JPS61248460A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61248460A
JPS61248460A JP60088583A JP8858385A JPS61248460A JP S61248460 A JPS61248460 A JP S61248460A JP 60088583 A JP60088583 A JP 60088583A JP 8858385 A JP8858385 A JP 8858385A JP S61248460 A JPS61248460 A JP S61248460A
Authority
JP
Japan
Prior art keywords
well
type
resistance
type well
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60088583A
Other languages
Japanese (ja)
Inventor
Hisanobu Tsukasaki
塚崎 久暢
Shuzo Matsumoto
脩三 松本
Kazuo Kondo
和夫 近藤
Takashi Matsuzaki
隆 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60088583A priority Critical patent/JPS61248460A/en
Publication of JPS61248460A publication Critical patent/JPS61248460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the geometry effect of a terminal part upon a P-type well resistance and improve a relative accuracy by utilizing P-type diffused layers positively. CONSTITUTION:P-type diffused layers 2 and 3 are used to connect a P-type well 1 to aluminum wirings 4 and 5 electrically. For that purpose, as the sheet resistivity of the P-type diffused layer is 10-50OMEGA/square which is significantly smaller than the sheet resistivity of the P-type well 1, which is 5-10kOMEGA/square, the width W1 of the P-type diffused layers 2 and 3 is selected to be larger than the width W2 of the P-type well and measured to the direction perpendicular to the longitudinal direction L of the P-type well 1. With this constitution, a geometry effect, which is caused by the pattern of a terminal part and sometimes noticed in BR resistance, can be avoided. It becomes possible to determine the resistance value by about L/W2, and a relative accuracy between a plurality of well resistances can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に、抵抗を集積化した相
補型絶縁ゲートトランジスタ装置(0MO8)K関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a complementary insulated gate transistor device (0MO8)K with integrated resistors.

〔発明の背景〕[Background of the invention]

従来の半導体装置上に集積された抵抗(以下モノリシッ
ク抵抗)は、例えばアナログ信号処理が主体のバイポー
ラICではベース拡散層抵抗(以下BR低抵抗が多用さ
れている。しかしながら、デジタル信号処理が主体の0
MO8−ICではモノリシック抵抗はあまり用いられな
かった。バイポーラICのBR低抵抗ついて&瓜例えば
「集積回路工学(1)」柳井、永田著 コロナ社に、C
MO8ICに関しては、例えば、日経エレクトロニクス
 1980年10月27日号 P175などに述べられ
ている。
Conventional resistors integrated on semiconductor devices (hereinafter referred to as monolithic resistors) are, for example, base diffusion layer resistors (hereinafter referred to as BR low resistance) often used in bipolar ICs mainly used for analog signal processing. 0
Monolithic resistors were rarely used in MO8-ICs. For example, "Integrated Circuit Engineering (1)" by Yanai and Nagata, Corona Publishing, C.
MO8IC is described in, for example, Nikkei Electronics October 27, 1980 issue, P175.

従来、0MO8−ICにおいてモノリシック抵抗を用い
る場合、例えばN型基板、Pウェル構造の0MO8の場
合、PMO8のソース及びドレインと同時に形成される
Pを拡散抵抗が用いららている。P散拡散層抵抗は、面
積抵抗率(正方形あたりの抵抗値、以下シート抵抗)が
10Ω〜50Ω程度と小さいため、BR低抵抗同等レベ
ルの、絶対精度、相対精度、温度係数。
Conventionally, when a monolithic resistor is used in an 0MO8-IC, for example, in the case of an 0MO8 with an N-type substrate and a P well structure, a P diffused resistor is used, which is formed simultaneously with the source and drain of the PMO8. Since the P diffused layer resistance has a small area resistivity (resistance value per square, hereinafter referred to as sheet resistance) of about 10Ω to 50Ω, it has absolute accuracy, relative accuracy, and temperature coefficient at the same level as BR low resistance.

逆バイアス電圧依存性などを期待出来る。しかしながら
、シート抵抗が小さいため高抵抗を必要とする場合には
、レイアウト面積および寄生容量の増加を覚悟しなけれ
ばならない。より高抵抗を得る手段としてPウェル抵抗
を用いることは従来から知られていたが、不純物濃度が
低いために本質的に電圧係数、逆バイアス電圧係数が著
しく悪いために、抵抗値精度の不要な場所、たとえばプ
ルアップ抵抗などに用いられておりPウェル抵抗を精度
よ(作ろうとする試みはなされていなかった。
We can expect reverse bias voltage dependence. However, if a high resistance is required because the sheet resistance is small, one must be prepared for an increase in layout area and parasitic capacitance. It has long been known to use a P-well resistor as a means of obtaining higher resistance, but because the impurity concentration is low, the voltage coefficient and reverse bias voltage coefficient are inherently extremely poor, making resistance value accuracy unnecessary. No attempt has been made to make P-well resistors accurate, such as in pull-up resistors.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、0MO8−ICにおいて、ウェルを用
いたモノリシック抵抗を相対精度良く形成する手段を提
供することにある。
An object of the present invention is to provide a means for forming a monolithic resistor using wells with relatively high accuracy in an 0MO8-IC.

〔発明の概要〕[Summary of the invention]

例えばN型基板、P−ウェル(WILL)構成の0MO
8の場合には、P−ウェル(WELL)を抵抗として用
いる場合には、アルミ配線と直接コンタクトを取ること
が出来ないために、P散拡散層を介して電気的に接続す
る。本発明は、このP散拡散層を積極的忙活用すること
により、P−ウェル抵抗の端子部の形状効果を少なくし
、比精度(相対精度)を向上させるものである。
For example, N-type substrate, P-well (WILL) configuration 0MO
In the case of No. 8, when a P-well (WELL) is used as a resistor, it is not possible to make direct contact with the aluminum wiring, so it is electrically connected via a P diffusion layer. The present invention makes active use of this P diffusion layer to reduce the shape effect of the terminal portion of the P-well resistor and improve the relative accuracy.

〔発明の実施例〕[Embodiments of the invention]

矛1図に本発明の一実施例であるウェル抵抗のパターン
を示す図を、矛2図に矛1図のWELL抵抗の断面図を
示す。才1図および、1?2図において、1はP型のク
エ/I/、2および3はP減拡散層、4および5はアル
ミ配線パターン。
Figure 1 shows a pattern of a well resistor according to an embodiment of the present invention, and Figure 2 shows a sectional view of the WELL resistor shown in Figure 1. In Figures 1 and 1 to 2, 1 is a P-type Que/I/, 2 and 3 are P-reduced diffusion layers, and 4 and 5 are aluminum wiring patterns.

6および7はP散拡散層とアルミ配線とのコンタクト、
8.9および10はSiO,による絶縁層、11はN型
基板、16は絶縁保護膜である。
6 and 7 are contacts between the P diffusion layer and the aluminum wiring;
8.9 and 10 are insulating layers made of SiO, 11 is an N-type substrate, and 16 is an insulating protective film.

矛1図からも判る様にP−ウェル1とアルミ配線4およ
び5を電気的に接続するには、P型拡散層2および3を
使用する。この時、P−ウェルのシート抵抗値は、5に
Ω〜10にΩ10程度であるのに対して、P散拡散層の
シート抵抗は10〜50Ω10と大幅く小さいため1.
tFj図に見られる様釦、P型拡散層2および3の@(
Ws )をP−ウェル1の@(凧)より大きくか1長さ
方向(L)K対して垂直に取ることKより、BR,抵抗
に見られる様な端子部分のパターンによる形状効果の影
響を受けることなく、抵抗値をほぼL/W、によって決
定することが可能となり、複数個のWELL抵抗間抵抗
比精度がとりやす(なる。
As can be seen from Figure 1, P-type diffusion layers 2 and 3 are used to electrically connect the P-well 1 and the aluminum wirings 4 and 5. At this time, the sheet resistance value of the P-well is about 5Ω to 10Ω10, whereas the sheet resistance of the P-diffusion layer is much smaller at 10 to 50Ω10.
As seen in the tFj diagram, the P-type diffusion layers 2 and 3 @(
Ws ) is larger than the @(kite) of P-well 1 or perpendicular to the length direction (L)K, so that the influence of the shape effect due to the pattern of the terminal part as seen in BR and resistor can be reduced. It becomes possible to determine the resistance value approximately by L/W without being affected by the resistance, and the resistance ratio accuracy between the plurality of WELL resistors can be easily achieved.

P−ウェルの不純物濃度の低さに起因して、温度係数や
逆バイアス電圧係数が大きいため、抵抗値の絶対精度が
要求される用途あるいは、振幅の大きな交流信号が乗る
様な用途には向かないが、例えば、才1図に示す抵抗を
複数個直列接続して分圧電圧を得るために用いることな
どは逆バイアス電圧像数分をあらかじめ加味しておいて
設計を行なうことにより十分可能である。
Due to the low impurity concentration of the P-well, the temperature coefficient and reverse bias voltage coefficient are large, so it is not suitable for applications that require absolute accuracy of resistance values or applications that carry AC signals with large amplitudes. However, for example, it is possible to connect multiple resistors shown in Figure 1 in series and use them to obtain a divided voltage by taking into account the number of reverse bias voltage images in advance. be.

矛5図に本発明の別の実施例であるP−ウェル抵抗のパ
ターンを示す。また才4図に、才3図に対応する断面図
を示す。才3図および才4図において、1はP−ウェル
、2.3および12はP散拡散層、4.5および13は
アルミ配線、6.7および14はP散拡散層とアルミ配
線とのコンタクト、8,9.10および15はSin、
による絶縁層、11はN型基板、16は絶縁層保護膜で
ある。
Figure 5 shows a pattern of a P-well resistor according to another embodiment of the present invention. In addition, Fig. 4 shows a sectional view corresponding to Fig. 3. In Figures 3 and 4, 1 is a P-well, 2.3 and 12 are P-diffusion layers, 4.5 and 13 are aluminum wiring, and 6.7 and 14 are connections between the P-diffusion layer and aluminum wiring. Contact, 8, 9.10 and 15 are Sin,
11 is an N-type substrate, and 16 is an insulating layer protective film.

矛3図は、2つのウェル抵抗を直列に接続した例であり
、逆バイアス電圧の影響を除けば、ウェル抵抗部の長さ
の比であるり、:L、の抵抗比を示すと考えられる。
Figure 3 shows an example in which two well resistors are connected in series, and excluding the influence of reverse bias voltage, it can be thought that it shows the ratio of the length of the well resistor part, or the resistance ratio of :L. .

ウェル抵抗を用いる場合には、使用バイアス条件による
逆バイアス電圧係数の影響を加味した設計を行なう必要
がある。逆バイアス電圧係数をほぼ決定するパラメータ
であるところの基板およびシェルの不純物濃度は、MO
Sトランジスタのvthなとの特性を決定する重要なパ
ラメータなので、(ウェルを抵抗として用いる、用いな
い釦関らず)グミセス工程において厳密に管理されてい
る。このため、逆バイアス電圧係数はあまりバラつくこ
とはない。代表的な値としては、2〜as/V程度であ
る。したがって、直流的な使い方(抵抗端子の電圧が変
動しない様な使い方)は十分可能である。
When using a well resistor, it is necessary to perform a design that takes into account the influence of the reverse bias voltage coefficient depending on the bias conditions used. The impurity concentration of the substrate and shell, which is a parameter that approximately determines the reverse bias voltage coefficient, is
Since it is an important parameter that determines the characteristics such as vth of the S transistor, it is strictly controlled in the gummy process process (regardless of whether the well is used as a resistor or not). Therefore, the reverse bias voltage coefficient does not vary much. A typical value is about 2 to as/V. Therefore, direct current use (use where the voltage at the resistor terminal does not fluctuate) is fully possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ウェルを用いたモノリシック抵抗にお
いて、抵抗端子部の形状効果をほぼ無視することが可能
であり、比精度(相対精度)の高い抵抗を作ることが出
来る。
According to the present invention, in a monolithic resistor using a well, the shape effect of the resistor terminal portion can be almost ignored, and a resistor with high specific accuracy (relative accuracy) can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

、tF1図は本発明の半導体装置の実施例を示す平面2
才2図は矛1図の断面図2才3図は本発明の別の実施例
を示す平面図、才4図は才5図の断面図である。 1・・・P−ウェル、2,3および12・・・P型拡散
鳳+ 1−N型基板。 第1図 才2図
, tF1 is a plane 2 showing an embodiment of the semiconductor device of the present invention.
Figure 2 is a sectional view of Figure 1, Figure 2 is a plan view showing another embodiment of the present invention, and Figure 4 is a sectional view of Figure 5. 1...P-well, 2, 3 and 12...P type diffusion hole + 1-N type substrate. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】  P型あるいはN型のうちいずれが一方の導電性を示す
半導体基板と、前記半導体基板上に形成され半導体基板
と異なる導電性を示すウェル領域とを有する、相補型絶
縁ゲートトランジスタ装置において、 ウェル領域と同時に形成される高抵抗領域と、前記高抵
抗領域の両端に位置し、かつ、上記高抵抗領域より幅が
広い前記半導体基板上に形成される絶縁ゲートトランジ
スタのソースおよびドレイン領域と同時に形成される低
抵抗領域とを有することを特徴とする半導体装置。
[Scope of Claims] A complementary insulated gate comprising a semiconductor substrate exhibiting conductivity of either P-type or N-type, and a well region formed on the semiconductor substrate and exhibiting conductivity different from that of the semiconductor substrate. In the transistor device, a high resistance region is formed at the same time as a well region, and a source and an insulated gate transistor are formed on the semiconductor substrate, which are located at both ends of the high resistance region and have a width wider than the high resistance region. A semiconductor device characterized by having a low resistance region formed at the same time as a drain region.
JP60088583A 1985-04-26 1985-04-26 Semiconductor device Pending JPS61248460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088583A JPS61248460A (en) 1985-04-26 1985-04-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088583A JPS61248460A (en) 1985-04-26 1985-04-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61248460A true JPS61248460A (en) 1986-11-05

Family

ID=13946863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088583A Pending JPS61248460A (en) 1985-04-26 1985-04-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61248460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891500A (en) * 1995-10-12 1999-04-06 E. I. Du Pont De Nemours And Company Packaging films capable of being heat-sealed closed and thereafter peeled open

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891500A (en) * 1995-10-12 1999-04-06 E. I. Du Pont De Nemours And Company Packaging films capable of being heat-sealed closed and thereafter peeled open

Similar Documents

Publication Publication Date Title
US3423650A (en) Monolithic semiconductor microcircuits with improved means for connecting points of common potential
JP3217336B2 (en) Semiconductor device
US4161742A (en) Semiconductor devices with matched resistor portions
US4163246A (en) Semiconductor integrated circuit device employing a polycrystalline silicon as a wiring layer
US4890191A (en) Integrated circuits
JPS61248460A (en) Semiconductor device
US4223335A (en) Semiconductor device body having identical isolated composite resistor regions
US4191964A (en) Headless resistor
US4689655A (en) Semiconductor device having a bipolar transistor with emitter series resistances
JPS5955051A (en) Integrated resistor
JPS62234363A (en) Semiconductor integrated circuit
US4332070A (en) Method for forming a headless resistor utilizing selective diffusion and special contact formation
JPS6342532Y2 (en)
JPH0453104B2 (en)
JPH027553A (en) Semiconductor integrated circuit device
JPS59208750A (en) Wiring structure of semiconductor device
JP2825046B2 (en) Characteristics measuring element
JPS6468961A (en) Resistance element for semiconductor integrated circuit device
JPS5812343A (en) Semiconductor device
JPS60214553A (en) Bipolar integrated circuit device
JPH0453103B2 (en)
JPS61166539U (en)
JPH061794B2 (en) Semiconductor device
JP2901280B2 (en) Semiconductor device
JPS6240757A (en) Semiconductor device