JPS61247956A - Analysis of antimony contained in galvanizing film - Google Patents

Analysis of antimony contained in galvanizing film

Info

Publication number
JPS61247956A
JPS61247956A JP60089032A JP8903285A JPS61247956A JP S61247956 A JPS61247956 A JP S61247956A JP 60089032 A JP60089032 A JP 60089032A JP 8903285 A JP8903285 A JP 8903285A JP S61247956 A JPS61247956 A JP S61247956A
Authority
JP
Japan
Prior art keywords
antimony
nitric acid
bismuth
plating film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60089032A
Other languages
Japanese (ja)
Inventor
Hirofumi Kurayasu
浩文 蔵保
Yasuo Iguma
康夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60089032A priority Critical patent/JPS61247956A/en
Publication of JPS61247956A publication Critical patent/JPS61247956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To determine quantitatively a trace amt. of antimony exactly at a high speed by preparing a test liquid in which the antimony is reduced to tervalency and subjecting the liquid to a voltammetric measurement. CONSTITUTION:An ascorbic acid is added to a reducing agent to a soln. obtd. by dissolving a galvanizing film from the base iron by a concd. nitric acid and the soln. is boiled to prepare the test liquid in which the amtimony is reduced to tervalency. The liquid is then subjected to the voltammetric measurement. The plating film is preferably dissolved by the concd. nitric acid while a dissolving vessel is cooled by icy water. The content of copper and bismuth is separately measured and the correction based on the measured result thereof is executed when the test liquid contains the copper and bismuth. the exact content of the antimony is thus determined.

Description

【発明の詳細な説明】 (技術分野) 亜鉛系メッキ被膜に不純物として含まれるアンチモンは
、加熱剥離などのメッキ性状に悪影響を及ぼすことが知
られている。そこで、亜鉛系メッキ被膜に含まれるアン
チモン含有量を制御する必要があるが、そのためには前
段階としてその含有量を測定しなければならない0本発
明は、この必要性に応えるべく開発されたものであって
、亜鉛メッキ被膜中の微量アンチモンを簡単に精度よく
求める方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) Antimony contained as an impurity in a zinc-based plating film is known to have an adverse effect on plating properties such as thermal peeling. Therefore, it is necessary to control the antimony content contained in the zinc-based plating film, but in order to do so, the content must be measured as a preliminary step.The present invention was developed to meet this need. The present invention relates to a method for easily and accurately determining trace amounts of antimony in galvanized coatings.

(従来技術及びその問題点) 溶液中の微量金属イオンを分析するのに適した方法とし
て、 DPASV(ディファレンシャル・パルス・アノ
−ディック・ストリッピング・ボルタンメトリー) 、
 DPV(ディファレンシャル・パルス・ボルタンメト
リー)等のボルタンメトリーがある。
(Prior art and its problems) DPASV (differential pulse anodic stripping voltammetry) is a method suitable for analyzing trace metal ions in a solution.
There is voltammetry such as DPV (differential pulse voltammetry).

この方法は、被験液に浸漬した電極での電位−電流曲線
から、被験液中のイオンに関する情報を得る電気化学的
な分析方法である。この方法による場合、電着電位を適
切に選択することによって、亜鉛の影響を排除すること
ができる。
This method is an electrochemical analysis method that obtains information about ions in a test liquid from a potential-current curve at an electrode immersed in the test liquid. In this method, the influence of zinc can be eliminated by appropriately selecting the electrodeposition potential.

このボルタンメトリーを亜鉛メッキ被膜中のアンチモン
の定量に適用するには、まずメッキ鋼板からメッキ被膜
だけを溶解しなければならない。
In order to apply this voltammetry to the determination of antimony in a galvanized coating, it is first necessary to dissolve only the galvanized coating from the plated steel sheet.

メッキ被膜の溶解液として従来使用されているものには
、塩化アンチモンを含んだ塩酸溶液(JISH0401
)や有機インヒビターを含んだ塩酸又は硫酸溶液がある
が、これらは亜鉛メッキ被膜中のアンチモンを定量する
場合には不適当である。たとえば、塩化アンチモン含有
塩酸溶液を使用するときには、分析成分であるアンチモ
ンが溶解液に含まれているため、分析値が高値を示す、
また、塩酸又は硫酸を使用するときには、亜鉛溶解時に
発生する水素によりアンチモンが水素化物となって揮散
することから、分析値が低値を示す、更には、亜鉛地金
中の鉛、鉄、カドミウム、錫等の分析に使用されている
希薄硝酸(JIS H1111)を用いることも考えら
れる。しかし、希薄硝酸は反応終点がはっきりしないた
めメッキ被膜だけでなく下地の鋼板まで溶解してしまう
ので、地鉄にアンチモンが含まれている場合には、分析
値が高値を示すことになる。
Hydrochloric acid solution containing antimony chloride (JISH0401
) and hydrochloric acid or sulfuric acid solutions containing organic inhibitors, but these are unsuitable for quantifying antimony in galvanized coatings. For example, when using a hydrochloric acid solution containing antimony chloride, the analytical component antimony is contained in the solution, so the analytical value will be high.
Furthermore, when hydrochloric acid or sulfuric acid is used, antimony becomes a hydride and volatilizes due to the hydrogen generated during zinc dissolution, resulting in low analytical values. It is also possible to use dilute nitric acid (JIS H1111), which is used for the analysis of tin, etc. However, since the end point of the reaction with dilute nitric acid is unclear, it dissolves not only the plating film but also the underlying steel plate, so if the base metal contains antimony, the analysis value will be high.

他方、ボルタンメトリー測定は、被験液中の分析イオン
の価数に大きく影響される。これをアンチモンについて
みると、アンチモンは3価と5価があり、5価のアンチ
モンは特殊な溶液系でないとボルタンメトリー測定にお
いてピークを示さない、ところが、亜鉛メッキ被膜を溶
解して得られた溶液に含まれているアンチモンは、はと
んどが5価の状態になっている。そこで、5価のアンチ
モンを3価に還元し、この還元状態で定量を行う必要が
ある。アンチモンを5価から3価に還元する方法として
、沃素イオンの存在下でアンチモンを二酸化硫黄により
還元する方法が提案されている(Analytica 
  Chimica  Acta   146(118
3)  131−89) 、 l、かじ、この方法は、
反応完結までに30分もの長時間を要することから、実
用的でない。
On the other hand, voltammetric measurements are greatly influenced by the valence of the analyte ions in the test solution. Looking at antimony, antimony comes in trivalent and pentavalent forms, and pentavalent antimony does not show a peak in voltammetry measurements unless it is in a special solution system.However, in a solution obtained by dissolving a galvanized film, Most of the antimony contained in it is in a pentavalent state. Therefore, it is necessary to reduce pentavalent antimony to trivalent antimony and perform quantitative determination in this reduced state. As a method for reducing antimony from pentavalent to trivalent, a method has been proposed in which antimony is reduced with sulfur dioxide in the presence of iodide ions (Analytica
Chimica Acta 146 (118
3) 131-89), l, rudder, this method is
It is not practical because it takes as long as 30 minutes to complete the reaction.

(発明の目的) そこで、本発明は、亜鉛メッキ被膜の溶解及び5価アン
チモンの還元に検討を加え、迅速で正確に微量アンチモ
ンをボルタンメトリーによって定量することを目的とす
る。
(Objective of the Invention) Therefore, an object of the present invention is to study the dissolution of a galvanized film and the reduction of pentavalent antimony, and to quickly and accurately quantify trace amounts of antimony by voltammetry.

(発明の構成) 本発明は、その目的を達成すべく、濃硝酸により地鉄か
ら亜鉛メッキ被膜を溶解して得られた溶液に還元剤とし
てアスコルビン酸を添加し、煮沸することによりアンチ
モンを3価に還元した被験液を作り、次いでボルタンメ
トリー測定を行うことを特徴とする。
(Structure of the Invention) In order to achieve the object, the present invention dissolves antimony by adding ascorbic acid as a reducing agent to a solution obtained by dissolving the galvanized coating from the steel base with concentrated nitric acid and boiling it. The method is characterized in that a test solution reduced to a value is prepared, and then voltammetry measurement is performed.

この場合、溶解容器を氷水で冷却しながら、メッキ被膜
の濃硝酸による溶解を行うことが望ましい、また、被験
液が銅、ビスマスを含んでいる場合、銅、ビスマスの含
有量を別途測定し、その測定結果に基づく補正を行って
正確なアンチモン含有量を求めることができる。
In this case, it is desirable to dissolve the plating film with concentrated nitric acid while cooling the dissolution container with ice water.Also, if the test solution contains copper or bismuth, separately measure the content of copper and bismuth. By making corrections based on the measurement results, accurate antimony content can be determined.

(作用及び効果) 濃硝酸によりメッキ被膜の溶解を行う場合、溶解反応が
完了し地鉄の表面が現れると、濃硝酸によってその表面
に不働態被膜が形成される。その結果、溶解反応はそれ
以上進行せず、メッキ被膜の溶解により得られた溶液に
地鉄の溶出による影響がない、この際、溶解反応を氷水
により冷却しながら行うと、反応熱による溶液の温度上
昇が抑制され、地鉄の溶出がより一層防止される。この
濃硝酸がアンチモンの揮散及び地鉄の溶出に与える影響
を、それぞれ第1図及び第2図に示す。
(Functions and Effects) When dissolving a plating film with concentrated nitric acid, when the dissolution reaction is completed and the surface of the base metal appears, a passive film is formed on the surface by the concentrated nitric acid. As a result, the dissolution reaction does not proceed any further, and the solution obtained by dissolving the plating film is not affected by the elution of the base metal.In this case, if the dissolution reaction is performed while cooling with ice water, the solution will be reduced due to the reaction heat. Temperature rise is suppressed, and elution of base iron is further prevented. The influence of this concentrated nitric acid on the volatilization of antimony and the elution of base iron is shown in Figures 1 and 2, respectively.

このようにして得られたメッキ被膜溶解液は、アンチモ
ン含有量に実質的な変化をもたらすことなくメッキ被膜
だけを溶解しているので、得られる測定結果も正確なも
のとなる。
Since the thus obtained plating film solution dissolves only the plating film without causing any substantial change in the antimony content, the obtained measurement results are also accurate.

また、5価のアンチモンを3価に還元するために還元剤
としてアスコルビン酸を用いるとき、その還元率は反応
温度に応じて第3図のように変化する0図中、Aはアス
コルビン酸を冷却状態の被験液に添加した場合を示し、
Bは同じ<60℃の被験液の場合、Cはアスコルビン酸
を添加した後、被験液を30秒間煮沸した場合を示す、
このように、わずか30秒程度の煮沸で充分な還元効果
が得られることは、二酸化硫黄を用いた従来法に比較し
て、分析作業の迅速化をもたらすものである。
In addition, when ascorbic acid is used as a reducing agent to reduce pentavalent antimony to trivalent antimony, the reduction rate changes as shown in Figure 3 depending on the reaction temperature. Indicates the case when added to the test solution of the condition,
B indicates the same test solution at <60°C; C indicates the case where the test solution was boiled for 30 seconds after adding ascorbic acid.
In this way, the fact that a sufficient reducing effect can be obtained by boiling for only about 30 seconds brings about faster analysis work compared to the conventional method using sulfur dioxide.

また、ボルタンメトリー測定において、被験液に銅、ビ
スマスが存在すれば、アンチモンピークに重なり誤差を
生ずる原因となる。そこで、銅、ビスマス量を別途測定
し、その測定結果に基づきアンチモンピーク位置での高
さを補正することにより、正確なアンチモン含有量が得
られる。なお、このような不純物による影響のないこと
が予め解っている場合、その補正を考慮する必要がない
ことは勿論である。
Furthermore, in voltammetry measurements, if copper or bismuth is present in the test solution, they overlap with the antimony peak, causing errors. Therefore, by separately measuring the amounts of copper and bismuth and correcting the height at the antimony peak position based on the measurement results, accurate antimony content can be obtained. Note that, of course, if it is known in advance that there is no influence due to such impurities, there is no need to consider the correction.

(実施例) 次いで、実施例により本発明の特徴を明らかにする。(Example) Next, the characteristics of the present invention will be clarified through Examples.

まず、亜鉛メッキ鋼板試料(5cmX 5cas)をビ
ー力に入れ、濃硝酸30■文を添加し、氷水中で冷却し
ながらメッキ被膜を溶解した。被膜の溶解が終了すると
反応がとまるので、試料を濃硝酸溶液から取り出した。
First, a galvanized steel sheet sample (5 cm x 5 cas) was placed in a beaker, 30 μm of concentrated nitric acid was added, and the plating film was dissolved while cooling in ice water. Once the coating had dissolved, the reaction stopped and the sample was removed from the concentrated nitric acid solution.

続いて(1+l) H2SO412層文を添加し硫酸白
煙を軽く上げてHNO,を除去した。これは、後に7ス
コルビン酸を添加するときにHNOlが存在するとうま
く還元が進まないためである。
Subsequently, (1+l) H2SO412 layer was added and white sulfuric acid fumes were slightly raised to remove HNO. This is because when HNOl is present when 7scorbic acid is added later, the reduction will not proceed properly.

冷却後、Na0文8g及びH2030m文を加えて塩類
を加熱溶解した0次いで、100層文メスフラスコに移
し入れ、標線まで水により希釈してA液とした。
After cooling, 8 g of Na0 and 300 m of H were added and the salts were dissolved by heating.Then, the mixture was transferred to a 100-layer volumetric flask and diluted to the marked line with water to obtain Solution A.

次に、A液25 ranを分取し、NaC17gを添加
して加熱溶解した。続いて、熱いうちにアスコルビン酸
0.5gを加えて煮沸を30秒程度行い、sbを3価に
還元した。冷却後、5011!;Lメスフラスコに移し
入れ、標線まで水により希釈してB液とした。
Next, 25 ran of liquid A was taken out, 17 g of NaC was added, and the mixture was heated and dissolved. Subsequently, 0.5 g of ascorbic acid was added to the mixture while it was still hot, and the mixture was boiled for about 30 seconds to reduce sb to trivalent. After cooling, 5011! ; The mixture was transferred to an L volumetric flask and diluted to the marked line with water to obtain Solution B.

以上のようにして、被験液を調製して、ボルタンメトリ
ー測定を行った。
A test solution was prepared as described above, and voltammetry measurements were performed.

第1段階として、A液をボルタンメトリー測定セルに入
れ、第1表に示す測定条件でCu、 Biを測定した。
In the first step, solution A was placed in a voltammetry measurement cell, and Cu and Bi were measured under the measurement conditions shown in Table 1.

A液中では、Cu及びBiのピークは充分離れているの
で、それぞれのピーク高さから予め作成している検量線
を用いてCu及びBi量を求めることができる。なお、
sbは、A液中では5価に酸化マスクされているので、
Cu、 Biの測定の障害とはならない。
In liquid A, the peaks of Cu and Bi are sufficiently far apart, so the amounts of Cu and Bi can be determined from the respective peak heights using a calibration curve prepared in advance. In addition,
Since sb is oxidized as pentavalent in liquid A,
It does not interfere with the measurement of Cu and Bi.

第2段階として、B液をボルタンメトリー測定セルに入
れ、第2表に示す測定条件で測定し、sbピーク位置で
の高さを求めた。この測定値には。
In the second step, the B solution was placed in a voltammetry measurement cell and measured under the measurement conditions shown in Table 2 to determine the height at the sb peak position. For this measurement.

Cu、 Biビークが重なっているので、この分の差し
引きを次のように行った。第1段階で試料のCu。
Since the Cu and Bi peaks overlap, this amount was subtracted as follows. Cu of the sample in the first stage.

Bi量が解っているので、予め作成しているCu、 B
i量とSbピーク位置でのCu、 Bi寄与分との関係
から、sbピークに及ぼすCu、 Biの寄与分を求め
、これを試料のsbピーク位置での高さから差し引き真
のsbピーク高さを求め、予め作成しているsb検量第
2表sb測定条件 このようにして求めた合成試料の分析結果を、第3表に
示す、この表から明らかなように、本発明の方法による
とき、良好な精度の分析が可能となった。
Since the amount of Bi is known, the amount of Cu and B prepared in advance is
From the relationship between the amount of i and the contribution of Cu and Bi at the Sb peak position, determine the contribution of Cu and Bi to the sb peak, and subtract this from the height of the sample at the sb peak position to obtain the true sb peak height. The results of the analysis of the synthesized sample thus obtained are shown in Table 3.As is clear from this table, when the method of the present invention is used, Analysis with good accuracy became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸の種類によるアンチモン回収率の相違を示し
、第2図は硝酸濃度が地鉄の溶出に与える影響を示し、
第3図はアスコルビン酸によるアンチモン還元率と反応
温度との関係を示す。 、ti  口 才 2 図 牙3図
Figure 1 shows the difference in antimony recovery rate depending on the type of acid, and Figure 2 shows the influence of nitric acid concentration on the elution of base iron.
FIG. 3 shows the relationship between the reduction rate of antimony by ascorbic acid and the reaction temperature. , ti Mouth 2 Illustrations 3 Illustrations

Claims (3)

【特許請求の範囲】[Claims] (1)濃硝酸により地鉄から亜鉛系メッキ被膜を溶解し
て得られた溶液に還元剤としてアスコルビン酸を添加し
、煮沸することによりアンチモンを3価に還元した被験
液を作り、次いでボルタンメトリー測定を行うことを特
徴とする亜鉛系メッキ被膜に含まれるアンチモンの分析
方法。
(1) Add ascorbic acid as a reducing agent to the solution obtained by dissolving the zinc-based plating film from the base iron with concentrated nitric acid, and boil it to prepare a test solution in which antimony is reduced to trivalent, and then perform voltammetry measurement. A method for analyzing antimony contained in a zinc-based plating film.
(2)溶解容器を氷水で冷却しながら、メッキ被膜の濃
硝酸による溶解を行う特許請求の範囲第1項記載の方法
(2) The method according to claim 1, wherein the plating film is dissolved with concentrated nitric acid while the dissolution container is cooled with ice water.
(3)被験液に銅、ビスマスが存在する場合、銅、ビス
マスの補正をしてアンチモン含有量を求める特許請求の
範囲第1項記載の方法。
(3) When copper and bismuth are present in the test solution, the method according to claim 1, in which the antimony content is determined by correcting copper and bismuth.
JP60089032A 1985-04-26 1985-04-26 Analysis of antimony contained in galvanizing film Pending JPS61247956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089032A JPS61247956A (en) 1985-04-26 1985-04-26 Analysis of antimony contained in galvanizing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089032A JPS61247956A (en) 1985-04-26 1985-04-26 Analysis of antimony contained in galvanizing film

Publications (1)

Publication Number Publication Date
JPS61247956A true JPS61247956A (en) 1986-11-05

Family

ID=13959552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089032A Pending JPS61247956A (en) 1985-04-26 1985-04-26 Analysis of antimony contained in galvanizing film

Country Status (1)

Country Link
JP (1) JPS61247956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040689C (en) * 1994-09-02 1998-11-11 郑杰 Polarographic anode dissolving-out analysis method
JP2007248158A (en) * 2006-03-14 2007-09-27 Hokuto Denko Kk Solution analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040689C (en) * 1994-09-02 1998-11-11 郑杰 Polarographic anode dissolving-out analysis method
JP2007248158A (en) * 2006-03-14 2007-09-27 Hokuto Denko Kk Solution analysis method

Similar Documents

Publication Publication Date Title
CN107132263A (en) The method of testing of aluminium composition in aluminium etching solution
Cooke et al. Application of Lead Reductor to Determination of Uranium
Baron et al. Electrochemical methods to measure gold leaching current in an alkaline thiosulfate solution
CN102109468B (en) Method for analyzing aluminum alloy oxidization solution
JPS61247956A (en) Analysis of antimony contained in galvanizing film
CN106770916A (en) One kind determines Cr in chromium plating tank liquor3+The method of content
Godar et al. Polarographic Determination of Tin in Foods and Biological Materials
Wood et al. The determination of tungsten in titanium, zirconium and their alloys
Willey et al. Determination of oxide films on tin plate
Cooper et al. Vanadium as Phosphotungstovanadate
Pecsok et al. Determination of Molybdenum by Ion Exchange and Polarography
CN111751298A (en) Method for measuring content of non-metal elements in crude lead
Malmstadt et al. Determination of Chloride in Titanium Sponge by Rapid Potentiometric Method
HAWKINGS et al. Polarographic Determination of Copper, Lead, and Cadmium in High-Purity Zinc Alloys
Mikula et al. Polarographic Determination of Copper, Nickel, Cobalt, Manganese, and Chromium in Titanium Alloys
JP2616320B2 (en) Analysis method of metal ion concentration in plating bath
JP2019095424A (en) Quantitative determination method for amidosulfuric acid
Challis et al. Absorptiometric determination of magnesium in titanium and its alloys
CN108918754A (en) Aluminum content tests method in aluminium lithium alloy
Clark The polarographic determination of small amounts of tin and lead in zirconium and its alloys
JPH0634010B2 (en) Method for measuring chromium deposition on Alodine conversion coating
Burrows et al. Kinetics of the copper-ferric chloride reaction and the effects of certain inhibitors
Wood et al. The determination of tin in zirconium and its alloys
Wood et al. A polarographic determination of trace amounts of lead in zirconium and its alloys
JPS6033045A (en) Quantitative determination of metallic ion in electroplating liquid