JPS61247611A - Manufacture of carbon material coated with thermal cracking carbon - Google Patents

Manufacture of carbon material coated with thermal cracking carbon

Info

Publication number
JPS61247611A
JPS61247611A JP60087208A JP8720885A JPS61247611A JP S61247611 A JPS61247611 A JP S61247611A JP 60087208 A JP60087208 A JP 60087208A JP 8720885 A JP8720885 A JP 8720885A JP S61247611 A JPS61247611 A JP S61247611A
Authority
JP
Japan
Prior art keywords
carbon
base material
film
pyrolytic carbon
thermal cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60087208A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Yasuhiro Aiba
康博 愛場
Junichi Aizawa
淳一 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP60087208A priority Critical patent/JPS61247611A/en
Publication of JPS61247611A publication Critical patent/JPS61247611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the titled carbon material having coated film of high density thermal cracking carbon formed on the surface of a base material with high adhesion by feeding gas contg. raw material to form turbulent flow on a carbon base material heated at a specified temp. CONSTITUTION:A reaction chamber 10 is evacuated by opening a valve 8 by driving an exhaust pump 9. A carbon base material 5 (e.g. pitch coke base artificial graphite) is heated by a heater 6 at 1000-1200 deg.C, and the gas 11 contg. the raw materials [e.g. gaseous mixture of propane with N2 (carrier gas)] is ejected by opening a valve 1 and a three way cock 2 toward a tubulent flow-generating nozzle 3 side to the surface of the carbon base material 5 so as to generate turbulent flow. Thus, film of thermal cracking carbon having high density and high adhesion to the base material 5 is formed on the surface of the carbon base material 5. Obtd. carbon material coated with thermal cracking carbon is useful in the field of application where resistance to frequent repetition of cold/heat is required.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱分解炭素被覆炭素材の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing a pyrolytic carbon-coated carbon material.

(従来の技術) 加熱された基材にメタン、エタン、プロパン。(Conventional technology) Methane, ethane, propane on heated substrate.

アセチレン、ベンゼン等の炭化水素を含むガスを接触さ
せて熱分解炭素を析出させる技術は特公昭38−195
97号公報等によって広く知られてお如、ロケットノズ
ル、スロート、コーン等の宇宙工業材料、ガスケット等
の機械用材料、るつぼ等の各種治具材料などへの幅広い
応用が研究され又は実用化されている。
The technology to precipitate pyrolytic carbon by contacting gases containing hydrocarbons such as acetylene and benzene was developed in Japanese Patent Publication No. 38-195.
As is widely known from publications such as Publication No. 97, a wide range of applications have been researched or put into practical use, including space industry materials such as rocket nozzles, throats, and cones, mechanical materials such as gaskets, and various jig materials such as crucibles. ing.

炭素基材例えば人造黒鉛の熱膨張係数は4〜5x r 
o−’ /℃o この炭素基材に堆積される熱分解炭素
の被覆平面の熱膨張係数は1.5 X 10−’ /’
Cで両者の熱膨張係数の差から、熱分解炭素は炭素基材
から剥離され、上記各種の用途に供されていた。
The thermal expansion coefficient of a carbon base material such as artificial graphite is 4 to 5x r
o-'/℃o The thermal expansion coefficient of the coating plane of pyrolytic carbon deposited on this carbon substrate is 1.5 x 10-'/'
Due to the difference in thermal expansion coefficient between the two, the pyrolytic carbon was peeled off from the carbon base material and used for the various uses mentioned above.

(発明の解決しようとする問題点) これに対し、熱分解炭素を炭素材の被膜として利用する
場合は炭素基材との密着性を向上させることが不可欠で
あるが、単に加熱された炭素基材の上に炭化水素を含有
するガスを流して得られる従来の熱分解炭素は、異方性
を有しC軸が炭素基材表面に対して垂直になるように配
向するので。
(Problem to be solved by the invention) On the other hand, when pyrolytic carbon is used as a coating on a carbon material, it is essential to improve the adhesion to the carbon base material. Conventional pyrolytic carbon obtained by flowing a hydrocarbon-containing gas over a material has anisotropy and is oriented such that the C axis is perpendicular to the surface of the carbon substrate.

炭素基材及び熱分解炭素の熱膨張係数の差異から密着性
はよくない。特に熱分解炭素の被膜が100μm以上に
なると、該被膜は殆んど炭素基材から□剥離してしまう
。被膜の厚さを20〜30μmにおさえても2例えば曲
面を有するるつぼ等に被覆した場合は数回の加熱、冷却
で曲面から被膜が剥離してしまうという問題があった。
Adhesion is not good due to the difference in thermal expansion coefficient between the carbon base material and pyrolytic carbon. In particular, when the pyrolytic carbon film has a thickness of 100 μm or more, most of the film peels off from the carbon base material. Even if the thickness of the coating is kept to 20 to 30 μm, there is a problem that, for example, when a crucible having a curved surface is coated, the coating peels off from the curved surface after heating and cooling several times.

本発明は、上記した問題を解消し高密度の熱分解炭素被
膜を炭素基材に密着性よく形成する熱分解炭素被覆炭素
材の製造法を提供することを目的とする。
An object of the present invention is to provide a method for producing a pyrolytic carbon-coated carbon material that solves the above-mentioned problems and forms a high-density pyrolytic carbon film with good adhesion to a carbon substrate.

(問題点を解決するための手段) 発明者らは、原料の炭化水素ガスを層流状態で1000
〜1200℃に加熱された炭素基材の上に流して異方性
を有する熱分解炭素被膜が生成するのけ、炭化水素が気
相中で六角網面を有する扁平状ポリマーに生長する過程
を通ることに原因があり、従って扁平状ポリマーが炭素
基材表面に向つて拡散する境界層を乱してやれば、配向
性がなくなり異方性が小で炭素基材との密着性のよい熱
分解炭素被膜が得られることを兄出し本発明を完成する
に至った。
(Means for Solving the Problems) The inventors have developed a system in which hydrocarbon gas as a raw material is heated in a laminar flow state at
Although a pyrolytic carbon film with anisotropy is produced by pouring it onto a carbon substrate heated to ~1200°C, the hydrocarbon grows into a flat polymer with hexagonal network surfaces in the gas phase. Therefore, if the boundary layer where the flat polymer diffuses toward the surface of the carbon substrate is disturbed, the orientation will disappear and the pyrolytic carbon will have low anisotropy and good adhesion to the carbon substrate. The present invention was completed by discovering that a film could be obtained.

本発明は、1000〜1200℃に加熱された炭素基材
に原料含有ガスを乱流状態となるように供給し、炭素基
材表面に熱分解炭素被膜を形成する熱分解炭素被覆炭素
材の製造法及び1000〜1200℃に加熱さねた炭素
基材に原料含有ガスを乱流状態となるように供給して炭
素基材表面に熱分解炭素の第一被膜を形成し1次いで該
炭素基材を加熱しつつ前記厚相含有ガスを層流状態とな
るように供給し、前記熱分解炭素の第一被膜の上に熱分
解炭素の第二被膜を形成する熱分解炭素被覆炭素材の製
造法に関する。
The present invention involves the production of a pyrolytic carbon-coated carbon material by supplying a raw material-containing gas to a carbon base material heated to 1000 to 1200°C in a turbulent flow to form a pyrolytic carbon film on the surface of the carbon base material. A first coating of pyrolytic carbon is formed on the surface of the carbon substrate by supplying a raw material-containing gas in a turbulent flow to a carbon substrate heated to 1000 to 1200°C. A method for producing a pyrolytic carbon-coated carbon material, comprising supplying the thick phase-containing gas in a laminar flow state while heating the pyrolytic carbon, and forming a second pyrolytic carbon film on the pyrolytic carbon first film. .

本発明で用いる炭素基材は特に制限はないが人造黒鉛が
好ましい。原料含有ガスとは熱分解炭素を形成する原料
を含むガスであり、原料としてはメタン、エタン、プロ
パン、ベンゼン等の炭化水素が好ましく、窒素、水素、
アルゴン等のキャリアーガスにより反応系内に供給する
のが好ましい。
The carbon base material used in the present invention is not particularly limited, but artificial graphite is preferred. The raw material-containing gas is a gas containing raw materials that form pyrolytic carbon, and the raw materials are preferably hydrocarbons such as methane, ethane, propane, and benzene, and nitrogen, hydrogen,
It is preferable to supply the reaction system with a carrier gas such as argon.

第1図に示すように静止した炭素基材5の上に原料含有
ガスを矢印Aのように直線状に流すと。
As shown in FIG. 1, when a raw material-containing gas is caused to flow in a straight line as indicated by arrow A over a stationary carbon base material 5.

炭素基材5の表面でのガス速度は零となり、炭素基材5
の表面近傍にガス速度が遅くよどんだ境界層Bが形成さ
れる。これが本発明の6層流状態となる”と言うことで
ある。これに対し5乱流状態となる”と言うことは、原
料供給ガスを例えば第2図の矢印Cのように炭素基材5
の上で撹乱させて、第1図の境界層Cが形成しないよう
にすることである。乱流状態とする方法としては、炭素
基材付近にガス導入ノズルを設はガスを炭素基材に吹き
つける。炭素基材付近に層流をせき止め乱流にする治具
を設ける(例えば粒状の黒鉛を炭素基材の周辺に詰める
)、炭素基材自身を振動2回転させる等の方法によるが
、特に制限はない。
The gas velocity on the surface of the carbon base material 5 becomes zero, and the carbon base material 5
A boundary layer B is formed near the surface where the gas velocity is slow and stagnant. This is the 6 laminar flow state of the present invention.On the other hand, the 5 turbulent flow state means that the raw material supply gas is flown into the carbon substrate 5 as shown by arrow C in FIG.
1 to prevent the formation of the boundary layer C in FIG. As a method for creating a turbulent flow state, a gas introduction nozzle is provided near the carbon base material and gas is blown onto the carbon base material. Methods include installing a jig near the carbon base material to block laminar flow and making it turbulent (for example, packing granular graphite around the carbon base material), or vibrating the carbon base material itself twice, but there are no particular restrictions. do not have.

炭素基材の表面で原料含有ガスを乱流状態と々るように
供給1〜て熱分解炭素を被覆する場合、炭素基材の温度
を1000〜1200℃に限定した理由は、1000℃
未満では熱分解炭素の被膜が形成される速度が毎時数μ
m以下となり効率が悪いからであり、1200℃を越え
ると乱流状態にした効果がなく即ち生成する熱分解炭素
の異方性が大きくなり始めるためである。
When coating the carbon substrate with pyrolytic carbon by supplying the raw material-containing gas in a turbulent flow on the surface of the carbon substrate, the temperature of the carbon substrate is limited to 1000 to 1200°C.
The rate at which a pyrolytic carbon film is formed is several microns per hour.
This is because if the temperature exceeds 1200° C., the effect of creating a turbulent flow state becomes ineffective, that is, the anisotropy of the generated pyrolytic carbon begins to increase.

原料含有ガスを単に層流状態となるようにして供給する
のが従来技術であり、析出した熱分解炭素は炭素基材か
ら剥離し易い。本願第一の発明である原料含有ガスを乱
流状態になるようにして1000〜1200℃の炭素基
材に供給すれば。
The conventional technique is to simply supply the raw material-containing gas in a laminar flow state, and the precipitated pyrolytic carbon is easily peeled off from the carbon base material. According to the first invention of the present application, the raw material-containing gas is supplied to the carbon substrate at 1000 to 1200°C in a turbulent state.

前述したように生成する熱分解炭素の配向性が阻害され
て等方性で高密度の熱分解炭素被膜が密着性よく炭素基
材の上に生成する。
As described above, the orientation of the generated pyrolytic carbon is inhibited, and an isotropic, high-density pyrolytic carbon film is formed on the carbon substrate with good adhesion.

本願第二の発明は、第一発明における熱分解炭素被膜(
第一被膜とする)を形成した炭素基材の上に原料含有ガ
スを層流状態になるようにして供給し、上記熱分解炭素
の第一被膜の上に従来の異方性を有する熱分解炭素を第
二被膜とし、て形成する方法である。この場合の炭素基
材の温度を1000〜1200℃又は2000〜220
 otにすると高密度の熱分解炭素が得られ好ましい。
The second invention of the present application is the pyrolytic carbon coating (
A raw material-containing gas is supplied in a laminar flow state onto the carbon base material on which a first film) is formed, and a conventional pyrolysis film having anisotropy is applied onto the first film of pyrolytic carbon. This method uses carbon as the second coating. In this case, the temperature of the carbon base material is 1000 to 1200°C or 2000 to 220°C.
It is preferable to use ot because high-density pyrolytic carbon can be obtained.

本発明における熱分解炭素の析出は公知のCVD装置を
使用して行なう。炭素基材の加熱法、装置内の圧力の調
整法等特に制限は々い。
In the present invention, pyrolytic carbon is deposited using a known CVD apparatus. There are many restrictions on the method of heating the carbon base material, the method of adjusting the pressure inside the device, etc.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1 第3図は本実施例に用いた熱分解炭素被覆装置を示す。Example 1 FIG. 3 shows the pyrolytic carbon coating apparatus used in this example.

排気ポンプ9を作動させ弁8を開いて反応室10内を2
50 Torr に減圧し、ヒーター6により反応室5
内のピッチコークス系人造黒鉛の炭素基材5を1100
℃に加熱し、弁1及び三方コック2を乱流発生ノズル3
側に開いて、プロパン20容量係及び窒素(キャリアー
ガス)80容量チからなる混合ガス11を毎分800 
mlの流量で複数の孔3′から炭素基材5の表面に噴出
し混合ガス11を乱流状態になるようにして1時間反応
させた。面図において7はタール、スート等の副生物除
去室及び12は排出ガスである。炭素基材に被覆された
熱分解炭素被膜は、密度が201g/cm3.結晶子の
大きさり。はaoX、断面を偏光顕微鏡で観察するとC
軸方向に配向した柱状組織は見られず等方性を示し、被
膜の厚さは150μmであった。
The exhaust pump 9 is operated and the valve 8 is opened to drain the inside of the reaction chamber 10.
The pressure was reduced to 50 Torr, and the reaction chamber 5 was heated by the heater 6.
Carbon base material 5 of pitch coke-based artificial graphite in 1100
℃, and connect valve 1 and three-way cock 2 to turbulence generating nozzle 3.
A mixed gas 11 consisting of 20 volumes of propane and 80 volumes of nitrogen (carrier gas) is supplied at a rate of 800 per minute.
The mixed gas 11 was ejected from the plurality of holes 3' onto the surface of the carbon substrate 5 at a flow rate of 1.0 ml to create a turbulent flow, and was allowed to react for 1 hour. In the plan view, 7 is a chamber for removing by-products such as tar and soot, and 12 is an exhaust gas. The pyrolytic carbon coating coated on the carbon substrate has a density of 201 g/cm3. Crystallite size. is aoX, and when the cross section is observed with a polarizing microscope, it is C
No columnar structure oriented in the axial direction was observed, showing isotropy, and the thickness of the film was 150 μm.

比較例1 実施例1において三方コック2を層流発生側ノズル4に
開いて混合ガスを層流状態になるようにしたほかは実施
例1と同じ条件で熱分解炭素を被覆した。熱分解炭素被
膜の密度は2.13 g /cm” 。
Comparative Example 1 Pyrolytic carbon was coated under the same conditions as in Example 1, except that the three-way cock 2 was opened to the nozzle 4 on the laminar flow generation side to cause the mixed gas to flow in a laminar flow state. The density of the pyrolytic carbon coating is 2.13 g/cm".

Lcは30Xであったが、偏光顕微鏡により柱状組織が
見られ、被膜の厚さは100μmで約5unn径の円弧
状剥離部分が多数観察された。
Although the Lc was 30X, a columnar structure was observed under a polarizing microscope, the thickness of the film was 100 μm, and many arcuate peeled portions with a diameter of about 5 nm were observed.

比較例2 比較例1において炭素基材の温度を2000℃にした以
外は比較例1と同一条件で反応させ、密度2.20 g
/cm”、 Lc 300 X及び被膜厚さ80μmの
熱分解炭素を被覆したが、柱状組織及び炭素基材からの
剥離部分が極めて明瞭に観察された。
Comparative Example 2 The reaction was carried out under the same conditions as in Comparative Example 1 except that the temperature of the carbon substrate was 2000°C in Comparative Example 1, and the density was 2.20 g.
/cm'', Lc 300

実施例2 実施例1の方法により厚さ150μmの熱分解炭素の第
一被膜を形成した後、そのまオの温度で直ちに三方コッ
ク2を層流発生ノズル側に開いて比較例1と同じ条件で
反応させ、被膜厚さ100μmの比較例1と同一の配向
性の良い熱分解炭素を前記熱分解炭素の第一被膜の上に
第二被膜として形成したが、比較例1に見られるような
円弧状剥離部分は全く観察されなかった。
Example 2 After forming a first film of pyrolytic carbon with a thickness of 150 μm by the method of Example 1, the same conditions as in Comparative Example 1 were carried out by immediately opening the three-way cock 2 toward the laminar flow generation nozzle at the same temperature. The same pyrolytic carbon with good orientation as in Comparative Example 1 with a film thickness of 100 μm was formed as a second film on the first film of pyrolytic carbon. No arc-shaped peeling portion was observed.

実施例3 実施例1の方法により厚さ150μmの熱分解炭素の第
一被膜を形成した後、炭素基材の温度を2000℃に上
げ、同時に三方コック2を層流発生ノズル側に開いて比
較例2と同じ条件で反応させ、被膜厚さ80μmの比較
例2と同じ密度及びLcを有する熱分解炭素を前記熱分
解炭素の第一被膜の上に第二被膜として形成した。断面
観察において円弧状剥離部分は全く見られなかった。
Example 3 After forming a first coating of pyrolytic carbon with a thickness of 150 μm by the method of Example 1, the temperature of the carbon substrate was raised to 2000°C, and at the same time, the three-way cock 2 was opened to the laminar flow generation nozzle side for comparison. The reaction was carried out under the same conditions as in Example 2, and pyrolytic carbon having the same density and Lc as Comparative Example 2 with a film thickness of 80 μm was formed as a second film on the first film of pyrolytic carbon. In cross-sectional observation, no arc-shaped peeling portion was observed.

上記実施例及び比較例で得られた熱分解炭素被覆炭素材
を電気炉中に入れ、毎時500℃の速さで昇温し150
0℃で1時間保持後、15℃の水中に投入して急冷した
結果、比較例のものは熱分解炭素の被膜が炭素基材から
完全に剥離したが。
The pyrolytic carbon-coated carbon materials obtained in the above Examples and Comparative Examples were placed in an electric furnace and heated at a rate of 500°C per hour to 150°C.
After being held at 0° C. for 1 hour, it was put into water at 15° C. and rapidly cooled. As a result, the pyrolytic carbon film of the comparative example was completely peeled off from the carbon substrate.

9一 実施例のものはいずれも剥離は見られず、炭素基材と熱
分解炭素の第−被膜及び熱分解炭素の第一被膜と第二被
膜の結合が強いことがわかる。
No peeling was observed in any of the samples of Example 91, indicating strong bonding between the carbon base material and the first coating of pyrolytic carbon, and between the first coating and the second coating of pyrolytic carbon.

(発明の効果) 本発明によれば、炭素基材の上に炭素基材との密着性に
優れた高密度の熱分解炭素を被覆することができ、得ら
れる熱分解炭素被覆炭素材は冷熱の繰返しの多い用途へ
の適用が可能となる。
(Effects of the Invention) According to the present invention, it is possible to coat a carbon base material with high-density pyrolytic carbon that has excellent adhesion to the carbon base material, and the resulting pyrolytic carbon-coated carbon material This makes it possible to apply the method to applications that require a lot of repetition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は炭素基材に原料含有ガスを供給する
状態を示す模式図、第3図は本発明の実施例に用いた熱
分解炭素被覆装置の概略を示すブロック図である。 符号の説明 1・・・弁          2・・・三方コック3
・・・乱流発生ノズル   4・・・層流発生ノズル5
・・・炭素基材       6・・・ヒーター7・・
・副生物除去室     8・・・弁9・・・排気ポン
プ     10・・反応室11・・・炭化水素含有ガ
ス  12・・・排ガス手1−′繞補正書(自発) 昭和60年6 月12 □
FIGS. 1 and 2 are schematic diagrams showing a state in which a raw material-containing gas is supplied to a carbon base material, and FIG. 3 is a block diagram schematically showing a pyrolytic carbon coating apparatus used in an example of the present invention. Explanation of symbols 1... Valve 2... Three-way cock 3
...Turbulent flow generation nozzle 4...Laminar flow generation nozzle 5
...Carbon base material 6...Heater 7...
・By-product removal chamber 8... Valve 9... Exhaust pump 10... Reaction chamber 11... Hydrocarbon-containing gas 12... Exhaust gas hand 1-' Amendment (voluntary) June 12, 1985 □

Claims (1)

【特許請求の範囲】 1、1000〜1200℃に加熱された炭素基材に原料
含有ガスを乱流状態となるように供給し、炭素基材表面
に熱分解炭素被膜を形成することを特徴とする熱分解炭
素被覆炭素材。 2、1000〜1200℃に加熱された炭素基材に原料
含有ガスを乱流状態となるように供給して炭素基材表面
に熱分解炭素の第一被膜を形成し、次いで該炭素基材を
加熱しつつ前記原料含有ガスを層流状態となるように供
給し、前記熱分解炭素の第一被膜の上に熱分解炭素の第
二被膜を形成することを特徴とする熱分解炭素被覆炭素
材の製造法。
[Claims] 1. A method characterized by supplying a raw material-containing gas to a carbon base material heated to 1000 to 1200°C in a turbulent state to form a pyrolytic carbon film on the surface of the carbon base material. Pyrolytic carbon coated carbon material. 2. A first coating of pyrolytic carbon is formed on the surface of the carbon substrate by supplying the raw material-containing gas in a turbulent flow to the carbon substrate heated to 1000 to 1200°C, and then the carbon substrate is A pyrolytic carbon-coated carbon material, characterized in that the raw material-containing gas is supplied in a laminar flow state while being heated, and a second pyrolytic carbon film is formed on the pyrolytic carbon first film. manufacturing method.
JP60087208A 1985-04-23 1985-04-23 Manufacture of carbon material coated with thermal cracking carbon Pending JPS61247611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087208A JPS61247611A (en) 1985-04-23 1985-04-23 Manufacture of carbon material coated with thermal cracking carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087208A JPS61247611A (en) 1985-04-23 1985-04-23 Manufacture of carbon material coated with thermal cracking carbon

Publications (1)

Publication Number Publication Date
JPS61247611A true JPS61247611A (en) 1986-11-04

Family

ID=13908531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087208A Pending JPS61247611A (en) 1985-04-23 1985-04-23 Manufacture of carbon material coated with thermal cracking carbon

Country Status (1)

Country Link
JP (1) JPS61247611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269944A (en) * 2009-05-19 2010-12-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for producing graphite thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269944A (en) * 2009-05-19 2010-12-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for producing graphite thin film

Similar Documents

Publication Publication Date Title
Ravi et al. The nucleation and morphology of diamond crystals and films synthesized by the combustion flame technique
Schwarzbach et al. Internal stresses in CVD diamond layers
Zhang et al. High‐speed preparation of< 111>‐and< 110>‐oriented β‐SiC films by laser chemical vapor deposition
EP1072693A1 (en) Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
KR930013198A (en) Method for producing a chemical vapor deposition (CVD) diamond film with almost no crack induced by thermal stress
JPH01225775A (en) Formation of ceramic coating film on inner surface of tubular material
JP2002265296A (en) Diamond thin film and manufacturing method therefor
CN103643217A (en) Method for preparing self-supporting graphite porous amorphous carbon thin film
CN103922320B (en) Graphene preparation system and method
JPS61247611A (en) Manufacture of carbon material coated with thermal cracking carbon
JPS62138395A (en) Preparation of diamond film
JPH05254808A (en) Preparation of boron nitride
JPS63277593A (en) Elements coated with diamond and its production
JPH0536847A (en) Manufacture of diamond multilayer wiring board
JPH01167211A (en) Diamond-like carbon film and production thereof
JPS63118070A (en) Production of pyrolytic carbon
USH1792H (en) Selection of crystal orientation in diamond film chemical vapor deposition
TWI571520B (en) Production method of high purity carbide mold
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPH02149673A (en) Member coated with rigid carbon film
KR890016220A (en) How to join diamond and diamond
JPS6311511A (en) Production of isotropic thermally decomposed carbon
KR20010049297A (en) Low temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
JPS63252997A (en) Production of diamond single crystal
JPS6311510A (en) Production of isotropic thermally decomposed carbon