JPS61246595A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61246595A
JPS61246595A JP4525485A JP4525485A JPS61246595A JP S61246595 A JPS61246595 A JP S61246595A JP 4525485 A JP4525485 A JP 4525485A JP 4525485 A JP4525485 A JP 4525485A JP S61246595 A JPS61246595 A JP S61246595A
Authority
JP
Japan
Prior art keywords
fin
heat exchanger
pipe
collar
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4525485A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sakuma
清 佐久間
Yoshiaki Tanimura
佳昭 谷村
Hiroyuki Umemura
博之 梅村
Makoto Yamada
信 山田
Yutaka Seshimo
裕 瀬下
Masao Fujii
雅雄 藤井
Ikuo Tsukamoto
郁夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4525485A priority Critical patent/JPS61246595A/en
Priority to AU54308/86A priority patent/AU585946B2/en
Priority to PH33483A priority patent/PH23829A/en
Priority to CN86101493A priority patent/CN86101493B/en
Priority to GB08605681A priority patent/GB2173585B/en
Publication of JPS61246595A publication Critical patent/JPS61246595A/en
Priority to US07/070,629 priority patent/US4775007A/en
Priority to HK957/89A priority patent/HK95789A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Abstract

PURPOSE:To obtain a heat exchanger surpassing in heat transferring property, by certainly joining a fin to a pipe by providing a part where no through-holes are provided around a fin collar which serves as a joining part of fin and pipe, and by raising the holeless part as high as a fin pitch. CONSTITUTION:A fin collar 3 is molded in such a manner that it is raised by a factor of the height 'H', which corresponds to the fin pitch of a heat exchanger from the center line in the direction of the height of a trapezoid shape. A fin '1a' and a fin '1b' are laid so that the upper end of a fin collar 3 is contacted to one surface of the other fin. Then a pipe 2 is inserted into the fin collar 3 provided to each fin '1a' and '1b' to expand the pipe 2, and the fin 1 and the pipe 2 are thermally joined to each other at the fin collar part 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和装置に使用される熱交換器の構成
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a heat exchanger used in an air conditioner.

〔従来の技術〕[Conventional technology]

第9図は例えは特願昭59−264087号により提案
されている複数個の貫通孔を有し台形波状に屈曲したフ
ィンと、パイプより構成された熱又換器を示す構成図で
ある。図中(1)は複数個の貫通穴を有し台形波状に屈
曲したフィンを表わす。(2)は空気流れ(A)が積層
されたフィン(1)間を流れる妨たげとなるように配置
されているパイプである。αJは上記フィン(11に設
けられた貫通孔である。本図においてフィン(1)は1
台形波状屈曲の位相をずらすように積層されている。
FIG. 9 is a block diagram showing a heat exchanger proposed in Japanese Patent Application No. 59-264087, which is composed of trapezoidal wave-shaped fins having a plurality of through holes and pipes. In the figure, (1) represents a fin having a plurality of through holes and bent in a trapezoidal wave shape. (2) is a pipe arranged so as to prevent the air flow (A) from flowing between the laminated fins (1). αJ is the through hole provided in the fin (11). In this figure, the fin (1) is 1
The layers are stacked to shift the phase of the trapezoidal wavy bends.

このように構成された熱交換器においての作用効果は第
8図のフィン断面図により説明されており、第8図にお
いてフィン(1a)と(1b)の間に形成される流路を
第1流路(51)とし、フィン(1b)とフィン(1C
)によって形成される流路を第2流路(52)としてい
る。第1流路(51)と第2流路(52)を流れる流体
の流量と全圧を同一とすれば9図上の流れ方向CA)に
直角な各断面(X−X)に於て、第1流路(51)と第
2流路(52)の断面積は、結果的に異っており、たと
えば、X−X断面を考えれば、第1流路(51)の断面
積は第2流路(52)に較べ大きいから、その部分で第
1流路(51)を流れる流体の流速は、第2流路(52
)に較べ小さくなるから、第1流路(51)と第2流路
(52)との間に静圧差が生じその結果、第1流路(5
1)から第2流路(52)に流体(空気)の一部が貫通
孔α3を通って流入することになる。この時、フィン(
1b)に注目すると、第8図に示すように、前述の略台
形波状の変型波形に従って第1流路(51)から第2流
路(52)、第2流路(52)から第1流路(51)へ
の周期的な流体の流通が起こることKなる。即ち、この
ようにフィン(11を構成すれば、一様吸込、一様吹出
どなっている面が流れ方向に順番にならんでいる形とな
り、一様吸込部の伝熱面では、境界層を非常に薄(でき
ることにより、地固的な伝熱促進効果が得られ、吹出面
に於ては、助走区間の繰り返し効果により、同じく高い
伝熱性能が達成でき、さらにパイプ(2)後方の死水域
部分の流体空気が9貫通孔α3を介して移動するため流
れの淀みがなくなり、死水域部分の熱伝達特性が改善さ
れ従来到底考えられもしなかった非常に高い熱伝達特性
を持った熱交換器を得ることができるとしている。
The effects of the heat exchanger configured in this way are explained by the cross-sectional view of the fins in FIG. A flow path (51), a fin (1b) and a fin (1C
) is defined as a second flow path (52). If the flow rate and total pressure of the fluid flowing through the first flow path (51) and the second flow path (52) are the same, in each cross section (X-X) perpendicular to the flow direction CA in Figure 9, The cross-sectional area of the first flow path (51) and the second flow path (52) are different as a result. For example, considering the XX cross section, the cross-sectional area of the first flow path (51) is different from that of the second flow path (52). Since it is larger than the second flow path (52), the flow velocity of the fluid flowing through the first flow path (51) at that part is lower than that of the second flow path (52).
), a static pressure difference occurs between the first flow path (51) and the second flow path (52), and as a result, the first flow path (5
A part of the fluid (air) flows from 1) into the second flow path (52) through the through hole α3. At this time, the fin (
1b), as shown in FIG. 8, the waveforms flow from the first flow path (51) to the second flow path (52) and from the second flow path (52) to the first flow path according to the aforementioned substantially trapezoidal modified waveform. A periodic flow of fluid into the channel (51) will occur. In other words, if the fins (11) are configured in this way, the uniform suction and uniform outlet surfaces are arranged in order in the flow direction, and the boundary layer is formed on the heat transfer surface of the uniform suction section. By being extremely thin, a solid heat transfer promotion effect can be obtained, and on the outlet surface, the same high heat transfer performance can be achieved due to the repeated effect of the run-up section. Fluid air in the water area moves through the 9 through holes α3, eliminating flow stagnation, improving heat transfer characteristics in the dead area area, and providing heat exchange with extremely high heat transfer characteristics that were previously unimaginable. It is said that it is possible to obtain equipment.

圧力損失については、前縁効果を用いたものに較べ少く
ともフィンを分断していないためストリップ前縁部の形
状抵抗が当然なくなり、その効果は大きいとしている。
Regarding pressure loss, compared to the case where the leading edge effect is used, at least the fins are not separated, so the shape resistance of the leading edge of the strip is naturally eliminated, and the effect is said to be greater.

〔発明が解決しようとする間粒点〕[The intergranular point that the invention attempts to solve]

このように特願昭59−264087号においては。 In this way, in Japanese Patent Application No. 59-264087.

熱伝達性能の向上、圧力損失の増加の小なることつまり
性能面のみ言及されているが、フィンの積層、及びフィ
ンとパイプの接合、つまり熱交換器を製作する上での万
策については言及されていな%+1゜ 本発明においては上記点をふまえ、伝達特性の向上1等
特性を低下させることなく効率良く熱又換器を製作可能
とすることを目的としている。
Only small aspects such as improving heat transfer performance and increasing pressure loss, that is, performance aspects, are mentioned, but there is no mention of laminating fins and joining fins and pipes, that is, precautions to take when manufacturing a heat exchanger. In view of the above points, it is an object of the present invention to make it possible to efficiently manufacture a heat exchanger without degrading the first characteristic, which improves the transfer characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

フィンとパイプを熱的に接合する手段としてフィンにフ
ィンカラーを立ち上げカラ一部にパイプを貫通させた後
、パイプを拡管しフィンとパイプを密着させる方法がこ
の種の熱交換器では一般的方法である。この為フィンカ
ラーの立ち上げを可能とし、密着効率及びフィン効率の
低下を招くことを防止する為9貫通孔の加工はフィンカ
ラ一部。
As a means of thermally joining the fins and pipes, a common method for this type of heat exchanger is to put a fin collar on the fins, allow the pipe to pass through part of the collar, and then expand the pipe to make the fins and pipes come into close contact. It's a method. For this reason, in order to enable the fin collar to stand up and prevent a decrease in adhesion efficiency and fin efficiency, the 9 through holes are only partially machined in the fin collar.

及び、フィンカラー外径から一定距離(例えは2−)に
は施すことをやめている。
Also, it is not applied at a certain distance (for example, 2-) from the outer diameter of the fin collar.

又、フィンピッチを一定としフィンを積層する手段は、
フィンカラー立上り起点を台形形状高さ方向の中心線上
とし、フィンカラー高さを設定高さにしているためフィ
ンピッ、チを設定寸法に保ち自動的に積層可能としてい
る。
In addition, the means for stacking fins with a constant fin pitch is as follows:
The starting point of the rise of the fin collar is on the center line in the height direction of the trapezoidal shape, and the height of the fin collar is set at the set height, so the fin pitch and pitch can be maintained at the set dimensions and stacking can be performed automatically.

〔作用〕[Effect]

本発明に係る熱交換器は、フィンカラー立上り起点を台
形形状高さ方向の中心線上としフィンカラーを加工する
こと、また9頁通孔加工をフィンカラー外径より一定距
離をあけてフィンに加工したので、フィンの自動的積層
、及びフィンとパイプの締金を十分に行える為、高い伝
熱特性を保ちながら効率良く熱交換器を製作することが
できる、〔実施例〕 第1図は本発明の一実施例に係る熱交換器を示す斜視図
であり、(1)は複数個の貫通孔を有する伝熱フィンで
あり、(2)はパイプである。
In the heat exchanger according to the present invention, the fin collar is machined so that the starting point of the fin collar is on the center line in the height direction of the trapezoidal shape, and the through holes are machined on the fins at a certain distance from the outer diameter of the fin collar. As a result, the automatic stacking of fins and the fastening of fins and pipes can be performed sufficiently, making it possible to efficiently manufacture a heat exchanger while maintaining high heat transfer characteristics. 1 is a perspective view showing a heat exchanger according to an embodiment of the invention, in which (1) is a heat transfer fin having a plurality of through holes, and (2) is a pipe.

第2図は本発明による伝熱フィンの平面図、第3図は、
第2図m−tu断面を示す図であり、第4図は、第2図
によるフィンを積層した時のフィンとパイプの接合部を
示す断面図であり、第5図は第2図フィンを積層した時
のV−V断面を示す図である。
FIG. 2 is a plan view of a heat transfer fin according to the present invention, and FIG.
FIG. 2 is a cross-sectional view showing the m-tu cross section, FIG. 4 is a cross-sectional view showing the joint between the fin and the pipe when the fins shown in FIG. 2 are stacked, and FIG. It is a figure which shows the VV cross section when laminated|stacked.

第2図において、(3)はフィンカラー、(4)は、フ
ィンカラー(3)回りの貫通孔無し部、α3は貫通穴で
あり、第3図の通りこの断面は、空気の流れ方向Aに沿
って周期的に台形波状に屈曲しており、かつ、フィンカ
ラー(3)は台形形状高さ方向の中心線より、熱交換器
フィンピッチに相当する寸法Hたけ立ち上がっている。
In Fig. 2, (3) is the fin collar, (4) is the part without through holes around the fin collar (3), and α3 is the through hole.As shown in Fig. 3, this cross section is in the air flow direction A. The fin collar (3) is periodically bent in a trapezoidal wave shape along the trapezoidal shape, and the fin collar (3) stands up by a distance H corresponding to the heat exchanger fin pitch from the center line in the height direction of the trapezoidal shape.

ヌ、)a[通穴無し部(3)と1台形状部との高さのづ
れの加工、及び、フィンカラーで3)加工は、絞り加工
をほどこすことによりフィンカラー(3)の立上り基点
を保つようにしている。
nu,) a [Machining of the height deviation between the part without a through hole (3) and the trapezoidal part, and 3) with the fin collar, the rising base point of the fin collar (3) is performed by drawing. I try to keep it that way.

作用、効果については、第3図、第4図及び第5図につ
いて説明する。
The action and effect will be explained with reference to FIGS. 3, 4, and 5.

前述の通りフィンカラー(3)9台形形状は、貫通孔無
し部(4)を基率とし所定寸法つまりフィンカラー(3
)の立上り寸法H及び台形形状高さ例えば0.5Uとし
、波状に絞り成形している。よって、第3因フイン積層
の断面の一部を示す通り貫通孔無し部(4)がある為、
フィンカラー(3)の成形の為の強度を保ち確実に成形
可とすることができ、かつフィン(1a)、フィン(1
b)は、 フィンカラー(3)の上端部を他のフィンの
一面に接するように積み重ねが可能となる。この時フィ
ン(11間つまりフィンピッチはフィンカラー(3)の
立上り寸法Hを保持することになりフィンピッチを自動
的に保ちながら積層可となる。さらに。パイプ(2)を
各フィン(1a)(1b)で形成される空気の流路を妨
げるよ5に設けられたフィンカラー(3)に挿入し拡管
し、フィンカラ一部(3)でフィン+11とパイプ(2
)を熱的に接合することができる。性能においては、第
5図に示イ通りフィンの構成を用い説明するが、この性
能向上においては従来例特願昭59−264087号と
同様であり。
As mentioned above, the trapezoidal shape of the fin collar (3) is based on the portion without through holes (4) and has a predetermined dimension, that is, the fin collar (3).
) has a rising dimension H and a trapezoidal shape height of, for example, 0.5U, and is drawn into a wavy shape. Therefore, as shown in a part of the cross section of the third factor fin lamination, there is a part (4) without through holes.
The strength for molding the fin collar (3) can be maintained and the molding can be reliably made, and the fins (1a) and fins (1) can be molded reliably.
In b), it is possible to stack the fin collar (3) so that the upper end thereof is in contact with one surface of another fin. At this time, the fins (between 11 and 11), that is, the fin pitch, maintains the rising dimension H of the fin collar (3), and can be stacked while automatically maintaining the fin pitch.Furthermore, the pipe (2) is connected to each fin (1a). The tube is expanded by inserting it into the fin collar (3) provided at 5 to obstruct the air flow path formed by (1b), and the fin + 11 and pipe (2) are inserted into the fin collar (3).
) can be thermally bonded. The performance will be explained using the fin configuration as shown in FIG. 5, but this improvement in performance is similar to that of the prior art Japanese Patent Application No. 59-264087.

この詳細は省略するが、フィン(1a)とフィン(1b
)で形成される空気第1流路(51)、フィン(1b)
とフィン(1C)で形成される第2流路(52)とし、
第1流路(51)と第2流路(52)を流れる空気流量
と全圧とたとえば向−とすれば1図上の流れ方向(4)
に直角な各断面(X−X)に於て、第1流路(51)と
第2流路(52)の断面積は結果的に異っており、この
結果第1流路(51)を流れる空気流速は、第2流路(
52)に比べ小さくなるから、第1流路(51)と第2
流路(52)の間に静圧差が生じ、第1流路(51)か
ら第2流路(52)に流体の1部が貫通孔αJを通って
流入することKなる。この結果、一様吸込部の伝熱面で
は、境界層を非常に薄くできることになり、飛躍的な伝
熱促進効果が得られ、吹出面においては。
Although the details are omitted, the fin (1a) and the fin (1b)
) formed by a first air flow path (51) and a fin (1b)
and a second flow path (52) formed by a fin (1C),
For example, if the air flow rate and total pressure flowing through the first flow path (51) and the second flow path (52) are in the direction, then the flow direction (4) in Figure 1 is given.
In each cross section (X-X) perpendicular to The air velocity flowing through the second flow path (
52), so the first flow path (51) and the second
A static pressure difference occurs between the flow paths (52), and a portion of the fluid flows from the first flow path (51) to the second flow path (52) through the through hole αJ. As a result, the boundary layer can be made extremely thin on the heat transfer surface of the uniform suction section, resulting in a dramatic heat transfer promotion effect, and on the blowout surface.

助走区間の繰り返し効果により高い伝熱性能が達成でき
る。さらに、第4図の通りパイプ(2)の後流にできる
流れの淀みに対しては、孔無し部(4)の平坦部は極く
小領域で5台形形状が絞り加工されている為、繰り返し
によりこの空気流れの淀みの発生を小とすると共に貫通
孔03を介して淀みの流体が移動するという相互の効果
により死水域での熱伝達特性の改善がされている。
High heat transfer performance can be achieved due to the repeated effect of the run-up section. Furthermore, as shown in Figure 4, in order to prevent flow stagnation that occurs downstream of the pipe (2), the flat part of the non-perforated part (4) is drawn into a five-trapezoidal shape in an extremely small area. By repeating this process, the occurrence of stagnation in the air flow is reduced, and the stagnation fluid moves through the through hole 03, which is a mutual effect, thereby improving the heat transfer characteristics in the dead area.

又、第6図に示す他の実施例においては貫通孔無し部に
小形状の溝(リング)(6)を設けたのでフィンカラー
(3)加工上の強度をより保ち、かつ、パイプ(2)後
流の死水域の詫生に対してより効果のあるものである。
In addition, in another embodiment shown in FIG. 6, a small groove (ring) (6) is provided in the part without a through hole, so that the strength for processing the fin collar (3) is maintained and the pipe (2 ) It is more effective for regenerating the dead water area in the wake.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したとおり、複数個の負通穴を有すし
9台形波状に周期的に屈曲するフィンにおいて、フィン
とパイプの接合部となるフィンカラー〇周囲に貫通孔無
し部を設け、この貫通孔無し部を台形形状高さ方向の中
心線上をしフィンカラー及び台形形状の加工を絞り成形
としたので。
As explained above, the present invention provides a fin having a plurality of negative through holes and periodically bending in a trapezoidal wave shape, and a portion without through holes is provided around the fin collar, which is the joint between the fin and the pipe. The part without through holes was placed on the center line of the trapezoidal shape in the height direction, and the fin collar and trapezoidal shape were formed by drawing.

フィンカラーの成形を台形周期とかかわりなく確実に成
形できる為、積み重ねるだけでフィンピッチを保ちなが
ら積層可能となり効率よく熱交換器の製作を可能として
いる。又、パイプとの熱的接合も充分にできる効果があ
り、性能においても、死水域の解消及び繰り返し効果、
貫通穴による境界層を薄くする効果により、フィンの高
い伝熱効果を持ったフィンとパイプを確実に接合できる
ので、熱伝達特性のすぐれた熱交換器を得られる効果が
ある。
Since the fin collar can be formed reliably regardless of the trapezoid period, it is possible to stack the fins while maintaining the fin pitch by simply stacking them, making it possible to efficiently manufacture heat exchangers. In addition, it has the effect of sufficiently thermally bonding with the pipe, and in terms of performance, it eliminates dead areas and has a repeatable effect.
The effect of thinning the boundary layer due to the through holes makes it possible to reliably connect the fins with high heat transfer effects to the pipes, resulting in the effect of obtaining a heat exchanger with excellent heat transfer characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による熱交換器を示す斜視図、
第2図は本発明の実施例によるフィンの平面図、第3図
は、第2図の1ll−I断面図。 第4図は、フィンとパイプの接合部の断面図。 第5図は、第2図のV−V断面図である。第6図は他の
実施例によるフィンカラ一部の断面図である。 なお図中同一符号は同一または相当部分を示し、(1)
はフィン、(2)はパイプ、(3)はフィンカラー、+
41は貫通孔無し部、(6)は小形状リング、α3は貫
通孔、  (Sl)は第1流路、  (52)は第2流
路である。
FIG. 1 is a perspective view showing a heat exchanger according to an embodiment of the present invention;
FIG. 2 is a plan view of a fin according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along line 1ll-I in FIG. FIG. 4 is a cross-sectional view of the joint between the fin and the pipe. FIG. 5 is a sectional view taken along the line V-V in FIG. 2. FIG. 6 is a sectional view of a portion of the fin collar according to another embodiment. Note that the same symbols in the figures indicate the same or equivalent parts, (1)
is fin, (2) is pipe, (3) is fin collar, +
41 is a part without a through hole, (6) is a small ring, α3 is a through hole, (Sl) is a first flow path, and (52) is a second flow path.

Claims (1)

【特許請求の範囲】 1)複数個の貫通孔を有し、空気の流れ方向にそつて周
期的に台形波状に屈曲したフィンを積層し、フィン間を
流れる空気の妨げになるようにパイプを配置し構成され
る熱交換器において、積層されるフィンとパイプを接合
するフィンカラーの立上り起点を台形形状高さ方向の中
心線上とし、フィンカラー部、台形成形は絞り方式とし
たことを特徴とする熱交換器。 2)フィンカラー外径より一定距離をあけて複数個の貫
通孔を設け、かつ貫通孔無し部を台形形状高さ方向の中
心線上としたフィンを有することを特徴とする特許請求
の範囲第1項記載の熱交換器。 3)貫通孔無し部に、山形を有するリングを設けたこと
を特徴とした特許請求の範囲第1項記載及び第2項記載
の熱交換器。
[Claims] 1) Fins having a plurality of through holes and periodically bent in a trapezoidal wave shape along the air flow direction are stacked, and the pipe is arranged so as to obstruct the air flowing between the fins. In the heat exchanger arranged and constructed, the starting point of the rise of the fin collar that joins the laminated fins and pipes is on the center line of the trapezoidal shape height direction, and the fin collar part and trapezoidal shape are characterized by a drawing method. heat exchanger. 2) Claim 1, characterized in that the fin has a plurality of through holes provided at a certain distance from the outer diameter of the fin collar, and the portion without through holes is located on the center line of the trapezoidal shape in the height direction. Heat exchanger as described in section. 3) The heat exchanger according to claims 1 and 2, characterized in that a ring having a chevron shape is provided in the portion without through holes.
JP4525485A 1985-03-07 1985-03-07 Heat exchanger Pending JPS61246595A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4525485A JPS61246595A (en) 1985-03-07 1985-03-07 Heat exchanger
AU54308/86A AU585946B2 (en) 1985-03-07 1986-03-05 Heat exchanger
PH33483A PH23829A (en) 1985-03-07 1986-03-05 Heat exchanger for an air-conditioning apparatus
CN86101493A CN86101493B (en) 1985-03-07 1986-03-07 Heat exchanger
GB08605681A GB2173585B (en) 1985-03-07 1986-03-07 Heat exchanger
US07/070,629 US4775007A (en) 1985-03-07 1987-07-07 Heat exchanger for an air-conditioning apparatus
HK957/89A HK95789A (en) 1985-03-07 1989-11-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4525485A JPS61246595A (en) 1985-03-07 1985-03-07 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61246595A true JPS61246595A (en) 1986-11-01

Family

ID=12714139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4525485A Pending JPS61246595A (en) 1985-03-07 1985-03-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61246595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201367A (en) * 1990-02-20 1993-04-13 Dubrovsky Evgeny V Stack of plates for a plate-and-tube heat exchanger with diverging-converging passages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201367A (en) * 1990-02-20 1993-04-13 Dubrovsky Evgeny V Stack of plates for a plate-and-tube heat exchanger with diverging-converging passages

Similar Documents

Publication Publication Date Title
JPH0514194B2 (en)
JPH0384396A (en) Heat exchanger
US4775007A (en) Heat exchanger for an air-conditioning apparatus
KR20210059794A (en) Heat Exchanger
JP5335568B2 (en) Flat tube heat exchanger
US20030131979A1 (en) Oil cooler
JPS6030626Y2 (en) heat exchange element
JP4462653B2 (en) Plate heat exchanger
JPS58164995A (en) Heat exchanger and manufacture thereof
JPH0493596A (en) Core structure of stacked type heat exchanger
JPS61246595A (en) Heat exchanger
JP6187038B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP3286699B2 (en) Aluminum laminated heat exchanger
JP6435487B2 (en) Heat exchanger
CN220771992U (en) Plate-fin type core body of aluminum plate-fin type heat exchanger
JPS62225892A (en) Heat exchanger
JPS6020094A (en) Heat exchanger
JPH0221198A (en) Heat exchanger
JPS61268986A (en) Heat exchanger
JP3040213B2 (en) Plate heat exchanger
SU1666913A1 (en) Heat exchange surface
JPH029273Y2 (en)
WO2018139162A1 (en) Heat exchanger
JPH11311491A (en) Plate-type heat exchanger and its manufacture
JPS6347742Y2 (en)