JPS6033045A - Quantitative determination of metallic ion in electroplating liquid - Google Patents

Quantitative determination of metallic ion in electroplating liquid

Info

Publication number
JPS6033045A
JPS6033045A JP14055383A JP14055383A JPS6033045A JP S6033045 A JPS6033045 A JP S6033045A JP 14055383 A JP14055383 A JP 14055383A JP 14055383 A JP14055383 A JP 14055383A JP S6033045 A JPS6033045 A JP S6033045A
Authority
JP
Japan
Prior art keywords
sample
peak
added
solution
reduce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14055383A
Other languages
Japanese (ja)
Inventor
Hirofumi Kurayasu
浩文 蔵保
Yasuo Iguma
康夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14055383A priority Critical patent/JPS6033045A/en
Publication of JPS6033045A publication Critical patent/JPS6033045A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Abstract

PURPOSE:To measure quickly Pb<2+>, Sn<2+>, Sn<4+> in an electroplating liquid with good accuracy by making use of the phenomenon that Sn<4+> does not disturb the quantitative determination of Pb<2+> and Sn<2+> in a phosphoric acid soln. and that Pb<2+> does not disturb the quantitative determination of Sn<2+> and Sn<4+> in a pyrogallol soln. CONSTITUTION:A fixed amt. of an electroplating liquid sample is drawn and is heated for about 15min at 90 deg.C. H2O2 is added thereto to oxidize all the Sn in the sample to Sn<4+>, then an ascorbic acis is added thereto to reduce the Fe<3+> in the sample and thereafter a phosphoric acid is added to the sample and the concn. of Pb<2+> is known by using a calibration curve from the Pb<2+> peak. A fixed amt. of the sample is added to the ascorbid acid to reduce Fe<3+> and thereafter a phosphoric acid is added thereto. The concn. of Sn<2+> is known by using the calibration curve from the peak height obtd. by subtracting the Pb<2+> component determined previously from the peak height of Sn<2+>+ Pb<2+>. A fixed amt. of the sample is added to the ascorbic acid to reduce Fe<3+> and thereafter Sn<2+> is made Sn<4+> by the soln. prepd. by adding HClO4 to pyrogallol and the peak which is the sum of Sn<4+> existing in the sample and Sn<4+> from Sn<2+> is determined. The peak for the above-described Sn<2+> component is subtracted therefrom and the concn. of Sn<4+> is known.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、電気メツキ液中のPb”+ Sn2+及(・
上−−′−++↓)+、沖rz朋、+入(発明の背景) 電気メツキ液中にPb2+が存在すると、メッキ性状に
悪影響を及ぼす。他方、メッキ性向上のためにメッキ液
にSnを添加する場合があるが、Snはメッキ液中で2
価と4価の状態にあり、加水分解して沈澱となる傾向が
強い。このSnのうち、メッキ性向上に効果があるのは
、イオン性のSn2+とSn4+だけである。そこで、
メッキ性状を制御するため、メッキ液中のPb”、 S
n”4′及びSn’+を迅速に定数−中ることが必要と
なる。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to Pb''+ Sn2+ and (・
Top--'-++↓)+, Okirz Tomo, +enter (Background of the Invention) The presence of Pb2+ in the electroplating solution has an adverse effect on the plating properties. On the other hand, Sn is sometimes added to the plating solution to improve plating properties, but Sn is
It is in a valent and tetravalent state and has a strong tendency to hydrolyze and form a precipitate. Of these Sn, only ionic Sn2+ and Sn4+ are effective in improving plating properties. Therefore,
In order to control the plating properties, Pb”, S
It is necessary to bring n''4' and Sn'+ to a constant value quickly.

(従来技術) 溶液中の微量金属イオンを分析するの忙適した方法とし
てDPASV (ディファレンシャル0パ、ルス囃アノ
ーディック・ストリッピング・ポルタンメトリー)、n
pv(ディファレンシャル・パルス・ポルタンメトリー
)等がある。両者共に、試料液に浸漬した電極での電位
−電流曲線から、′試料液中のイオンに関する情報?得
る電気化学的ド な分析法である。これらのポルタンメ
トリーにより、Pb”、 an!+、 Sn’+のそれ
ぞれを単独で分析し先例はいくつかある。たとえば、ピ
ロガロール溶液中でのSn’+の定量、クエン酸溶液中
でのpb”とSn’+の定量である。しかし、ZnやF
eを主成分とする電気メツキ液中のpb” 、Sn”“
及びSn”全定量した例はない。これは、それらの微量
成分の定量を行うときに、主成分であるZn及びFeが
分析結果に影響を及ぼし、また微量成分相互が影響しあ
い、精度の高い分析が行われないためである。
(Prior art) DPASV (Differential Zero Parallel Anodic Stripping Portammetry) is a suitable method for analyzing trace metal ions in solutions.
PV (differential pulse portammetry), etc. In both cases, information about ions in the sample solution can be obtained from the potential-current curve at the electrode immersed in the sample solution. This is a powerful electrochemical analysis method. There are several precedents for individually analyzing each of Pb'', an!+, and Sn'+ using portammetry. For example, the determination of Sn'+ in a pyrogallol solution, and the determination of ” and the quantitative determination of Sn'+. However, Zn and F
PB", Sn"" in the electroplating solution containing e as the main component
There is no example of total quantification of these trace components. This is because the main components Zn and Fe affect the analysis results, and the trace components interact with each other, making it difficult to achieve high accuracy. This is because no analysis is performed.

(発明の目的) 本発明は、前記した影響を抑えて、電気メツキ液中のP
 b ” + S n’ ”及びSn’十を精度よく定
量することを目白りとする。
(Object of the Invention) The present invention suppresses the above-mentioned effects and improves P in the electroplating solution.
The aim is to accurately quantify b ” + Sn' ” and Sn'.

(発明の構成) 本発明は、燐酸溶液中でのPb2+とSn2+の定量に
Sn’十が妨害しないこと、及びピロガロール溶液中で
のSn t+とSn’+の定量にPb2+が妨害しない
ことを利用するものである。
(Structure of the Invention) The present invention takes advantage of the fact that Sn'+ does not interfere with the determination of Pb2+ and Sn2+ in a phosphoric acid solution, and that Pb2+ does not interfere with the determination of Snt+ and Sn'+ in a pyrogallol solution. It is something to do.

すなわち、本発明は、燐酸塩支持電解質中で測定したS
n酸化試料液のpb”ピーク、燐酸塩支持電解質中で測
定したSn未酸化試料液の(sn”+pb”)ピーク及
びピロガロール支持電解質中で測定したSn未酸化試料
液の(’Sn” + Sn” )ピークからメッキ液中
のPb2+、3n2+及びS+i’+を電気化学的に定
量するものである。このとき、Fe”+イオンの影響を
、アスコルビン酸を添加してFe3+を還元することに
よって、抑制する。又、上記支持′1Jt解質は、メッ
キ主成分であるZnFeが沈澱しないように、かつ目的
成分とピークが重ならないととを考慮して選定している
That is, the present invention provides S measured in a phosphate supported electrolyte.
pb'' peak of the n-oxidized sample solution, (sn''+pb'') peak of the Sn unoxidized sample solution measured in the phosphate-supported electrolyte, and ('Sn'' + Sn of the Sn-unoxidized sample solution measured in the pyrogallol-supported electrolyte). Pb2+, 3n2+, and S+i'+ in the plating solution are electrochemically quantified from the ``) peak.At this time, the influence of Fe''+ ions can be reduced by adding ascorbic acid to reduce Fe3+. suppress. Further, the support '1Jt solute is selected in consideration of preventing precipitation of ZnFe, which is the main component of plating, and that its peak does not overlap with the target component.

a、Pb”+の定量 試料を加熱することにより試料中のFe’+でSn”の
酸化を促進して3nをすべてSn’+にするか、または
、試料に1(、O,を添加してSnをすべてSn4十に
酸化する。次いで、アスコルビン酸を添加してFe3+
を還元する。そして、試料中のSn4+を燐酸塩支持電
解質でマスクし、DPASVによりI)b2++ ’)
 e −≠Pb’ (I(g )ピークを測定し、この
測’71 値からPb針を定量する。
a. Quantification of Pb"+ By heating the sample, Fe'+ in the sample promotes the oxidation of Sn" and all 3n becomes Sn'+, or by adding 1(,O,) to the sample. to oxidize all Sn to Sn40.Next, ascorbic acid is added to oxidize Fe3+.
to reduce. Then, Sn4+ in the sample was masked with a phosphate supporting electrolyte, and I)b2++') was measured by DPASV.
Measure the e −≠Pb' (I(g) peak, and quantify the Pb needle from this measured value.

b、Sn2十の定量 試料にアスコルビン酸を添加してFe”を還元し、Fe
3+イオンによる影響の抑制及びSn”+の酸化防止を
図る。次いで、試料を燐酸溶液で希釈してSn’十をマ
スクした後、DPASVを実施するとSn”+2e−ソ
己SnSn0(HピークとPb2++2e−ソ介Pb’
 (Hg )ピークが重なったピークが得られる。
b. Add ascorbic acid to a quantitative sample of Sn20 to reduce Fe"
This aims to suppress the influence of 3+ ions and prevent the oxidation of Sn''+.Next, after diluting the sample with a phosphoric acid solution to mask Sn'+, DPASV is carried out to suppress the influence of Sn''+2e-sol and SnSn0 (H peak and Pb2++2e -Sosuke Pb'
A peak with overlapping (Hg) peaks is obtained.

この値から先にめたpb”十分を差し引くことによって
、Sn”十をめることができる。
By subtracting the previously determined pb'' from this value, the Sn'' can be calculated.

c、Sn’+の定量 試料にアスコルビン酸を添加してFe3+を還元し、F
e3+イオンの影響の抑制及びSn”+の酸化防止を図
る。次いで、試料をピロガロール−HCl2.溶液で希
釈した後、DPVを実施するとSnz+及びSn4+共
にS n ’ ” +2 e ’−−8n”十及び3n
”−1−2e−ソ→SnSn0(Hの2つのピークを示
す。しかし、S n ”+2 e−ソ台S nO(TI
g )ピークはpbt” + 2 e−、==Pb’(
Hg)ピークと重なるので、Sn” + 2e−、=i
ThSn’+ピークを利用してSn’十を定量する。す
なわち、Sn”+とSn4+が重なった、Sn” + 
2e−<−−8n”+ピーフカ、ら前にめたSn2十分
を差し引くことによりB n 4 +を算出する。
c, Ascorbic acid was added to the quantitative sample of Sn'+ to reduce Fe3+, and F
This aims to suppress the influence of e3+ ions and prevent the oxidation of Sn''+.Next, when the sample is diluted with pyrogallol-HCl2. solution and DPV is performed, both Snz+ and Sn4+ are Sn'''+2 e'--8n'' and 3n
"-1-2e-so→SnSn0(H) shows two peaks. However, Sn"+2e-so→SnO(TI
g) The peak is pbt" + 2 e-, ==Pb'(
Hg) overlaps with the peak, so Sn" + 2e-, = i
Sn'+ is quantified using the ThSn'+ peak. In other words, Sn”+ where Sn”+ and Sn4+ overlap
Calculate B n 4 + by subtracting the previously determined Sn2 2e−<−8n”+Peafka.

(実施例) Zn−Feを主成分とするメッキ液中のp b2 + 
、 3 n2+及びSn4+の定量法を具体的に示す。
(Example) p b2 + in a plating solution containing Zn-Fe as the main component
, 3 specifically shows the method for quantifying n2+ and Sn4+.

まず、メッキ液試料5ゴをサンプリングし、水浴上で9
0℃、15分間はど加熱するか、またはサンプリング後
(1千99)HtO,20mを添加してSnをすべてS
n4+に酸化しまた。加熱による酸化は、試料中のFe
”+濃度がI G D Oppm以上の場合、90℃、
15分間はどで充分であった。次に、10チアスコルビ
ン酸5mを添加してFe3+を還元した。
First, sample 5 samples of the plating solution and place them on a water bath.
Either heat at 0°C for 15 minutes or add 20m of HtO after sampling (1,099°C) to remove all Sn.
It is also oxidized to n4+. Oxidation due to heating removes Fe in the sample.
”+ If the concentration is above I G D Oppm, 90°C,
15 minutes was sufficient. Next, 5 m of 10 thiascorbic acid was added to reduce Fe3+.

続いて、0.5 MH3PO45dを加えた後、H,O
で50−に希釈した。これを測定溶液として表1に示す
測定条件でDPASVを実施し、得られるpb″ビーク
高さから、pbt+検情線を用いて、p b2 +濃度
をめた。なお、同一測定条件でCd” 、 Ct声等を
めることもできる。
Subsequently, after adding 0.5 MH3PO45d, H,O
diluted to 50-. DPASV was carried out using this as a measurement solution under the measurement conditions shown in Table 1, and the pb2+ concentration was determined from the obtained pb'' peak height using the pbt+ analytical line.In addition, under the same measurement conditions, the pb2+ concentration was calculated. , Ct voice, etc. can also be added.

表1.DPASV測定東件(Pb’+の場合)次に、メ
ッキ液試料5 mlをサンプリングし、10チアスコル
ビン酸5−を添加してFe’+を還元した。
Table 1. DPASV Measurement (Pb'+) Next, 5 ml of the plating solution was sampled, and 10 thiascorbic acid 5- was added to reduce Fe'+.

さらに0.5 MH3P045 mlを添加した後、H
IOで50−に希釈した。これを測定溶液として表2に
示す測定条件でDPASVを実施し、得られる(Snz
+−1−Pb”)ピーク高さから、先にめたPb”濃度
に相当する分をpb’+検量線によりめて差し引いたピ
ーク高さから、8n”+検量線を用いてSn” #度を
算出した。
After adding an additional 0.5 ml of MH3P045
Diluted 50- with IO. Using this as a measurement solution, DPASV was carried out under the measurement conditions shown in Table 2 to obtain (Snz
+-1-Pb") from the peak height, subtract the amount corresponding to the previously determined Pb" concentration using the pb'+ calibration curve, and then use the 8n"+ calibration curve to subtract the amount corresponding to the Pb" concentration determined previously. The degree was calculated.

表2.DPASV測定条件(Sn”+の場合)続イテ、
メッキ液試料5−をサンプリングし、10チアスコルビ
ン酸5−″f添加してFe”+を還元した後、0.12
Mピロピロガロールー、 12 MHCIO*溶液で希
釈して50mにした。これを測定溶液として表3に示す
測定条件でDPVを実施し、得られるSn” + 2e
−−8J1”ピーク高さく Sn” 十Sn4+)を読
みとった。この溶液中でのS n ” ” * S n
 ” ’検量線は若干臼っているので、以下第1図に従
ってSn’十算比算出法明する。図中、hは読みとった
試料のピーク高さ、Cはsn4+検量線で読んだhに対
応するSn’+Q度、亀は先忙求めたS−“濃度、b 
n aに対応するSn”+ピーク高さと同じピーク高さ
を与えるSn’十濃度を示す。したがって、Sn’十〇
度けc −bでめる。
Table 2. DPASV measurement conditions (for Sn”+) Continued
A plating solution sample 5- was sampled, and after adding 10 thiascorbic acid 5-''f to reduce Fe''+, 0.12
Diluted to 50M with M pyropyrogallol-12M HCIO* solution. Using this as a measurement solution, DPV was carried out under the measurement conditions shown in Table 3, and the obtained Sn" + 2e
--8J1"Peak height Sn" 10Sn4+) was read. S n ” ” * S n in this solution
” 'Since the calibration curve is slightly distorted, the method for calculating the Sn' tenth ratio will be explained below according to Figure 1. In the figure, h is the peak height of the sample read, and C is the h read from the sn4+ calibration curve. The corresponding Sn'+Q degree, the turtle's previous S-'concentration, b
Indicates the Sn' 10 concentration that gives the same peak height as the Sn''+ peak height corresponding to n a. Therefore, Sn' 10 degrees can be expressed as c - b.

表3. D P V測定条件(3n 4+の場合)この
ようにして、同一試料を連続して分析したときの測定結
果を表4に示す。表4から明らかなように、本発明の方
法によ抄精度の高い分析が可能となった。なお、分析に
要する時間は、−試料あだ940分程度であった。
Table 3. D PV measurement conditions (for 3n 4+) Table 4 shows the measurement results when the same sample was analyzed continuously in this manner. As is clear from Table 4, the method of the present invention enabled analysis with high paper precision. The time required for the analysis was approximately 940 minutes for each sample.

表49分析結果(ppm)Table 49 Analysis results (ppm)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Sn’+濃度をめるだめのピロガロール系に
おけるB n t +及びSn’+の検量線を示す。 代理人 弁理士 佐 々 木 俊 哲
FIG. 1 shows the calibration curves of B n t + and Sn'+ in the pyrogallol system with varying Sn'+ concentrations. Agent Patent Attorney Toshi Satoshi Sasaki

Claims (1)

【特許請求の範囲】[Claims] (1) ポルタンメトリーによる電気メツキ液中金属イ
オンの定数において、燐酸塩支持電解質中で測定したS
n酸化試料液のpb2+ピーク、燐酸塩支持電解質中で
測定したSn未酸イヒ試料液の(Sn”+Pb2+)ピ
ーク及びピロガ゛ロール支持電解質中で辿1定しfr)
 Sn未酸化試料液の(Sn”+Sη4+)ピーク力\
ら、メッキ液中のp b2 + 、 3 n2+及びS
n’+の量をめることを4?徴とする電気メツキ液中の
金属イオン定量法。 (2、特許請求の範囲(t)i己載の方法において、群
料液中(D F e 3+をアスコルビン酸により還元
するこ′ とを特徴とする方法。
(1) In the constant of metal ions in the electroplating solution by portammetry, S measured in a phosphate-supported electrolyte
The pb2+ peak of the n-oxidized sample solution, the (Sn''+Pb2+) peak of the Sn unoxidized sample solution measured in the phosphate-supported electrolyte, and the (Sn''+Pb2+) peak traced in the pyrogallol-supported electrolyte fr)
(Sn”+Sη4+) peak force of Sn unoxidized sample solution\
p b2 + , 3 n2+ and S in the plating solution
Calculating the amount of n'+ is 4? A method for quantifying metal ions in electroplating liquid based on the characteristics. (2. Claim (t) i) A method characterized by reducing D Fe 3+ (D Fe 3+ in a group feed solution) with ascorbic acid in the self-published method.
JP14055383A 1983-08-02 1983-08-02 Quantitative determination of metallic ion in electroplating liquid Pending JPS6033045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14055383A JPS6033045A (en) 1983-08-02 1983-08-02 Quantitative determination of metallic ion in electroplating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14055383A JPS6033045A (en) 1983-08-02 1983-08-02 Quantitative determination of metallic ion in electroplating liquid

Publications (1)

Publication Number Publication Date
JPS6033045A true JPS6033045A (en) 1985-02-20

Family

ID=15271347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14055383A Pending JPS6033045A (en) 1983-08-02 1983-08-02 Quantitative determination of metallic ion in electroplating liquid

Country Status (1)

Country Link
JP (1) JPS6033045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429235A (en) * 1987-07-24 1989-01-31 Matsushita Electric Ind Co Ltd Cooker
US5294554A (en) * 1991-03-01 1994-03-15 C. Uyemura & Co., Ltd. Analysis of tin, lead or tin-lead alloy plating solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429235A (en) * 1987-07-24 1989-01-31 Matsushita Electric Ind Co Ltd Cooker
US5294554A (en) * 1991-03-01 1994-03-15 C. Uyemura & Co., Ltd. Analysis of tin, lead or tin-lead alloy plating solution

Similar Documents

Publication Publication Date Title
Jagner Potentiometric stripping analysis in non-deaerated samples
Mota et al. The importance of concentration effects at the electrode surface in anodic stripping voltammetric measurements of complexation of metal ions at natural water concentrations
Jagner Potentiometric stripping analysis for mercury
Domínguez et al. Speciation of chromium by adsorptive stripping voltammetry using pyrocatechol violet
Ball et al. Determination of Chloride by Cathodic Stripping Polarography. Application to Solutions of Uranyl Sulfate
JPS6033045A (en) Quantitative determination of metallic ion in electroplating liquid
Huang et al. Determination of mercury at a dithizone-modified glassy carbon electrode by anodic stripping voltammetry
Sankar et al. Buffers for the Physiological pH Range: Thermodynamic Constants of 3-(N-Morpholino) propanesulfonic Acid from 5 to 50. degree. C
Batley In situ electrodeposition for the determination of lead and cadmium in sea water
Hua et al. Determination of selenium by means of computerized flow constant-current stripping at carbon fibre electrodes.: Application to human whole blood and milk powder.
Hussam et al. Potentiometric stripping analysis: theory, experimental verification, and generation of stripping polarograms
Labar et al. Potentiometric stripping analysis at a stationary electrode
Beinrohr et al. Flow-through stripping chronopotentiometry for the monitoring of mercury in waste waters
CN106770916A (en) One kind determines Cr in chromium plating tank liquor3+The method of content
JP3321289B2 (en) Mixed acid analysis method and pickling solution management method
Domínguez et al. Application of an optimization procedure in adsorptive stripping voltammetry for the determination of chromium with ammonium pyrrolidine dithiocarbamate
Van Velzen et al. The electrochemical reduction of oxygen to hydrogen peroxide at the dropping mercury electrode: Part I. Its kinetics at 605 pH< 12.5
Kirby et al. Polarography of Niobium-EDTA Complexes.
Davis Polarography of uranium (VI)-EDTA complexes
Costantini et al. Comparison of flameless atomic absorption spectrophotometry and anodic stripping voltammetry for the determination of blood lead
Zittel et al. Controlled-Potential Coulometric Titration of Uranium (IV) and Uranium (VI) in Sodium Tripolyphosphate Medium.
Bund et al. A simple and versatile PSA system for heavy metal determinations
Goto et al. Anodic stripping semidifferential electroanalysis of mercury (II) at gold disk electrode and its application to environmental analysis.
Rydchuk et al. Voltammetric determination of rhodium by means of furan-oxime derivatives in industrial samples with considerable content of palladium
Shimizu et al. Determination of diffusion coefficients of anions at a rotating silver disk electrode