JPS61246725A - Range finder for camera - Google Patents

Range finder for camera

Info

Publication number
JPS61246725A
JPS61246725A JP8782185A JP8782185A JPS61246725A JP S61246725 A JPS61246725 A JP S61246725A JP 8782185 A JP8782185 A JP 8782185A JP 8782185 A JP8782185 A JP 8782185A JP S61246725 A JPS61246725 A JP S61246725A
Authority
JP
Japan
Prior art keywords
light
light emitting
center
amount
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8782185A
Other languages
Japanese (ja)
Inventor
Shuichi Tamura
秀一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8782185A priority Critical patent/JPS61246725A/en
Publication of JPS61246725A publication Critical patent/JPS61246725A/en
Priority to US07/102,828 priority patent/US4748469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To focus a camera on a main subject even if the main subject is located on the edge of a photographic picture plane by setting up the quantity of projection of a projecting element for range-finding a position near the center part of the photographing picture plane larger than that of projecting elements for range-finding the priphery. CONSTITUTION:The projecting element 1 for range-finding a position near the center part of the photographing picture plane is constituted of a light emitting element having high performance such as a semiconductor laser and the projecting elements 2, 3 for range-finding the peripheral part are constituted of inexpensive infrared ray emitting diodes so that the reflected light of signal light from the projecting element 1 is made incident upon a photodetecting element 6 and the reflected light of signal light from the projecting elements 2, 3 is made incident upon the photodetecting element 6 through mirrors 7, 8. The resistance ratio of resistors 15, 16 is set up so that the quantity of projection of the projecting element 1 is larger than that of the projecting elements 2, 3. Even if the main subject is located on the edge of the photographing picture plane, the camera can be focused on the main subject without pre-focusing operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は撮影画面内の複数箇所を測距可能なカメラの測
距装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a distance measuring device for a camera that can measure distances at multiple locations within a photographic screen.

(従来技術) 従来カメラに於いて、焦点検出を自動的に行表う為に被
写体までの距離に対応した情報を検出する所謂測距装置
は、撮影画面の中央部付近に対してのみ測距を行なって
いた。従って被写体を撮影画面の端ct<よう)構図の
場合、最初その被写体をファインダーの略中央部に設け
られた測距マーク内に入れ、核被写体に対して測距のみ
を行なった後、七〇測距情報を保持したまま、被写体を
ファインダーの端に置き直して撮影動作に移行するとい
った所謂プリフォーカスの操作が必要であった。
(Prior art) In conventional cameras, the so-called distance measuring device that detects information corresponding to the distance to the subject in order to automatically perform focus detection only measures the distance near the center of the shooting screen. was being carried out. Therefore, in the case of a composition with the subject at the edge of the shooting screen, first place the subject within the distance measurement mark provided approximately in the center of the viewfinder, perform only distance measurement for the core subject, and then It is necessary to perform a so-called prefocus operation, which involves repositioning the subject at the edge of the viewfinder and proceeding with the shooting operation while retaining distance measurement information.

しかし、このプリフォーカス操作は初心者くけわかりに
くく、また自動焦点検出装置の性能が良くなった今日、
ピンボケ写真のほとんどが、このプリフォーカス操作を
忘れたり誤操作し喪りしたために起きている。
However, this prefocus operation is difficult for beginners to understand, and now that the performance of automatic focus detection devices has improved,
Most of the out-of-focus photos are caused by forgetting or erroneously using this prefocus operation.

そこで、本出願人は、特願昭58−145068号に於
いて撮影画面の種々の箇所に向けてスポット光を投射し
、その反射光から複数の測距情報を得ることKよって上
記プリフォーカス操作のいらない自動焦点検出装置を提
案している。
Therefore, in Japanese Patent Application No. 58-145068, the present applicant proposed the above-mentioned prefocus operation by projecting spot light toward various parts of the photographic screen and obtaining a plurality of distance measurement information from the reflected light. We are proposing an automatic focus detection device that does not require

ところが特願昭58−145068号於いて提案式れて
いるものは検出した複数の測距1果を単に平均して、そ
の平均した距離に撮影レンズのピント位置を対応させて
いる為、撮影者の意図した被写体とそうでない被写体が
同等に扱われ、全体的に社ピントが合うものの撮影者の
意図する主被写体に対して十分満足できるピントが得ら
れ々いといった欠点があった。例えば、撮影画面の異な
つ九3箇所を測距するようなものでは、3箇所のうち1
箇所だけが主被写体をとらえ、他の2箇所が上記主被体
の背景を測距したような場合(5j!際はこうなる場合
かはとんどである)被写体距離として検出される本のは
上記背景の影響を受けて、本来の主被写体の距離よシか
なシ遠方にずれ九距離となってしまうのである。
However, the method proposed in Japanese Patent Application No. 58-145068 simply averages the results of multiple distance measurements detected, and the focus position of the photographing lens corresponds to the average distance. The main subject intended by the photographer and the other subject are treated equally, and although the main subject is in focus overall, it is difficult to achieve a sufficiently satisfactory focus on the main subject intended by the photographer. For example, when measuring distance at 93 different locations on the shooting screen, one of the three locations may be
If only one spot captures the main subject and the other two spots measure the background of the main subject (5j!, this is almost always the case), the book will be detected as the subject distance. Due to the influence of the background mentioned above, the distance of the main subject is shifted to a distance of 9 points from the original distance of the main subject.

(発明の目的) 本発明は以上の事情に蝉み為された本ので、信号光を投
射する複数の投光素子を有し、それぞれの投光素子〈対
応して撮影画面の異なった箇所を測距するカメラの測距
装置に於込て撮影画面の中央部付近を測距する為の投光
素子の投光量を撮影画面の周辺部を測距する為の投光素
子1つ当りの投光量よシ大き表ものとなるように構成し
主被写体が撮影画面の端にある場合はプリフォーカス操
作など行なわなくとも上記主被写体にピントが合うよう
表測距情報が得られ、且つ主被写体が、撮影画面の中央
部付近くある場合には従来の、撮影画面中央部のみを測
距する測距装置に比して遜色のないピント合せを可能に
する測距情報が得られるようなカメラの測距装置を提供
しようとする亀のである。
(Object of the Invention) The present invention has been developed based on the above-mentioned circumstances, and has a plurality of light emitting elements that project signal light. The amount of light emitted by a light emitting element that enters the distance measuring device of the camera to measure the distance near the center of the photographic screen is the amount of light emitted by each light emitting element used to measure the distance around the periphery of the photographic screen. If the main subject is located at the edge of the shooting screen by configuring the camera so that it is larger than the amount of light, surface distance measurement information can be obtained to focus on the main subject without performing prefocus operations. , if the camera is close to the center of the shooting screen, it is possible to obtain distance measurement information that enables focusing to be as good as conventional distance measuring devices that only measure the center of the shooting screen. It is a turtle trying to provide a distance measuring device.

(実施例) 以下本発明の一実施例を図面を基に説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係るカメラの測距装置の概略構成図で
ある。図中1.2.3は被写体距離を測定する為の信号
光を発する投光素子で、そのうち投光素子1は半導体レ
ーザー等の高性能の発光素子でその信号光は投光光学系
としての投光レンズ4を介して撮影画面の略中央部に向
けて投射され、又、投光素子2,3けテレビのリモコン
等に用りられる安価な赤外発光ダイオードで、その信号
光は投光レンズ4を介して撮影画面の異なつ次局辺部に
向けてそれぞれ投射される。このようにして撮影画面の
3つの異なっ友箇所に向けて投射される信号光はそれぞ
れ被写体くよって反射され、受光レンズ5を介して、投
光素子1からの信号光の反射光はそのまま受光素子6に
入射し、投光素子2及び3からの信号光の反射光は反射
部材としてのミラー7.8によって一旦反射された後、
受光素子6に入射する。受光素子6には半導体装置検出
器(P8D)が用いられておシ、上記3つの反射光の入
射位置、及び入射光量に応じ喪被写体距離情報を出力す
るようになっている・上記反射光の受光素子6への入射
位置は被写体距離に応じて変化すると共に投光素子1,
2.3は基線長に対し直角方向く一列に並んでおシ、ミ
ラー7.8社その反射面に対する共通の垂直面が基線長
に対して直角方向となるように配置され、上記3つの反
射光のうち同一距離の被写体によって反射された反射光
は受光素子6の同一位置へ入射するようになっている。
FIG. 1 is a schematic configuration diagram of a distance measuring device for a camera according to the present invention. In the figure, 1.2.3 are light projecting elements that emit signal light to measure the distance to the subject. Among them, light projecting element 1 is a high-performance light emitting element such as a semiconductor laser, and the signal light is used as a light projecting optical system. The signal light is projected toward the approximate center of the photographic screen through the projection lens 4, and the signal light is an inexpensive infrared light emitting diode used in remote controls for televisions with two or three projection elements. The light is projected through the lens 4 toward different neighboring areas of the photographic screen. In this way, the signal light projected toward three different locations on the photographic screen is reflected by the subject, and the signal light reflected from the light projecting element 1 is transmitted directly to the light receiving element via the light receiving lens 5. 6 and the signal light reflected from the light projecting elements 2 and 3 is once reflected by a mirror 7.8 as a reflecting member.
The light is incident on the light receiving element 6. A semiconductor device detector (P8D) is used in the light receiving element 6, and outputs object distance information according to the incident position of the three reflected lights and the amount of incident light. The position of incidence on the light receiving element 6 changes depending on the subject distance, and the position of incidence on the light emitting element 1,
2.3 are arranged in a line in a direction perpendicular to the baseline length, and mirrors 7.8 are arranged so that a common perpendicular surface to their reflecting surfaces is perpendicular to the baseline length, and the above three reflections Of the light, the reflected light reflected by the subject at the same distance is made to enter the light receiving element 6 at the same position.

そして受光素子6では、それら反射光の入射位置の入射
光量の加重平均位置に応じて両端の出力の割合が変化し
、この出力の割合が被写体距離情報となる。
In the light-receiving element 6, the output ratio at both ends changes depending on the weighted average position of the incident light amount at the incident position of the reflected light, and this output ratio becomes object distance information.

第2図は第1図の投光素子1.2.5を駆動する為の回
路図を示すもので、第2図中9は電源で例えば近年カメ
ラに用−られるように慶ってき九リチウム電池等で、約
6vの開路電源を有する・10は測距開始用のスイッチ
で通常レリーズ釦と兼用されておルオンすることで各回
路素子に電源9を投入する・1,2.3は第1図で示し
た投光素子で投光素子2.3は電源9に対して直列に接
続され、投光素子1に対して社並列に接続される。11
はtl/IJ1図の受光素子26を含む測距制御回路で
測距開始用スイッチ100オン忙よって動作を開始し、
受光素子6の出力忙応じて被写体距離情報を形成する・
尚、測距制御回路11としては、特開昭57−4480
9号公報に開示されて−るようま回路が適用できる。
Figure 2 shows a circuit diagram for driving the light projecting elements 1, 2, and 5 in Figure 1. In Figure 2, 9 is a power source, for example, a 9-lithium battery that has been popularly used in cameras in recent years. It has an open circuit power supply of approximately 6V, such as a battery. ・10 is a switch for starting distance measurement, which is usually also used as a release button, and when turned on, turns on power 9 to each circuit element. ・1, 2.3 are switches for starting distance measurement. In the light projecting elements shown in FIG. 1, the light projecting elements 2.3 are connected in series to the power source 9, and connected in parallel to the light projecting element 1. 11
The distance measurement control circuit including the light receiving element 26 shown in the tl/IJ1 diagram starts operation when the distance measurement start switch 100 is turned on.
Forming object distance information according to the output of the light receiving element 6.
Note that the distance measurement control circuit 11 is based on Japanese Patent Application Laid-Open No. 57-4480.
The circuit disclosed in Japanese Patent No. 9 can be applied.

12は公知の投光素子駆動回路で、測距l始用スイッチ
10がオンすることで、投光素子1に接続されているト
ランジスタ13及び投光素子2.3に接続されているト
ランジスタ140ペースに同一電圧を所定周期で印加す
る。トランジスタ13.14のベースに電圧が印加され
ると投光素子1,2.3に電流が流れ、投光素子1,2
.5からはトランジスタ13.14のベースに印加され
る電圧の周期に応じ九所定周波数の信号光が、前述した
ように撮影画面の3つの箇所に向けて投射される。トラ
ンジスタ13の工きツタ側には、投光素子1に流れる電
流値を設定する為の抵抗15が接続嘔れて訃)、その接
続点aK晩発生る電圧が投光素子駆動回路12にフィー
ドバックされている・接続点aには投光素子1に流れる
電流値に比例した電圧が発生し、投光素子駆動回路12
では接続点aの電圧が一定とまるようにトランジスタ1
3への印加電圧を制御して投光素子1に流れる電流の定
電流化を図っているO 一方、トランジスタ14のベースにも投光素子駆動回路
12からトランジスタ130ベースに印加されてbる電
圧と同一の電圧が印加されている為、投光素子2.3に
流れる電流の定電流化が図られると共に、投光素子1に
流れる電流に対して投光素子2,3に流れ電流の割合を
トランジスタ14のエミッタ側に接続されている抵抗1
6の抵抗値のみで設定できるようになっている。すなわ
ち抵抗16の抵抗値を抵抗15の抵抗値と同じ値に設定
すれば、投光素子1に流れる電流値とほぼ等しい電流値
が投光素子2゜3に流れ、抵抗16の抵抗値を抵抗15
の抵抗値よシ大きくすれば投光素子1に流れる電流値よ
シ小さb電流値が投光素子2.5に流れることにたる・
尚、この場合、トランジスタ13及び14の特性がそろ
っていることが前提となる。
Reference numeral 12 designates a known light emitting element drive circuit, in which when the distance measurement l start switch 10 is turned on, a transistor 13 connected to the light emitting element 1 and a transistor 140 connected to the light emitting element 2.3 are turned on. The same voltage is applied at a predetermined period. When a voltage is applied to the base of the transistor 13.14, a current flows through the light emitting elements 1, 2.3, and the light emitting elements 1, 2.
.. As described above, signal light having nine predetermined frequencies according to the period of the voltage applied to the bases of the transistors 13 and 14 is projected from 5 to three locations on the photographing screen. A resistor 15 for setting the current value flowing through the light emitting element 1 is connected to the side of the transistor 13, and the voltage generated at the connection point aK is fed back to the light emitting element drive circuit 12. - A voltage proportional to the current value flowing through the light emitting element 1 is generated at the connection point a, and the light emitting element drive circuit 12
Now, transistor 1 is connected so that the voltage at connection point a remains constant.
On the other hand, the voltage applied to the base of the transistor 14 is also applied from the light emitter drive circuit 12 to the base of the transistor 130. Since the same voltage is applied to the light emitting elements 2 and 3, the current flowing through the light emitting elements 2 and 3 is made constant, and the ratio of the current flowing through the light emitting elements 2 and 3 to the current flowing through the light emitting element 1 is reduced. is the resistor 1 connected to the emitter side of the transistor 14
It can be set with only a resistance value of 6. In other words, if the resistance value of the resistor 16 is set to the same value as the resistance value of the resistor 15, a current value approximately equal to the current value flowing through the light emitting element 1 will flow through the light emitting element 2. 15
If the resistance value is made larger than the resistance value of b, a current value smaller than the current flowing through the light emitting element 1 will flow through the light emitting element 2.5.
In this case, it is assumed that the characteristics of the transistors 13 and 14 are the same.

又、接続点aの電圧の代りにトランジスタ14のエミッ
タ側の電圧を投光素子駆動回路12#cフイードバツク
しても上記と同様の効果が得られることは言うまでもな
り。
It goes without saying that the same effect as described above can be obtained even if the voltage on the emitter side of the transistor 14 is fed back to the light emitting element drive circuit 12#c instead of the voltage at the connection point a.

以上の構成に於いて、本実施例では撮影画面の略中央部
に向けて信号光を投射する投光素子1の投光量が撮影画
面の周辺部に向けて信号光を投射する投光素子1,2の
いずれの投光量よりも多くなるように抵抗15と抵抗1
6の抵抗比が設定されている。これによって基本的には
撮影画面の中央部付近に存在する被写体からの反射光が
撮影画面の周辺部に存在する被写体からのいずれの反射
光よりも多くの反射光量を受光素子6に入射し、P8D
で構成される受光素子6は入射位置の入射光量に応じ九
加重平均値が被写体距離として検知されるので、結果と
して撮影画面中央部付近の被写体に関する測距情報が撮
影画面周辺部の被写体に関する測距情報よ〕重く扱われ
ることに表る。これによって主被写体が撮影画面の中央
部付近に存在する場合、3つの信号光のうち撮影画面の
中央部付近に向けて投射された信号光が主被写体をとら
え、撮影画面の周辺部に向けて投射された他の2つの信
号光が背景をとらえていても、背景の影響をあまシ受け
ることなく、主被写体に対して満足のいくようなピント
合せを可能にする測距情報が得られることになる。撮影
をする場合一般に主被写体は撮影画面の中央に置く場合
がほとんどで、事実、スナップ撮影の7〜8割は、主被
写体を撮影画面の中央1fc@いて撮影しておシ、上述
のように撮影画面の中央部付近の測距情報を重く扱うよ
うにしておけば大抵の場合、満足のいく写真が得られる
ことになる。ところで抵抗15と抵抗16の抵抗比の設
定では投光素子1.2.3の発光効率が問題に々るが、
本実施例では前述したように投光素子1に半導体レーザ
ー等の発光効率の高い発光素子を周込てお)、投光素子
2,3に赤外発光ダイオード等の発光効率の低い発光素
子を用いている為、抵抗15と抵抗16の抵抗比をほぼ
等しくして投光素子1と投光素子2.5FC流れる電流
値を纜ぼ等しくしても発光効率の関係から投光素子1の
投光量は投光素子2.3のいずれの投光量よシも多くな
る。
In the above configuration, in this embodiment, the amount of light projected by the light projecting element 1 which projects the signal light toward the approximate center of the photographing screen is different from that of the light projecting element 1 which projects the signal light toward the peripheral part of the photographing screen. , 2, resistor 15 and resistor 1 so that the amount of light emitted is greater than that of any of
A resistance ratio of 6 is set. As a result, basically, the amount of reflected light from the subject near the center of the photographic screen is incident on the light receiving element 6 in a larger amount than the reflected light from any of the objects located at the periphery of the photographic screen. P8D
The light-receiving element 6, which is comprised of Distance information] This is reflected in the fact that it is treated with great importance. As a result, when the main subject is near the center of the shooting screen, the signal light projected towards the center of the shooting screen out of the three signal lights will capture the main subject and will be directed toward the periphery of the shooting screen. Even if the other two projected signal lights capture the background, it is possible to obtain distance measurement information that enables satisfactory focusing on the main subject without being affected by the background. become. When taking pictures, the main subject is generally placed in the center of the shooting screen, and in fact, in 70 to 80% of snapshots, the main subject is placed in the center of the shooting screen. If you pay more attention to the distance measurement information near the center of the photographic screen, you will be able to obtain satisfactory photographs in most cases. By the way, when setting the resistance ratio between the resistor 15 and the resistor 16, the luminous efficiency of the light emitting element 1.2.3 is a problem.
In this embodiment, as described above, the light emitting element 1 is equipped with a light emitting element with high luminous efficiency, such as a semiconductor laser, and the light emitting elements 2 and 3 are equipped with light emitting elements with low luminous efficiency, such as infrared light emitting diodes. Therefore, even if the resistance ratio of the resistor 15 and the resistor 16 is made almost equal and the current values flowing through the light emitting element 1 and the light emitting element 2.5FC are almost the same, the light emitting element 1 will not emit light due to the light emitting efficiency. The amount of light is greater than the amount of light emitted by any of the light projecting elements 2.3.

次に好ましい、投光素子1と投光素子り、 3の投光量
の割合について述べる。。
Next, a preferable ratio of the amount of light emitted by light projecting elements 1 and 3 will be described. .

第3図に被写体に反射された反射光の光量と背景に反射
された反射光の光量をパラメーターに被写体距離をL5
mとし背景の距離を徐々に遠ざけた場合のピントのボケ
具合を焦点距離f=e38tII、開放?ナンバF2.
8の撮影レンズについて計算したグラフを示す。
Figure 3 shows the distance to the subject L5 using the amount of reflected light reflected by the subject and the amount of reflected light reflected from the background as parameters.
m, and the degree of blurring when the background distance is gradually moved away is the focal length f=e38tII, wide open? Number F2.
A graph calculated for No. 8 photographic lens is shown.

尚、上記反射光の光量は、距離の2乗にほぼ反比例し、
反射率に比例する。第3図に於いて縦軸は被写体儂の錯
乱円径、横軸は背景の距離を示している。図中(1)#
i″同−距離忙対する被写体く反射された反射光と背景
で反射された反射光の光量比を1:4と設定した時のグ
ラフ、(2)は同光量比を1:2とした時のグラフ、(
3)は同光量比を1=1とした時のグラフ、(4)は同
光量比を2:1とし九時のグラフ、(51a従来の自動
焦点検出装置で起こる背景にピントが合った時の被写体
の錯乱円径である。
Note that the amount of reflected light is approximately inversely proportional to the square of the distance,
Proportional to reflectance. In FIG. 3, the vertical axis shows the diameter of the circle of confusion of the subject, and the horizontal axis shows the distance to the background. (1) # in the diagram
i''The graph when the light intensity ratio of the reflected light from the subject at the same distance and the reflected light reflected from the background is set to 1:4, (2) is when the light intensity ratio is set to 1:2. The graph of (
3) is a graph when the same light amount ratio is 1 = 1, (4) is a graph when the same light amount ratio is 2:1 and is a graph at 9 o'clock, (51a) When the background is in focus, which occurs with a conventional automatic focus detection device is the diameter of the circle of confusion of the subject.

一般的KS5I3+カメラの許容錯乱円径は0.03〜
o、o s sと言われているが、一般的な撮影条件等
を考慮すると錯乱円径は0.05程度まで許容出来る。
The allowable circle of confusion diameter for a typical KS5I3+ camera is 0.03~
Although it is said that the diameter of the circle of confusion is approximately 0.05, considering general photographing conditions and the like.

その他、背景と被写体の反射率の相違等を考慮すると同
一距離、同−反射率での撮影画面の中央部付近に対応す
る反射光と他の部分の反射光の光量の割合は中央部付近
以外の部分の反射光量の総和≦中央部付近の反射光量程
度とするのが好ましい。
In addition, considering the difference in reflectance between the background and subject, the ratio of the amount of light reflected near the center of the photographic screen at the same distance and the same reflectance to the amount of light reflected from other parts is different from that near the center. It is preferable that the total amount of reflected light in the portion ≦the amount of reflected light in the vicinity of the central portion.

従って、撮影画面の中央部付近と他の2箇所を測距する
ものに於ては撮影画面中央部付近以外の1箇所当シの測
距情報としての反射光量を撮影画面中央部付近の反射光
量の半分以下程度にするのが好ましいととくなる。
Therefore, when measuring the distance near the center of the shooting screen and two other places, the amount of reflected light near the center of the shooting screen is the amount of reflected light as distance measurement information for one point other than the center of the shooting screen. It is preferable to make it about half or less.

一方撮影画面中央部付近以外の測距情報に距離情報とし
ての効果を出すためには撮影画面中央部付近の反射光量
がある程度以上必要であるのでこれについて論じてみる
On the other hand, in order to produce an effect as distance information on distance measurement information other than near the center of the photographic screen, a certain amount of reflected light near the center of the photographic screen is required, so this will be discussed.

従来の自動焦点検出装置を用いて失敗した場合の多くを
占める2人並んだ撮影の場合を考えると、撮影画面中央
部付近に向けて投射された信号光が背景に当シ、他2箇
所に向けて投射された信号光が本来の被写体に当ると想
定出来る・この状態では従来の撮影画面中央部のみ測距
する測距装置に於て、第3図(5)のグラフで示す錯乱
円径となシピンボケ写真となる場合が多かった03箇所
測距ではこれをいくらかでも改善出来れば効果があると
言えるのであるが、錯乱円径0.3のものが0.2にな
ったとしてもピンボケはピンボケである。一般的な屋外
での撮影ではほとんどの場合?ナンバF5.6程度以下
に絞り込むと考えられるので錯乱円径も半分以下となシ
、第5図の(1)程度までは効果有シと判定出来る。つ
−1シ撮影画面の中央部付近に対応する反射光と他の部
分の反射光の光量の割合を中央部付近の反射光量/4≦
中央部付近以外の部分の反射光量の総和程度とするのが
好ましい。
Considering the case where two people are photographed side by side, which is the case when conventional automatic focus detection devices fail in most cases, the signal light projected towards the center of the photographic screen may be projected onto the subject in the background and two other places. It can be assumed that the signal light projected towards the subject hits the original subject. In this state, in a conventional distance measuring device that measures only the center of the shooting screen, the diameter of the circle of confusion shown in the graph in Figure 3 (5) It can be said that it will be effective if this can be improved to some extent in distance measurement at 03 points, which often resulted in out-of-focus photos, but even if the diameter of the circle of confusion is 0.3, it will still be out of focus. It's out of focus. Most of the time in general outdoor shooting? Since it is considered that the number is narrowed down to about F5.6 or less, the diameter of the circle of confusion is also less than half, and it can be determined that it is effective up to about (1) in Fig. 5. -1 - Calculate the ratio of the amount of reflected light near the center of the shooting screen to the amount of reflected light from other parts: amount of reflected light near the center/4≦
It is preferable that the amount of reflected light be approximately the sum of the amounts of reflected light in areas other than the vicinity of the center.

従って撮影画面の中央部付近と他の2箇所を測距するも
のに於いては撮影画面中央部付近以外の1箇所当シの測
距情報としての反射光量を撮影画面中央付近の反射光量
の178以上程度とするのが好ましいととになる。
Therefore, when measuring distance near the center of the shooting screen and two other locations, the amount of reflected light as distance measurement information for one point other than the center of the shooting screen is 178 times the amount of reflected light near the center of the shooting screen. It is preferable to set it to the above range.

以上まとめると一般の35關カメラでは撮影画面の中央
部付近に対応する反射光と他の部分の反射光の光量の割
合は 程度とするのが好ましい。
To summarize the above, in a general 35-view camera, it is preferable that the ratio of the amount of light reflected near the center of the photographing screen to the amount of light reflected from other parts be approximately the same.

また、撮影画面の中央部付近と他の2箇所を測距するも
のく於いては、撮影画面中央部付近以外の1箇所当りの
反射光量と撮影画面中央付近の反射光量の割合は 程度とするのが好まし偽ことになる〇 その為に投光素子1,2.!1の発光効率を前提として
、投光素子1の投光量を投光素子2,3の投光量よシ多
くしたい場合には、抵抗16に対する抵抗15の抵抗比
を小さく設定してやれば投光素子2 、31C対して投
光素子14C流れる電流の割合が大きくなり投光素子1
の投光量の割合が増すと共に、投光素子1の投光量を投
ル素子2.3の投光量よシ小す<シたい場合には抵抗1
6に対する抵抗15の抵抗比を大きく設定してやシ投光
素子2,3に対して投光素子1に流れる電流の割合を小
す<シて投光素子1の投光量の割合を減少させることが
できる。尚、言うまでも表いが、投光素子1と投光素子
2,3が同じ効率の発光素子であっても、抵抗15と抵
抗16の抵抗比等によって投光素子2.3に対し投光素
子1に流れる電流の割合を大きくしてやれば上述と同様
に撮影画面の中央部付近の測距情報を撮影画面の他の部
分の測距情報より重く扱う中央重点手段を構成すること
ができる。
In addition, for those that measure distances near the center of the shooting screen and two other locations, the ratio of the amount of reflected light per point other than near the center of the shooting screen to the amount of reflected light near the center of the shooting screen is approximately 〇For that reason, the light emitting elements 1, 2. ! If you want to make the amount of light emitted by light emitting element 1 greater than that of light emitting elements 2 and 3, assuming a luminous efficiency of 1, by setting the resistance ratio of resistor 15 to resistor 16 to be small, light emitting element 2 , 31C, the ratio of the current flowing through the light projecting element 14C becomes larger, and the current flowing through the light projecting element 1 increases.
As the ratio of the amount of light emitted increases, the amount of light emitted from the light emitting element 1 is made smaller than the amount of light emitted from the light emitting element 2.3.
By setting a large resistance ratio of the resistor 15 to the resistor 6, the ratio of the current flowing through the light emitting element 1 to the light emitting elements 2 and 3 can be reduced. can. It goes without saying that even if the light emitting element 1 and the light emitting elements 2 and 3 are light emitting elements with the same efficiency, the resistance ratio of the resistor 15 and the resistor 16, etc. will cause the light emitted by the light emitting element 2 and 3 to be different. By increasing the proportion of the current flowing through the optical element 1, it is possible to construct a center-weighted means that treats the distance measurement information near the center of the photographic screen more heavily than the distance measurement information of other parts of the photographic screen, as described above.

本実施例に於いては撮影画面の中央部付近を測距する為
の投光素子の投光量を撮影画面の周辺部を測距する為の
投光素子の投光量よ〕少なくすることで中央重点手段を
構成したが、投光素子の投光量を均一にして受光素子側
で中央重点手段を構成することもできる。この場合、第
1図でミラー7.8を設けず撮影画面の中央部付近及び
撮影画面の周辺部2箇所からのそれぞれの反射光を別個
の受光素子(POD)で受光するようくし、撮影画面の
中央部付近からの反射光を受ける受光素子を他の受光素
子よシ感度の高いものを使用するか、撮影画面の中央部
付近からの反射光を受ける受光素子の出力に対し、他の
受光素子の出力を抵抗等によシ小さくしてやればよい。
In this embodiment, the amount of light emitted by the light emitting element for distance measuring near the center of the photographic screen is made smaller than the amount of light emitted by the light emitting element for distance measuring the peripheral part of the photographic screen. Although the focus means is configured, it is also possible to make the amount of light emitted by the light projecting element uniform and configure the center focus means on the light receiving element side. In this case, the mirror 7.8 in Fig. 1 is not provided, and the reflected light from two places, one near the center of the shooting screen and the other at the periphery of the shooting screen, is received by separate light-receiving elements (PODs). Either use a light-receiving element that receives reflected light from near the center of the photographic screen with a higher sensitivity than other light-receiving elements, or use a light-receiving element that receives reflected light from near the center of the shooting screen. The output of the element can be reduced using a resistor or the like.

尚、これらの場合それぞれの受光素子の両端の出力を最
終的にはそれぞれ加算するととくよって第1図の受光素
子60両端の出力と等価な出力が測距情報として得られ
る。
Incidentally, in these cases, if the outputs from both ends of each light receiving element are finally added together, an output equivalent to the output from both ends of the light receiving element 60 shown in FIG. 1 can be obtained as ranging information.

尚上記実施例では、投光素子の投光量を変える手段とし
て電流値を用いたが電圧値によって投光量の変化する投
光素子に対しては、上記電流値を電圧値に変換する回路
を用いればよい。
In the above embodiment, the current value is used as a means for changing the amount of light emitted by the light emitting element, but for a light emitting element whose light amount changes depending on the voltage value, a circuit that converts the current value into a voltage value is used. Bye.

又電流値を変化させる手段としては上記抵抗を使わすに
トランジスタ、オペアンプ等を吊込てもよい。更に第1
図のミラー6.7の代DKyt。
Further, as a means for changing the current value, a transistor, an operational amplifier, etc. may be used in addition to the above-mentioned resistor. Furthermore, the first
DKyt for mirror 6.7 in the figure.

軸方向の異なる複眼レンズやプリズム等の光学系を用い
てもよい。
Optical systems such as compound lenses or prisms with different axial directions may also be used.

本実施例では高出力の投光素子と低出方の投光素子の組
み合せによって複数設けられた投光素子の投光量に差異
を持たせているので中央重点手段が極めて簡単に構成で
きる@更に本実施例では撮影画面の中央部付近に信号光
を投射する投光素子と撮影画面の周辺部に信号光を投射
する投光素子とを並列駆動すると共に一方の素子の駆動
状態のみをフィードバックし、そのフィードバック信号
によって両方の素子を駆動制御するようKしているので
その為の制御回路が一系列で済み、又中央重点手段を構
成する為の投光量の比を極めて簡単に設定できるといっ
た特徴を有する。
In this embodiment, the light emitting amount of the plurality of light emitting elements is differentiated by combining a high output light emitting element and a low output light emitting element, so that the center weighting means can be configured extremely easily. In this embodiment, a light projection element that projects a signal light near the center of the photographic screen and a light projection element that projects signal light around the peripheral part of the photographic screen are driven in parallel, and the driving state of only one element is fed back. Since both elements are driven and controlled by the feedback signal, only one control circuit is required for this purpose, and the ratio of the amount of light emitted to form the center-weighted means can be set extremely easily. has.

上記実施例に於いては、信号光を撮影画面の中央部付近
及び周辺部2箇所の計3箇所に向けて投射する場合のも
のを示したが、撮影画面の中央部付近とその他の箇所と
いう前提に従えば撮影画面に対する信号光の投射箇所は
いくつ設けても良く、そのいずれの場合にも本発明が適
用できることは言うまでもない。
In the above embodiment, the case where the signal light is projected toward a total of three locations, one near the center of the photographic screen and two at the periphery, was shown, but the signal light is projected toward three locations, one near the center of the photographic screen and two other locations. It goes without saying that as long as the premise is followed, any number of locations for projecting the signal light onto the photographic screen may be provided, and the present invention can be applied to any of these cases.

(発明の効果) 以上説明したように本発明は、信号光を投射する複数の
投光素子を有し、それぞれの投光素子に対応して撮影画
面の異なった箇所を測距するカメラの測距装置に於いて
、撮影画面の中央部付近を測距する為の投光素子の投光
量を撮影画面の周辺部を測距する為の投光素子1つ当)
の投光量よシ大きなものとなるように構成したものであ
るから、主被写体が撮影画面の中央部付近になり場合で
もプリフォーカス操作など行なうことなく該被写体にピ
ント合うような測距情報が得られ、且つ主被写体が撮影
画面の中央部付近にある場合にはこの種の測距装置に於
いてとかく甘くな〕がち表主被写体に対するピント合せ
が従来の撮影画面中央部のみを測距する測距装置に比し
て遜色のないものとなるような測距情報が得られること
になりその効果は極めて高いものである。
(Effects of the Invention) As explained above, the present invention has a plurality of light emitting elements that project signal light, and the camera measures distances at different points on the photographic screen in correspondence with each light emitting element. In a range device, one light emitting element is used to measure the distance near the center of the shooting screen, and the amount of light emitted from the light projecting element is used to measure the distance near the center of the shooting screen.)
Since the amount of light emitted is larger than that of the camera, even if the main subject is near the center of the shooting screen, it is possible to obtain distance measurement information that allows you to focus on the subject without performing prefocus operations. When the main subject is near the center of the photographic screen, this type of distance measuring device is particularly difficult to focus on. It is possible to obtain ranging information that is comparable to that of distance measuring devices, and the effect is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るカメラの那距装置の一実施例を
示す概略構成図 第2図は91図の装置の回路図、 第3図はピントのボケに対する被写体と背景の関係を示
すグラフ。 1.2.5−・・・投光素子 4・・・・投光レンズ 5・・・・受光レンズ 6・・・・受光素子 7.8・・・・反射ミラー 11・・・・測距制御回路 12・・・・投光素子駆動回路 第13
Fig. 1 is a schematic configuration diagram showing an embodiment of a close range device for a camera according to the present invention. Fig. 2 is a circuit diagram of the device shown in Fig. 91. Fig. 3 shows the relationship between the subject and the background with respect to out-of-focus. graph. 1.2.5-... Light emitting element 4... Light emitting lens 5... Light receiving lens 6... Light receiving element 7.8... Reflecting mirror 11... Distance measurement Control circuit 12...Light emitter drive circuit 13th

Claims (1)

【特許請求の範囲】[Claims] 信号光を投射する複数の投光素子を有し、それぞれの投
光素子に対応して撮影画面の異なつた箇所を測距するカ
メラの測距装置に於いて、撮影画面の中央部付近を測距
する為の投光素子の投光量を撮影画面の周辺部を測距す
る為の投光素子1つ当りの投光量より大きなものとなる
ように構成したことを特徴とするカメラの測距装置。
In a camera distance measuring device that has multiple light emitting elements that project signal light and measures distances at different points on the photographic screen corresponding to each light emitting element, it is used to measure the vicinity of the center of the photographic screen. A distance measuring device for a camera, characterized in that the amount of light emitted by a light emitting element for distance measurement is larger than the amount of light emitted by each light emitting element for measuring a peripheral part of a photographic screen. .
JP8782185A 1984-05-07 1985-04-24 Range finder for camera Pending JPS61246725A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8782185A JPS61246725A (en) 1985-04-24 1985-04-24 Range finder for camera
US07/102,828 US4748469A (en) 1984-05-07 1987-09-23 Distance measuring device for camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8782185A JPS61246725A (en) 1985-04-24 1985-04-24 Range finder for camera

Publications (1)

Publication Number Publication Date
JPS61246725A true JPS61246725A (en) 1986-11-04

Family

ID=13925621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8782185A Pending JPS61246725A (en) 1984-05-07 1985-04-24 Range finder for camera

Country Status (1)

Country Link
JP (1) JPS61246725A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217236A (en) * 1990-12-18 1992-08-07 Fuji Photo Film Co Ltd Active type range finding method
US5191384A (en) * 1988-01-30 1993-03-02 Minolta Camera Kabushiki Kaisha Distance measuring system
US5963309A (en) * 1988-01-30 1999-10-05 Minolta Co., Ltd. Distance measuring system
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191384A (en) * 1988-01-30 1993-03-02 Minolta Camera Kabushiki Kaisha Distance measuring system
US5963309A (en) * 1988-01-30 1999-10-05 Minolta Co., Ltd. Distance measuring system
JPH04217236A (en) * 1990-12-18 1992-08-07 Fuji Photo Film Co Ltd Active type range finding method
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same

Similar Documents

Publication Publication Date Title
US4748469A (en) Distance measuring device for camera
US5204714A (en) Object distance detecting apparatus
US4593987A (en) Method and device for automatic exposure control by programs
US4288152A (en) Automatic range finder system
US4541702A (en) Automatic focus adjusting device
JPS61246725A (en) Range finder for camera
US5235376A (en) Camera remote-controlling apparatus
JPS6120808A (en) Range measuring instrument
JPS60233610A (en) Range finding device
JPS61144615A (en) Automatic focus detector
JPS61272725A (en) Range finding device for camera
JP2802785B2 (en) Camera exposure control method
US5162837A (en) Electronic camera having a built-in strobe
JP3297497B2 (en) Distance measuring device
JP3294290B2 (en) camera
JP3009513B2 (en) Distance measuring device for camera
JP2763800B2 (en) Distance measuring device
JP3199969B2 (en) Multi-point distance measuring device
JPS6248202B2 (en)
JP3045561B2 (en) Camera ranging device
JPS63186219A (en) Autofocusing camera
JPS59222804A (en) Automatic focus detector
JPS60151507A (en) Distance measuring instrument
JPH052128A (en) Range-finding device for camera
JPH01116510A (en) Light projecting system automatic focusing device