JPH02109570A - Silkfibroin-containing molding - Google Patents

Silkfibroin-containing molding

Info

Publication number
JPH02109570A
JPH02109570A JP63263774A JP26377488A JPH02109570A JP H02109570 A JPH02109570 A JP H02109570A JP 63263774 A JP63263774 A JP 63263774A JP 26377488 A JP26377488 A JP 26377488A JP H02109570 A JPH02109570 A JP H02109570A
Authority
JP
Japan
Prior art keywords
soln
silk fibroin
silkfibroin
film
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63263774A
Other languages
Japanese (ja)
Other versions
JPH0669485B2 (en
Inventor
Kazuo Yamaura
山浦 和男
Hideji Matsuzawa
松沢 秀二
Shinji Yoshida
吉田 伸次
Miyako Suzuki
鈴木 美也子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP63263774A priority Critical patent/JPH0669485B2/en
Publication of JPH02109570A publication Critical patent/JPH02109570A/en
Publication of JPH0669485B2 publication Critical patent/JPH0669485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicinal Preparation (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the above molding which has resilience and the strength to withstand use, utilizes the characteristics of silkfibroin, is usable adequately for various medical materials and biochemical materials and is improved in dimensional stability to underwater heat by forming the molding of a mixture composed of the silkfibroin and a synthetic high-polymer material. CONSTITUTION:The silkfibroin is dissolved into a thick aq. soln. of calcium chloride (usually 40 to 50% concn.) or dissolved in an aq. soln. of a neutral salt such as satd. aq. soln. of lithium bromide after removing sericin in case of a raw material in which the sericin is contained. This soln. is dialyzed by a semipermeable membrane such as cellophane film to remove the salt. The resulted aq. silkfibroin soln. and an aq. soln. or emulsion of the synthetic high- polymer material are mixed. This liquid mixture is used and is molded by a proper means meeting the desired molding form and if necessary, the molding is heat treated at 200 to 230 deg.C or is immersed into lower alcohol in order to assure insolubilization.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、蚕より得られる絹の蛋白質繊維を構成する
物質であるシルクフィブロインを含有する成形物、例え
ば医学分野や生化学的分野で使用される種々の材料とし
て利用される成形物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to molded articles containing silk fibroin, which is a substance constituting the protein fibers of silk obtained from silkworms, which are used in the medical and biochemical fields, for example. It relates to molded products that can be used as various materials.

従来の技術 絹は古来より織物用として汎用される動物性繊維である
が、近年、絹目体の物理的および生化学的特性に着目し
て医用材料や生化学的材料に応用する研究が盛んに行わ
れている。
Conventional technology Silk is an animal fiber that has been widely used for textiles since ancient times, but in recent years, research has focused on the physical and biochemical properties of silk cells and applied them to medical and biochemical materials. is being carried out.

蚕のまゆを構成する1本の絹繊維は蛋白質繊維を構成す
る物質である2本のフィブロイン(Plbroln )
とその表面を包む膠(にかわ)質のセリシン(Serl
cln )とから構成されており、所謂絹糸はまゆ糸お
よび生糸から精練によりセリシンを除去したものである
が、この絹糸のフィブロインつまりシルクフィブロイン
は塩化カルシウムや臭化リチウムの如き中性塩の水溶液
に溶解して透析することによってシルクフィブロイン水
溶液とすることが可能であり、この水溶液より適当な手
段で膜ないしフィルムを形成できる。そして、シルクフ
ィブロイン自体は酵素固定能を有すると共に、上記の膜
やフィルムの形態で酸素透過性が高く、かつ選択的イオ
ン透過性および吸収性を示すことが知られており、また
従来より絹糸が手術用の縫合糸に使用されていることか
ら示唆されるように無毒性である上に生体に対する適合
性に優れている。
One silk fiber that makes up the cocoon of a silkworm contains two fibroins (Plbroln), which are substances that make up protein fibers.
and sericin (Serl), a gluey substance that envelops its surface.
cln), and the so-called silk thread is made by removing sericin from cocoon silk and raw silk by scouring, but the fibroin of this silk thread, or silk fibroin, is dissolved in an aqueous solution of neutral salts such as calcium chloride and lithium bromide. Silk fibroin can be dissolved and dialyzed to obtain an aqueous silk fibroin solution, and a membrane or film can be formed from this aqueous solution by appropriate means. Silk fibroin itself has the ability to immobilize enzymes, and is known to have high oxygen permeability in the form of membranes and films mentioned above, as well as selective ion permeability and absorbability. As suggested by its use in surgical sutures, it is non-toxic and has excellent compatibility with living organisms.

従って、シルクフィブロインは、上記特性を利用した種
々の医用材料や生化学的材料、例えば酵素固定膜、透析
膜、人工血管、人工皮膚、人工角膜、コンタクトレンズ
、医薬カプセル等の材料として期待されている。
Therefore, silk fibroin is expected to be used as a material for various medical and biochemical materials that utilize the above properties, such as enzyme-immobilized membranes, dialysis membranes, artificial blood vessels, artificial skin, artificial corneas, contact lenses, and pharmaceutical capsules. There is.

発明が解決しようとする課題 しかしながら、シルクフィブロインを膜ないしフィルム
形態とした場合、元の絹糸のような柔軟性、伸縮性を示
さず、非常に脆く機械的強度に劣るものとなり、薄い膜
になると取扱い中に曲げると容易に折れ、破損すると共
に流延法による成膜では基体から膜を剥離すること自体
が困難になるという問題があり、このような柔軟性の欠
如と脆弱性が前記の医用材料や生化学的材料としての実
用化を阻む最大の要因となっている。また膨潤体が水中
熱の変化で寸法が変化し安定性に欠ける。
Problems to be Solved by the Invention However, when silk fibroin is made into a membrane or film, it does not exhibit the flexibility and elasticity of the original silk thread, and is extremely brittle and has poor mechanical strength. There are problems in that the film easily breaks and breaks when bent during handling, and it becomes difficult to separate the film from the substrate when the film is formed using the casting method. This is the biggest factor preventing its practical application as a material or biochemical material. In addition, the dimensions of the swollen body change due to changes in the heat in the water, resulting in lack of stability.

この発明は、か\る事情に照らし、柔軟性と使用に耐え
うる強度を持ちかつシルクフィブロインの特性を利用し
た種々の医用材料や生化学的材料などに好適に使用でき
、水中熱に対する寸法安定性を持つシルクフィブロイン
含有成形物を提供することを目的としている。
In light of the above circumstances, this invention has flexibility and strength that can withstand use, can be suitably used for various medical materials and biochemical materials that utilize the characteristics of silk fibroin, and is dimensionally stable against heat in water. The purpose of the present invention is to provide a molded product containing silk fibroin that has the properties of silk fibroin.

課題を解決するための手段 この発明者等は、上記目的を達成するために鋭意研究を
重ねた結果、シルクフィブロインと合成高分子物質との
混合物からなる成形物とすることにより、シルクフィブ
ロイン本来の物理的および生化学的特性が損われること
なく良好な柔軟性と強度が付与され、膜ないしフィルム
形態としての用途にも充分に供し得る材料となることを
究明し、この発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the inventors have conducted intensive research and found that by creating a molded product made of a mixture of silk fibroin and a synthetic polymer substance, the original properties of silk fibroin can be improved. It was discovered that this material has good flexibility and strength without deteriorating its physical and biochemical properties, and can be used satisfactorily in the form of a membrane or film, leading to the completion of this invention. Ta.

すなわち、この発明は、シルクフィブロインと合成高分
子物質との混合物からなるシルクフィブロイン含有成形
物に係る。
That is, the present invention relates to a silk fibroin-containing molded article made of a mixture of silk fibroin and a synthetic polymeric substance.

そして、この発明においては、上記高分子物質がポリビ
ニルアルコールである構成、該ポリビニルアルコールが
シンジオタクトのダイアド含量45%以上のポリマーか
らなる構成、成形物が膜状ないしフィルム状である構成
、をそれぞれ好適態様とする。
In this invention, the above-mentioned polymer substance is polyvinyl alcohol, the polyvinyl alcohol is made of a polymer having a syndiotact dyad content of 45% or more, and the molded product is in the form of a membrane or film. Each of these is a preferred embodiment.

発明の細部構成と作用 シルクフィブロインと混合する合成品分゛子物質の種類
は特に限定されないが、−膜内にシルクフィブロインが
水溶液として得られることから、水溶性樹脂ならびにエ
マルジョン形態となし得るポリマーが好適である。
Detailed Structure and Function of the Invention The type of synthetic component substance to be mixed with silk fibroin is not particularly limited; however, since the silk fibroin is obtained as an aqueous solution within the membrane, water-soluble resins and polymers that can be formed into an emulsion form may be used. suitable.

上記の水溶性樹脂としては、ポリビニルアルコール(以
下、PVAと略称する)、ヒドロキシエチルセルローズ
の如きセルローズ系水溶性樹脂、水溶性アクリル樹脂、
水溶性メラミン樹脂等の各種ポリマーが使用可能である
が、これらの中でも特にPVAはシルクフィブロインと
の親和性がよく成形物に良好な柔軟性を与える。
Examples of the above-mentioned water-soluble resins include polyvinyl alcohol (hereinafter abbreviated as PVA), cellulose-based water-soluble resins such as hydroxyethyl cellulose, water-soluble acrylic resins,
Various polymers such as water-soluble melamine resin can be used, but among these, PVA has a particularly good affinity with silk fibroin and gives good flexibility to the molded product.

またPVAは、主鎖の炭素原子に水酸基と水素が結合し
ていることから、ヘテロタクト、アイソタクト、シンジ
オタクトの立体異性が存在するが、この立体規則性の程
度によって成形物の性状に差異が生じ、例えばトリフル
オロ酢酸ビニルから誘導されるようなシンジオタクトの
ダイアド含量の高いPVA (以下、5−PVAと略称
する)を用いた成形物では、最も一般的な酢酸ビニルか
ら誘導されるヘテロタクトの多いアタクチックなPVA
(以下、a−PVAと略称する)を用いた成形物よりも
耐水性が高く強度的にも優れるという利点がある。特に
シンジオタクトのダイアド含量が45%以上の範囲にあ
る5−PVAを用いた成形物は、親水性ではあるが、8
0℃あるいはそれ以上の温度まで水に対して安定で殆ど
溶出せず、膨潤度が水の温度に依存せず一定となること
から、寸法安定性が要求される用途や温度による活性変
動を嫌う用途にも優れた適性を示す。なお、シンジオタ
クトのダイアド含量が60%より高い5−PVAは、水
溶液が非常にゲル化し易いため、取扱いおよびシルクフ
ィブロインとの混合操作上、使用しにくい。たりし、ゲ
ル化はPVAの濃度に依存するので低濃度とすれば60
96以上で使用できる。
In addition, since PVA has hydroxyl groups and hydrogen bonded to the carbon atoms in its main chain, it has heterotact, isotact, and syndiotact stereoisomerism, and the properties of molded products differ depending on the degree of stereoregularity. For molded products using PVA with a high syndiotact dyad content (hereinafter abbreviated as 5-PVA), such as those derived from trifluorovinyl acetate, the most common heterotact derived from vinyl acetate Atactic PVA with a lot of
(hereinafter abbreviated as a-PVA) has the advantage of having higher water resistance and superior strength than molded products using a-PVA. In particular, molded products using 5-PVA with syndiotact dyad content in the range of 45% or more are hydrophilic, but
It is stable in water up to temperatures of 0°C or higher, hardly eluting, and the degree of swelling remains constant regardless of the water temperature, so it dislikes applications that require dimensional stability and activity fluctuations due to temperature. It also shows excellent suitability for various purposes. In addition, 5-PVA whose dyad content in syndiotact is higher than 60% is difficult to use in terms of handling and mixing with silk fibroin because an aqueous solution thereof is very likely to gel. However, gelation depends on the concentration of PVA, so if the concentration is low, 60
Can be used with 96 or higher.

一方、a−PVAを用いた成形物では、成形物のa−P
VA比率が高くなるほど、また接触する水の温度が高い
ほど溶出し易くなるが、この溶出は熱処理、ホルマール
化、凍結・解凍サイクル処理等を施すことによって防止
ないし抑制できるので、用途によっては支障なく使用で
きる。また、これら処理によって強度も改善される。
On the other hand, in a molded product using a-PVA, the a-P of the molded product is
The higher the VA ratio and the higher the temperature of the water in contact, the easier it is to elute, but this elution can be prevented or suppressed by applying heat treatment, formalization, freezing/thawing cycle treatment, etc., so there is no problem depending on the application. Can be used. These treatments also improve strength.

なお、PVAの重合度は5−PVA5a−PVAともに
500以上が好ましい。
In addition, the degree of polymerization of PVA is preferably 500 or more for both 5-PVA5a-PVA.

前記のエマジョン形態となし得る高分子物質としては、
アクリル−スチレン系共重合体、アクリル−酢酸ビニル
系共重合体、アクリル−塩化ビニリデン系共重合体、ア
クリル系単独重合体の如きアクリル酸、メタクリル酸お
よびこれらのアルキルエステルをモノマー成分として含
む各種のアクリル系ポリマー等が挙げられる。
The polymeric substances that can be formed into the emulsion form include:
Various types of products containing acrylic acid, methacrylic acid, and their alkyl esters as monomer components, such as acrylic-styrene copolymers, acrylic-vinyl acetate copolymers, acrylic-vinylidene chloride copolymers, and acrylic homopolymers. Examples include acrylic polymers.

シルクフィブロインの原料としては、良質のまゆ、生糸
、絹糸に限らず、これらの屑物、使用済みの不用となっ
た絹糸や絹製表地を使用できるほか、蚕体内にある絹糸
腺内の液状用も使用可能である。
The raw materials for silk fibroin are not limited to high-quality cocoon, raw silk, and silk thread, but also their scraps, used and disused silk thread, and silk outer material, as well as the liquid in the silk glands within the silkworm body. is also available.

この発明の成形物を製造するには、シルクフィブロイン
を、セリシンが含まれる原料ではこれを周知手段で除去
した上で、塩化カルシウムの濃厚水溶酸(通常40〜5
0%濃度)あるいは臭化リチウムの飽和水溶液の如き中
性塩の水溶液に溶解させ、この溶液をセロファン膜等の
半透膜にて透析して塩を除去し、得られたシルクフィブ
ロイン水溶液と合成高分子物質の水溶液またはエマルジ
ョンとを混合し、この混合液を用いて所望の成形物形態
に応じた適宜の手段で成形し、要すれば不溶化を確実に
するために100〜230℃の熱処理もしくは低級アル
コール中への浸漬等を行えばよい。なお、上記雨水溶液
の混合は、低濃度の水溶液を使うか、ゲル化を避けるた
めに50℃以上で行うことが好ましい。なお、合成高分
子物質としてPVAを使用する場合は、その水溶液をか
き混ぜると析出する性質があるのでかき混ぜには十分注
意する必要がある。しかし室温付近でも溶液調製直後で
あればゲル前に混合可能である。
In order to produce the molded article of the present invention, silk fibroin is removed from raw materials containing sericin by well-known means, and then a concentrated aqueous acid solution of calcium chloride (usually 40 to 50%
Silk fibroin is dissolved in an aqueous solution of a neutral salt such as 0% concentration) or a saturated aqueous solution of lithium bromide, and this solution is dialyzed with a semipermeable membrane such as a cellophane membrane to remove the salt, and the resulting silk fibroin aqueous solution is synthesized. The mixture is mixed with an aqueous solution or emulsion of a polymeric substance, and the mixture is molded by an appropriate means depending on the desired shape of the molded product. If necessary, heat treatment at 100 to 230°C or What is necessary is to immerse it in a lower alcohol. In addition, it is preferable to use a low-concentration aqueous solution or to mix the rainwater solution at a temperature of 50° C. or higher to avoid gelation. In addition, when using PVA as a synthetic polymer substance, it is necessary to be careful about stirring since its aqueous solution tends to precipitate when stirred. However, even at room temperature, it is possible to mix the solution immediately after preparing the solution before gelling.

膜ないしフィルム形態の成形物を得るには、通常、上記
混合液をガラス板等の平板面上に流延し、溶媒である水
を蒸発させて成膜し、この膜ないしフィルムを上記平板
面上から剥離する所謂キャスト法が採用される。なお、
この場合、平板面上にシリコーンオイル等の水揮発性液
剤を離型剤として予め塗工しておけば、剥離が容易とな
る。また平板面上に予め非水性高分子膜を形成しておき
、この膜に混合液を流して成膜し、両方の膜を平板面か
ら一体に剥離したのちに相互に分離するようにしてもよ
い。このようなキャスト法では一般に厚さ5μm以上の
膜ないしフィルムを作製できるが、1μm以下の超薄膜
でもシャボン玉法や枠法(例えば、5−PVAの単独膜
についての特許:特開昭60−144305号に開示さ
れた方法)によって作製可能である。
To obtain a molded product in the form of a membrane or film, the above-mentioned mixture is usually cast onto a flat plate surface such as a glass plate, water as a solvent is evaporated to form a film, and this membrane or film is cast onto the flat plate surface. A so-called cast method is used in which the film is peeled off from above. In addition,
In this case, if a water-volatile liquid agent such as silicone oil is applied as a release agent on the flat plate surface in advance, peeling becomes easy. Alternatively, a non-aqueous polymer film may be formed in advance on the flat plate surface, a mixed solution may be poured onto this membrane to form a film, and both films may be peeled off as one from the flat plate surface and then separated from each other. good. Generally, films with a thickness of 5 μm or more can be produced by such casting methods, but ultra-thin films with a thickness of 1 μm or less can also be produced using the soap bubble method or the frame method (for example, a patent for a single 5-PVA film: JP-A-1983-1993). 144305).

シルクフィブロインと合成高分子物質との混合割合は、
前者/後者の重量比で2/8〜8/2程度とするのがよ
く、シルクフィブロインの比率が少なすぎるとその特性
が充分に発現せず、逆に合成高分子物質の比率が少なす
ぎると成形物の柔軟性および強度が不足して所期の目的
を達成できなくなる。
The mixing ratio of silk fibroin and synthetic polymer material is
The weight ratio of the former/latter is preferably about 2/8 to 8/2; if the ratio of silk fibroin is too low, its properties will not be fully expressed, and on the other hand, if the ratio of the synthetic polymer substance is too low, The molded product lacks flexibility and strength, making it impossible to achieve the intended purpose.

かくして得られた成形物は、柔軟性に優れ、機械的強度
も大きく、膜ないしフィルム形態でも強靭で破断しにく
−かなりの伸び性も有しており、しかもシルクフィブロ
イン本来の酵素固定能、酸素透過性、選択的イオン透過
性および吸着性を有し、また良好な生体適合性を示すと
共にPH2〜11の範囲で安定であり、かつ耐光性にも
優れてシルクフィブロイン単独成形物のような黄変を生
じにくいという種々の利点を有している。特に、PvA
とシルクフィブロインとの混合物は、水で膨潤するが、
その膨晶度は水の温度に依存せず一定となることから、
寸法安定性が要求される用途や温度による活性変動を嫌
う用途にも優れた適正を示す。
The molded product thus obtained has excellent flexibility, high mechanical strength, and even in the form of a membrane or film, it is tough and resistant to breakage - it also has considerable elongation, and also has silk fibroin's inherent enzyme fixation ability. It has oxygen permeability, selective ion permeability and adsorptivity, and also exhibits good biocompatibility, is stable in the pH range of 2 to 11, and has excellent light resistance, making it similar to silk fibroin single molded products. It has various advantages in that it does not easily cause yellowing. In particular, PvA
The mixture of fibroin and silk fibroin swells with water, but
Since the degree of expansion is constant and does not depend on the temperature of the water,
It is also highly suitable for applications that require dimensional stability and applications that dislike fluctuations in activity due to temperature.

従って、膜ないしフィルム形態の成形物として酵素固定
膜、透析膜の如き選択的イオン透過膜、各種分離膜、ソ
フトコンタクトレンズ材料、人工血管、人工皮膚、人工
角膜の如き生体適合性膜、医薬カプセル等の医用および
生化学的分野を始めとする種々の材料に利用でき、また
ビーズ状や種々の形態の成形物、さらには粉体として使
用する場合の原料となる成形物として脱塩処理剤、廃液
処理剤、生化学反応用担体等への応用も期待できる。
Therefore, molded products in membrane or film form include enzyme-immobilized membranes, selective ion permeable membranes such as dialysis membranes, various separation membranes, soft contact lens materials, biocompatible membranes such as artificial blood vessels, artificial skin, and artificial corneas, and pharmaceutical capsules. It can be used for various materials such as medical and biochemical fields, and can also be used as a desalting treatment agent, as a raw material when used as beads, molded products in various forms, and powder. It can also be expected to be applied as a waste liquid treatment agent, a carrier for biochemical reactions, etc.

実施例 以下、この発明を実施例によって具体的に説明する。Example Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 家蚕のまゆを原料として、マルセール石鹸でセリシンを
除去し、得られた乾燥絹糸0.429を9.3モル濃度
の臭化リチウム水溶液中に浸漬して湯浴を用いて溶解さ
せた後、遠心分離し、得られた溶液をセロファンチュー
ブにて2日間透析して臭化リチウムを除去し、濃度1゜
397/dΩのシルクフィブロイン水溶液を調製した。
Example 1 Using the cocoon of domestic silkworm as a raw material, sericin was removed with Marselle soap, and the obtained dried silk thread 0.429 was immersed in a 9.3 molar lithium bromide aqueous solution and dissolved using a hot water bath. Thereafter, the solution was centrifuged, and the resulting solution was dialyzed for 2 days in a cellophane tube to remove lithium bromide, thereby preparing an aqueous silk fibroin solution with a concentration of 1°397/dΩ.

次に、この水溶液に、トリフルオロ酢酸ビニルから誘導
された5−PVA(121合度2720、シンジオタク
トのダイアド含量55%)を水と共にオートクレーブ中
で約130℃に加熱して得られた濃度1.49g/ d
Qのs −PVA水溶液を、シルクフィブロイン/PV
Aの重量比(固形分換算)が1/1となるように室温下
で混合し、得られた混合液をガラス板の予めシリコーン
オイルが塗工されている表面に乾燥膜厚がlOμm程度
になるように流延して成膜し、この乾燥後の膜をガラス
板から剥離してシルクフィブロイン−PVA混合膜を作
製した。
Next, 5-PVA derived from vinyl trifluoroacetate (121 degree 2720, syndiotact dyad content 55%) was added to this aqueous solution and heated to about 130°C in an autoclave with water to obtain a concentration of 1. .49g/d
Q's-PVA aqueous solution was mixed with silk fibroin/PV
A is mixed at room temperature so that the weight ratio (solid content) is 1/1, and the resulting mixture is applied to the surface of a glass plate that has been coated with silicone oil in advance to a dry film thickness of about 10 μm. A silk fibroin-PVA mixed film was prepared by peeling the dried film from the glass plate.

実施例2 ガラス板上への流延を乾燥膜厚が30μm程度になるよ
うに設定した以外は、実施例1と同様にしてシルクフィ
ブロイン−PVA混合膜を作製した。
Example 2 A silk fibroin-PVA mixed film was produced in the same manner as in Example 1, except that the casting onto a glass plate was set so that the dry film thickness was about 30 μm.

実施例3 シルクフィブロイン/PVAの重量比を1/2とした以
外は、実施例2と同様1こしてシルクフィブロイン−P
VA混合膜を作製した。
Example 3 Strained silk fibroin-P in the same manner as in Example 2 except that the weight ratio of silk fibroin/PVA was 1/2.
A VA mixed film was produced.

比較例 シルクフィブロインの水溶液のみを用いて実施例2と同
様にしてシルクフィブロイン単独膜を作製した。なお、
実施例1に対応した薄いシルクフィブロイン単独膜の作
製を同様に試みたが、ガラス板からの剥離時に破れて満
足な膜は得られなかった。
Comparative Example A single silk fibroin membrane was prepared in the same manner as in Example 2 using only an aqueous solution of silk fibroin. In addition,
A similar attempt was made to prepare a thin silk fibroin-only film corresponding to Example 1, but the film broke when peeled from the glass plate, and a satisfactory film could not be obtained.

以上の実施例1〜3および比較例で得られた各4枚の膜
につき、膜厚を測定すると共に、それぞれヤング率、破
断強度、伸度および耐光性(25℃、7日間の日光曝露
)を試験したところ、下表の結果が得られた。なお、表
中の数値はいずれも4枚の膜の測定値の平均であり、伸
度は破断時の値を示す。またヤング率は、後述する応力
−ひずみ特性の試験結果より下記式によって算出した値
である。
For each of the four films obtained in Examples 1 to 3 and Comparative Example above, the film thickness was measured, as well as Young's modulus, breaking strength, elongation, and light resistance (25°C, 7 days of sunlight exposure). When tested, the results shown in the table below were obtained. In addition, all the numerical values in the table are the average of the measured values of four membranes, and the elongation shows the value at break. Moreover, Young's modulus is a value calculated by the following formula from the test results of stress-strain characteristics described later.

GPa =109 N/m−109K’l/ms2また
、上記各実施例および比較例で得られた膜をそれぞれ2
0#lllX21111の大きさに切断して試料片とし
、各試料片の両端をコ字形の支持板紙の両側辺部に接着
した後、この支持板紙の基辺部を切断し、これを薄膜フ
ィルム用引張り試験機(伸光通信社製の商品名70M1
5型引っ張り試験機)にセットし、支持板紙の両断片間
距離が10mII/分の割合で拡大する条件によって各
試料片の応力−ひずみ特性を測定した。その結果を第1
図に示す。なお、図中の曲線A1は実施例1、A2は実
施例2、A3は実施例3、Bは比較例のそれぞれ試料片
に対応している。
GPa = 109 N/m - 109 K'l/ms2 In addition, the films obtained in each of the above Examples and Comparative Examples were
Sample pieces were cut to a size of 0 #llll x 21111, and both ends of each sample piece were glued to both sides of a U-shaped supporting paperboard.The base of this supporting paperboard was cut and used for thin film. Tensile tester (product name 70M1 manufactured by Shinko Tsushinsha)
The stress-strain characteristics of each sample piece were measured under the condition that the distance between both pieces of supporting paperboard was expanded at a rate of 10 mII/min. The result is the first
As shown in the figure. In addition, the curve A1 in the figure corresponds to the sample piece of Example 1, A2 corresponds to the sample piece of Example 2, A3 corresponds to the sample piece of Example 3, and B corresponds to the sample piece of the comparative example.

上表および第1図の結果から、この発明に係るシルクフ
ィブロイン−PVA混合膜は、シルクフィブロイン単独
膜に比較して、柔軟性が高くかつ非常に強靭である上、
耐光性にも優れることが判る。
From the results shown in the above table and FIG. 1, the silk fibroin-PVA mixed membrane according to the present invention is more flexible and extremely strong than the silk fibroin-only membrane, and
It can be seen that it also has excellent light resistance.

一方、実施例3におけるメタノール処理を施す前の混合
膜について、そのNaCΩの透過性を導電率測定によっ
て調べた。その結果を略同膜厚の5−PVA単独膜によ
る同透過性と共に第2図に示す。図中の曲線Cは実施例
3の混合膜、曲線りは5−PVA単独膜のそれぞれ特性
を示す。
On the other hand, the NaCΩ permeability of the mixed membrane before the methanol treatment in Example 3 was examined by conductivity measurement. The results are shown in FIG. 2 together with the same permeability of a 5-PVA single membrane having approximately the same thickness. Curve C in the figure shows the characteristics of the mixed film of Example 3, and the curved line shows the characteristics of the 5-PVA single film.

この第2図の結果から、シルクフィブロイン−PVA混
合膜は5−PVA単独膜よりも高い電解質透過性を示し
、透析膜や各種分離膜として優れていることが判る。
From the results shown in FIG. 2, it can be seen that the silk fibroin-PVA mixed membrane exhibits higher electrolyte permeability than the 5-PVA membrane alone, and is excellent as a dialysis membrane or various separation membranes.

発明の効果 この発明のシルクフィブロイン含有成形物は、シルクフ
ィブロインと合成高分子物質との混合物からなるため、
柔軟性および強度に優れ、かつシルクフィブロイン本来
の物理的および生化学的特性、例えば酵素固定能、酸素
透過性、選択的イオン透過性および吸収性等を具備し、
また生体適合性も良好であり、医用材料や生化学的材料
を始めとして上記特性を利用した種々の材料に好適に使
用できる。
Effects of the Invention Since the silk fibroin-containing molded article of the present invention is composed of a mixture of silk fibroin and a synthetic polymer substance,
It has excellent flexibility and strength, and has physical and biochemical properties inherent to silk fibroin, such as enzyme immobilization ability, oxygen permeability, selective ion permeability, and absorbability.
It also has good biocompatibility and can be suitably used in various materials that utilize the above characteristics, including medical materials and biochemical materials.

そして、上記合成高分子物質としてPVAを用いたもの
では、その柔軟性付与効果が大きいことに加え、これと
シルクフィブロインとの親和性がよく、また海島状のミ
クロ相分離構造を形成することから、柔軟で品質的に優
れて特に生体適合性のよい成形物となる。更にこのPv
Aとしてシンジオタクト含量が50%以上のポリマーを
用いることにより、耐水性および強度がより良好な成形
物を提供できる。
In addition, when PVA is used as the synthetic polymer material, in addition to its great flexibility imparting effect, it has good affinity with silk fibroin and forms a sea-island-like microphase-separated structure. The molded product is flexible, has excellent quality, and has particularly good biocompatibility. Furthermore, this Pv
By using a polymer having a syndiotact content of 50% or more as A, a molded product with better water resistance and strength can be provided.

更にまた、成形物が膜状ないしフィルム状であるもので
は、この発明による柔軟性および強度の改善効果が最大
限に発揮されるという利点がある。
Furthermore, when the molded product is in the form of a membrane or film, there is an advantage that the flexibility and strength improvement effects of the present invention are maximized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例1〜3および比較例の成形物
の応力−ひずみ特性図、第2図は実施例3および参考例
の成形物の電解質透過特性図である。 以上 ひイと(@/、) 第1 図 峙 内 (分) 第2図
FIG. 1 is a stress-strain characteristic diagram of molded products of Examples 1 to 3 of the present invention and a comparative example, and FIG. 2 is an electrolyte permeation characteristic diagram of molded products of Example 3 and a reference example. That's all (@/,) 1st figure (minutes) 2nd figure

Claims (4)

【特許請求の範囲】[Claims] (1)シルクフィブロインと合成高分子物質との混合物
からなるシルクフィブロイン含有成形物。
(1) A silk fibroin-containing molded article made of a mixture of silk fibroin and a synthetic polymer substance.
(2)合成高分子物質がポリビニルアルコールである請
求項(1)記載のシルクフィブロイン含有成形物。
(2) The silk fibroin-containing molded article according to claim (1), wherein the synthetic polymeric substance is polyvinyl alcohol.
(3)ポリビニルアルコールがシンジオタクトのダイア
ド含量45%以上のポリマーからなる請求項(2)記載
のシルクフィブロイン含有成形物。
(3) The silk fibroin-containing molded article according to claim (2), wherein the polyvinyl alcohol comprises a polymer having a syndiotact dyad content of 45% or more.
(4)膜状ないしフィルム状に形成された請求項(1)
〜(3)のいずれかに記載のシルクフィブロイン含有成
形物。
(4) Claim (1) formed in the form of a membrane or film
The silk fibroin-containing molded article according to any one of (3) to (3).
JP63263774A 1988-10-19 1988-10-19 Molded product containing silk fibroin Expired - Fee Related JPH0669485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263774A JPH0669485B2 (en) 1988-10-19 1988-10-19 Molded product containing silk fibroin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263774A JPH0669485B2 (en) 1988-10-19 1988-10-19 Molded product containing silk fibroin

Publications (2)

Publication Number Publication Date
JPH02109570A true JPH02109570A (en) 1990-04-23
JPH0669485B2 JPH0669485B2 (en) 1994-09-07

Family

ID=17394098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263774A Expired - Fee Related JPH0669485B2 (en) 1988-10-19 1988-10-19 Molded product containing silk fibroin

Country Status (1)

Country Link
JP (1) JPH0669485B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026927A1 (en) * 1996-01-23 1997-07-31 JAPAN, represented by NATIONAL INSTITUTE OF SERICULTURAL AND ENTOMOLOGICAL SCIENCE, MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES, DIRECTOR GENERAL Wound covering material
WO1998057676A1 (en) * 1997-06-18 1998-12-23 Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forestry And Fisheries Wound covering material containing silk fibroin and silk sericin as the main components and process for producing the same
CN1059129C (en) * 1995-07-25 2000-12-06 苏州大学 Wound surface protective film and preparation method thereof
US7611782B2 (en) * 2003-08-26 2009-11-03 Japan As Represented By The President Of National Cardiovascular Center Titanium oxide complex and production method thereof, and medical material using the same
WO2011126031A1 (en) * 2010-04-06 2011-10-13 日立化成工業株式会社 Silk fibroin porous material and method for producing same
JP2012080915A (en) * 2010-10-06 2012-04-26 Hitachi Chemical Co Ltd Wound covering material
JP2013506007A (en) * 2009-09-29 2013-02-21 タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ Silk nanospheres and silk microspheres and methods for producing them
JP2016216620A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017048160A (en) * 2015-09-04 2017-03-09 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017048347A (en) * 2015-09-04 2017-03-09 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017176238A (en) * 2016-03-28 2017-10-05 株式会社シード Fibroin-hyaluronic acid hydrogel composite
CN110760069A (en) * 2019-11-19 2020-02-07 李彩琴 High-strength copolymer modified silk fibroin water-absorbing material and preparation method thereof
JP2020045366A (en) * 2019-12-17 2020-03-26 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
CN111671980A (en) * 2020-08-06 2020-09-18 苏州大学 Bionic composite bone scaffold and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640156A (en) * 1979-09-05 1981-04-16 Kanebo Ltd Porous membrane and its manufacture
JPH0253841A (en) * 1988-08-19 1990-02-22 Idemitsu Petrochem Co Ltd Molding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640156A (en) * 1979-09-05 1981-04-16 Kanebo Ltd Porous membrane and its manufacture
JPH0253841A (en) * 1988-08-19 1990-02-22 Idemitsu Petrochem Co Ltd Molding material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059129C (en) * 1995-07-25 2000-12-06 苏州大学 Wound surface protective film and preparation method thereof
US5951506A (en) * 1996-01-23 1999-09-14 Japan As Represented By National Institute Of Sericultural Ans Entomological Science Wound covering material
WO1997026927A1 (en) * 1996-01-23 1997-07-31 JAPAN, represented by NATIONAL INSTITUTE OF SERICULTURAL AND ENTOMOLOGICAL SCIENCE, MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES, DIRECTOR GENERAL Wound covering material
WO1998057676A1 (en) * 1997-06-18 1998-12-23 Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forestry And Fisheries Wound covering material containing silk fibroin and silk sericin as the main components and process for producing the same
US7611782B2 (en) * 2003-08-26 2009-11-03 Japan As Represented By The President Of National Cardiovascular Center Titanium oxide complex and production method thereof, and medical material using the same
JP2013506007A (en) * 2009-09-29 2013-02-21 タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ Silk nanospheres and silk microspheres and methods for producing them
US9381164B2 (en) 2009-09-29 2016-07-05 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US9090703B2 (en) 2010-04-06 2015-07-28 Hitachi Chemical Company, Ltd. Silk fibroin porous material and method for producing same
WO2011126031A1 (en) * 2010-04-06 2011-10-13 日立化成工業株式会社 Silk fibroin porous material and method for producing same
JP2012080915A (en) * 2010-10-06 2012-04-26 Hitachi Chemical Co Ltd Wound covering material
JP2016216620A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017048160A (en) * 2015-09-04 2017-03-09 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017048347A (en) * 2015-09-04 2017-03-09 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
JP2017176238A (en) * 2016-03-28 2017-10-05 株式会社シード Fibroin-hyaluronic acid hydrogel composite
CN110760069A (en) * 2019-11-19 2020-02-07 李彩琴 High-strength copolymer modified silk fibroin water-absorbing material and preparation method thereof
JP2020045366A (en) * 2019-12-17 2020-03-26 日立化成株式会社 Fibroin solution, fibroin nano thin film, nano thin film sheet and method for producing the same, and transfer method
CN111671980A (en) * 2020-08-06 2020-09-18 苏州大学 Bionic composite bone scaffold and preparation method thereof

Also Published As

Publication number Publication date
JPH0669485B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US3673612A (en) Non-thrombogenic materials and methods for their preparation
US4563490A (en) Composite polymeric material for biological and medical application and the method for its preparation
JP3506718B2 (en) Poly (vinyl alcohol) cryogel
US6800753B2 (en) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering
US4349470A (en) Protein polymer hydrogels
US4416814A (en) Protein polymer hydrogels
JPH02109570A (en) Silkfibroin-containing molding
JP2006523733A5 (en)
JP2009516038A (en) Molded body based on crosslinked gelatinous material, method for producing the molded body, and use of the molded body
JPS5823410B2 (en) Hydrogel Youkizai
Bajpai et al. Preparation and characterization of macroporous poly (2‐hydroxyethyl methacrylate)‐based biomaterials: Water sorption property and in vitro blood compatibility
CN110743392A (en) PVDF hollow fiber membrane material with anticoagulation property for hemodialysis and preparation method thereof
JPH07184989A (en) High polymer material having compatibility with blood for medical treatment and medical treating material
JPH01308431A (en) Silk fibroin hydrogel
JPH0311787B2 (en)
JP3495802B2 (en) Medical materials and polyvinyl alcohol polymers having phosphorylcholine groups
EP0566754B1 (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
RU2270209C1 (en) Method of manufacturing porous material from fibroin/chitosan mixture
CN1255189C (en) Prepn of anticoagulant insoluble silk protein material
JPH09131397A (en) Polymer material for medical use, and manufacture thereof
JPS5844699B2 (en) Sugreta Seinou Oyuusuru Hydrogel Youkizai
EP0352330A1 (en) Fibroin moldings, process for their preparation, heparin-immobilizing carrier, and process for its preparation
JP2899686B2 (en) Cell proliferating medical articles
JP2907492B2 (en) Heparin sustained release material and method for producing the same
JPH0673103A (en) Hyaluronic acid polymer composite material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees