溶液
のフィブロイン濃度は5.6重重%であった。とのフィ
ブロイン水溶液を濃縮し、15.0重量%とし、この1
0fにグリセリンを0.881加え均一に混合後、菌体
内にアルカリフォスファターゼを有するエスシェリシア
・コリの凍結乾燥菌体(シグマ社製)801qを混合し
、十分に分散させた後、アクリル板上に流延し、22℃
で24時間、乾燥成膜した。得られた固定化菌体膜を、
菌体中のアルカリフォスフ1ターゼ活性を指標として評
価した。
Example 1 1 #g of Poulet was immersed in Marcel soap 13iit% aqueous solution 30j, stirred and mixed at 98°C for 1 hour to substantially completely remove sericin, thoroughly dried, and then dried at 70°C. Then 65][y% calcium chloride aqueous solution 4
0.8 kg of the scoured raw silk was put into a kneader containing 1.6 kg of kli and ethyl alcohol, and
The mixture was stirred and dissolved at 5 to 80°C for 45 minutes. The resulting viscous solution was diluted with 8.2# of 80°C warm water, and desalted by dialysis using a dialysis device using regenerated cellulose hollow fibers to obtain an aqueous fibroin solution. The fibroin concentration of the fibroin aqueous solution was 5.6% by weight. Concentrate the aqueous fibroin solution to 15.0% by weight,
Add 0.881 g of glycerin to 0f and mix uniformly, then mix 801q of freeze-dried Escherichia coli cells (manufactured by Sigma) that have alkaline phosphatase in the cells, sufficiently disperse, and pour on an acrylic plate. 22℃
A dry film was formed for 24 hours. The obtained fixed bacterial cell membrane was
The alkaline phosphatase activity in the bacterial cells was evaluated as an index.

活性測定法を以下に示す。The activity measurement method is shown below.

酵素活性測定法 エスシェリシア・コリ菌体含有JIE(IOINIX2
0saw)を100 CC水中に80分間゛藻漬、洗浄
後1)H8,5−緩衝液2sdlC浸漬し、これに0.
01M−p−ニトロフェニルフォスフェートm液8ta
tを基質として加え、80℃で10分間振盪、反応させ
た後、サンプリングし、これを畳量の0.5 N −水
酸化す) IJウム水溶液に加えて混合し、直ちに41
0nmの吸取を測定し、生成p−=)ロフェノールを定
量する。繰り返し測定を行なう場合は、反応後の膜を取
シ出し、8回、fII東液中に浸漬、洗浄した後、次の
測定に供した。又、活性収率は次式によシ算出した。
Enzyme activity measurement method JIE containing Escherichia coli cells (IOINIX2
0saw) was soaked in 100 CC water for 80 minutes, washed, then 1) immersed in H8,5-buffer 2 sdlC, and 0.
01M-p-nitrophenyl phosphate m liquid 8ta
Add t as a substrate, shake at 80°C for 10 minutes, react, sample, add to 0.5 N-hydroxide solution), mix, and immediately react with 41
Measure the absorption at 0 nm and quantify the p-=)lophenol produced. When repeated measurements were to be carried out, the membrane after the reaction was taken out, immersed in fII East solution eight times, washed, and then subjected to the next measurement. In addition, the activity yield was calculated using the following formula.

得られた固定化菌体膜の膜厚と活性の関係を第1表、膜
厚50μmの固定化族について繰シ返し測第2表 固定化物からの微生物菌体の脱落はなく、更に80μm
以下の薄膜では、殆んど拡散抵抗の影曽はなくなるが、
十分使用に耐える強度を有する屯のであった。
The relationship between the thickness and activity of the obtained immobilized bacterial cell membrane is shown in Table 1. Repeated measurements for the immobilized group with a film thickness of 50 μm are shown in Table 2. There was no shedding of microbial cells from the immobilized material, and further 80 μm.
In the following thin films, there is almost no influence of diffusion resistance, but
It was a tonne with enough strength to withstand use.

実施例2 0トトル2・グルチニス、IFo  0559t−モル
ト・エキス1%、酵母エキス0.1%、L−フェニルア
ラニン0.1%、ポリペプトン1%を含む滅菌培地lj
中で、80°C148時間振撤培養した後、遠心分離集
菌した。得られた薗俸を0.05M −) IJス塩酸
緩衝液/トルエン(1谷15容)中に加え、50″Cで
6分間扱室し、処理―停を再び集菌し、同緩衝液で8度
洗浄した。
Example 2 Sterile medium lj containing 0 tottle 2 glutinis, IFo 0559t-malt extract 1%, yeast extract 0.1%, L-phenylalanine 0.1%, polypeptone 1%
After shaking and culturing at 80°C for 148 hours, the cells were collected by centrifugation. The obtained Sonodake was added to 0.05M-)IJS hydrochloric acid buffer/toluene (15 volumes per valley), heated at 50''C for 6 minutes, the treated sample was collected again, and the same buffer was added. Washed 8 times with

一方、実施例1と同様にして得たフィブロイン水溶液を
濃縮し16.0!jk%とじた。この1ofIに、平均
分子量800のポリエチレングリコールを0.6g加え
、次に、菌体を添加型を変えて混合し、十分に分散させ
た後、アクリル板上に流延し、20℃、相対湿度50%
で24時間送風乾燥成成膜た。固定化菌体膜片(10m
X2(ll+)8枚を桂皮酸50mM濃度のアンモニア
−塩酸緩衝液(6,5M、pH10)8mに浸漬した後
、80℃で20時間振盪し、桂皮酸からL−7エニルア
ラニンへの転換率を測定によシ求めた。結果を第8表に
示す。上記において反応は、サンプリング液を100倍
希釈し、290 nmの吸光度で桂皮酸の減少を追跡し
、等速電気泳勧法によりL−フェニルアラニンの同定を
行なった。
On the other hand, the fibroin aqueous solution obtained in the same manner as in Example 1 was concentrated to 16.0! jk% closed. 0.6 g of polyethylene glycol with an average molecular weight of 800 was added to this 1 of I, and then the bacterial cells were mixed by changing the addition type and thoroughly dispersed, and then cast on an acrylic plate at 20°C and relative humidity. 50%
The film was formed by drying with air for 24 hours. Immobilized bacterial membrane piece (10m
Eight pieces of X2 (ll+) were immersed in 8 m of ammonia-hydrochloric acid buffer (6.5 M, pH 10) containing cinnamic acid at a concentration of 50 mM, and then shaken at 80°C for 20 hours to determine the conversion rate of cinnamic acid to L-7 enylalanine. was determined by measurement. The results are shown in Table 8. In the above reaction, the sampling solution was diluted 100 times, the decrease in cinnamic acid was followed by absorbance at 290 nm, and L-phenylalanine was identified by isotachophoresis.

又、このアルカリ性条件下に於いて、対照として実験を
行なったアルギン酸カルシウム架橋法によシ菌体を包括
固定化した膜は容易に解膠し、溶解したが、フィブロイ
ンによる本発明の固定化膜は全く劣化や菌体の漏出は認
められず、反応に用うろことが出来た。
In addition, under this alkaline condition, the membrane in which bacterial cells were entrappingly immobilized by the calcium alginate cross-linking method used as a control was easily peptized and dissolved, but the membrane immobilized by the present invention using fibroin No deterioration or leakage of bacterial cells was observed, and it could be used for the reaction.

第8表 実施例8 サツカロミセス・セレビシェ IFO−0284をモル
ト・エキス0.8%、1lfflエキス0.8%、ペプ
トン0.5%、グルコース1%を含むpH5,0の滅菌
培地500 cc中で、80℃ 1日振盪培養した後、
遠心分離で集菌し、滅菌生理食塩水で8回洗浄した。
Table 8 Example 8 Satucharomyces cerevisiae IFO-0284 was prepared in 500 cc of a sterile medium at pH 5.0 containing 0.8% malt extract, 0.8% lffl extract, 0.5% peptone, and 1% glucose. After culturing with shaking at 80°C for 1 day,
Bacteria were collected by centrifugation and washed eight times with sterile physiological saline.

実施例1と同様にして調製したフィブロイン水溶液を#
細し、15.51重%とした。この10Fに分子mao
oのポリエチレングリコール0.58fを加え、次に上
記で得た湿潤画体2.4jF(乾燥璽量0.6g)を混
合し、十分に分散させた後、アクリル板上に流延し引き
続いて22℃で20時間送風下、乾燥ry、膜した。
The fibroin aqueous solution prepared in the same manner as in Example 1 was
The weight was 15.51% by weight. Molecule mao on this 10F
0.58f of polyethylene glycol was added, and then 2.4jF of the wet image obtained above (dry weight: 0.6g) was mixed and thoroughly dispersed, followed by casting on an acrylic plate. It was dried and filmed at 22° C. for 20 hours with air blowing.

膜厚100 pmの固定化膜(1c11x2z)5枚を
滅菌した10%グルコース水浴液10−に入れ、80℃
で1日静置し、生成エタノール諷をガスクルマドグラフ
ィーによシ測定したところ、水溶液中に4.2重量%の
エタノールが認められた。
Five immobilized membranes (1c11x2z) with a film thickness of 100 pm were placed in a sterilized 10% glucose water bath solution at 80°C.
When the solution was allowed to stand for one day and the ethanol produced was measured by gas chromatography, 4.2% by weight of ethanol was found in the aqueous solution.

実施例4 実施例1と同様の方法で、ポリエチレングリコールの代
シにグリセリンを用いてvI4製した厚さ100μmの
サツカロミセス・セレビシェ固定化膜を酵母エキス0.
15%、NH4010,25%、HK2PO40,55
%、Mg80.・7H200,025%、0aOJ2 
0.001%、りx7酸o、 a%、Mailo、26
%、グルコース10%を含む1)H5,0の滅菌培地中
に浸漬し、80°Cで1日振盪した。この固定化膜(1
ax2c11)5枚をNa0J0.9%を含む10%グ
ルコース水溶F&10−に入れ、80°Cで1日静置し
、生成エタノール量を測定した。
Example 4 In the same manner as in Example 1, a 100 μm thick Saccharomyces cerevisiae immobilized membrane prepared by using glycerin instead of polyethylene glycol was coated with 0.0 μm of yeast extract.
15%, NH4010,25%, HK2PO40,55
%, Mg80.・7H200,025%, 0aOJ2
0.001%, phosphoric acid o, a%, Mailo, 26
%, 1) H5,0 sterile medium containing 10% glucose and shaken at 80°C for 1 day. This immobilized membrane (1
ax2c11) were placed in a 10% glucose aqueous solution F&10- containing 0.9% Na0J, allowed to stand at 80°C for one day, and the amount of ethanol produced was measured.

膜を滅菌水で洗浄した後、新たなグルコース水溶液10
−に入れる方法で繰シ返し実験を行なった。結果を第4
表に示す。菌体の脱落は認められなかった。一方、鰍初
に培地中に一定化膜を入れ、培養する処坦を行わないと
、繰シ返し実験に於いて、5回目以降のエタノール生成
量が低下し、8.5へ2.51i量%となった。
After washing the membrane with sterile water, add fresh glucose aqueous solution 10
- We conducted repeated experiments using the method of putting 4th result
Shown in the table. No bacterial cells were observed to fall off. On the other hand, if a stabilizing membrane is not placed in the culture medium at the beginning of the culture, the amount of ethanol produced after the fifth time in repeated experiments decreases, and the amount of ethanol decreases from 8.5 to 2.51i. %.

第4表Table 4

Claims (9)

【特許請求の範囲】[Claims] (1)ポリオール、ポリカルボキシレート及びポリアミ
ドの群より選ばれた少なく共1種の水溶性化合物とフィ
ブロインと、微生物菌体とを水に分散せしめた後、成膜
することを特徴とする微生物菌体の固定化法。
(1) A microorganism that forms a film after dispersing at least one water-soluble compound selected from the group of polyols, polycarboxylates, and polyamides, fibroin, and microorganism cells in water. Body immobilization method.
(2)水溶性化合物がグリセリン、ポリアルキレングリ
コール又はポリビニルアルコールである特許請求の範囲
第(1)項記載の微生物菌体の固定化法。
(2) The method for immobilizing microbial cells according to claim (1), wherein the water-soluble compound is glycerin, polyalkylene glycol, or polyvinyl alcohol.
(3)水溶性化合物が、カルボキシメチルセルロースで
ある特許請求の範囲第(1)項記載の微生物菌体の固定
化法。
(3) The method for immobilizing microbial cells according to claim (1), wherein the water-soluble compound is carboxymethyl cellulose.
(4)水溶性化合物がポリビニルピロリドンである特許
請求の範囲第(1)項記載の微生物菌体の固定化法。
(4) The method for immobilizing microbial cells according to claim (1), wherein the water-soluble compound is polyvinylpyrrolidone.
(5)水溶性化合物がフィブロインに対して3〜300
重量%添加されるものである特許請求の範囲第(1)項
乃至第(4)項の何れかに記載の微生物菌体の固定化法
(5) Water-soluble compound is 3-300% relative to fibroin
The method for immobilizing microbial cells according to any one of claims (1) to (4), wherein the microorganism is added in a weight percent.
(6)微生物菌体が乾燥重量に換算して、フィブロイン
に対して0.5〜50重量%添加されるものである特許
請求の範囲第(1)項乃至第(5)項の何れかに記載の
微生物菌体の固定化法。
(6) In any one of claims (1) to (5), the microbial cells are added in an amount of 0.5 to 50% by weight of fibroin in terms of dry weight. The described method for immobilizing microbial cells.
(7)成膜が800μm以下で行われるものである特許
請求の範囲第(1)項乃至第(6)項の何れかに記載の
微生物菌体の固定化法。
(7) The method for immobilizing microbial cells according to any one of claims (1) to (6), wherein film formation is performed at a thickness of 800 μm or less.
(8)成膜が50μm以下で行われるものである特許請
求の範囲第(1)項乃至第(6)項の何れかに記載の微
生物菌体の固定化法。
(8) The method for immobilizing microbial cells according to any one of claims (1) to (6), wherein film formation is performed to a thickness of 50 μm or less.
(9)水溶性化合物が成膜後水洗除去されるものである
特許請求の範囲第(1)項乃至第(8)項の何れかに記
載の微生物菌体の固定化法。
(9) The method for immobilizing microbial cells according to any one of claims (1) to (8), wherein the water-soluble compound is removed by washing with water after film formation.
JP60092106A 1985-04-27 1985-04-27 Immobilization of cell bodies of microorganism Granted JPS61249392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092106A JPS61249392A (en) 1985-04-27 1985-04-27 Immobilization of cell bodies of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092106A JPS61249392A (en) 1985-04-27 1985-04-27 Immobilization of cell bodies of microorganism

Publications (2)

Publication Number Publication Date
JPS61249392A true JPS61249392A (en) 1986-11-06
JPH0456593B2 JPH0456593B2 (en) 1992-09-08

Family

ID=14045183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092106A Granted JPS61249392A (en) 1985-04-27 1985-04-27 Immobilization of cell bodies of microorganism

Country Status (1)

Country Link
JP (1) JPS61249392A (en)

Also Published As

Publication number Publication date
JPH0456593B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
JPH01118544A (en) Porous product of silk fibroin
JPWO2005079879A1 (en) Collagen gel and method for producing the same
JPH04275346A (en) Compatibel mixture containing chitosan
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
US4656130A (en) Collagen coated cell growth plates
JPH02109570A (en) Silkfibroin-containing molding
JPH06141851A (en) Carrier for animal tissue culture and method for animal cell culture using the same
JPH0622744A (en) Collagen carrier for cell culture and its production
JP2507885B2 (en) Silk fibroin hydrogel
JP2022520025A (en) Protein hydrogel, preparation method, and its use
JPS61249392A (en) Immobilization of cell bodies of microorganism
JP2606213B2 (en) Complexes of Modified Microbial Cellulose with Gels and Animal Cell Membrane
EP0352330A1 (en) Fibroin moldings, process for their preparation, heparin-immobilizing carrier, and process for its preparation
JPH0456592B2 (en)
DD294729A5 (en) PROCESS FOR THE PRODUCTION OF IMMOBILISATES WITH BIOLOGICALLY ACTIVE, MACROMOLECULAR COMPOUNDS
JP2729448B2 (en) Immobilized enzyme membrane
JPS6240997B2 (en)
JPH0657761B2 (en) Manufacturing method of porous chitosan moldings
JPS6251982A (en) Substrate for cultivating cell
JPH01247089A (en) Preparation of carrier supporting immobilized microorganism
JPS59198976A (en) Fiber for immobilizing cell bodies and its production
JPS6158588A (en) Immobilized microorganism
JP2656108B2 (en) Immobilized enzyme and method for producing the same
JPS645251B2 (en)
SU1742330A1 (en) Method for preparation of biocatalyst in polysaccharide carrier