JPS6124650Y2 - - Google Patents

Info

Publication number
JPS6124650Y2
JPS6124650Y2 JP1980122697U JP12269780U JPS6124650Y2 JP S6124650 Y2 JPS6124650 Y2 JP S6124650Y2 JP 1980122697 U JP1980122697 U JP 1980122697U JP 12269780 U JP12269780 U JP 12269780U JP S6124650 Y2 JPS6124650 Y2 JP S6124650Y2
Authority
JP
Japan
Prior art keywords
lubricating oil
space
liner
chamber
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980122697U
Other languages
Japanese (ja)
Other versions
JPS5744928U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980122697U priority Critical patent/JPS6124650Y2/ja
Publication of JPS5744928U publication Critical patent/JPS5744928U/ja
Application granted granted Critical
Publication of JPS6124650Y2 publication Critical patent/JPS6124650Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 本考案はデイーゼル、ガソリン、ガス式の肉燃
機関に適用される液冷式の冷却装置に関する。
[Detailed Description of the Invention] The present invention relates to a liquid-cooled cooling device applied to diesel, gasoline, and gas-type meat combustion engines.

従来の内燃機関では縦断面部分図である第1図
の如く、シリンダライナ1の周囲に形成された冷
却水室2がライナ1の上下端部を除く略全長に沿
つて延びており、燃焼室3に近いライナ上半部5
と燃焼室3から離れたライナ下半部6が同程度に
冷却作用を受けるので、上半部5が高温になると
共に、下半部6が低温になり、次のような不具合
がある。すなわち上半部5の熱膨張量が大きくな
るので、上半部5とピストン7の間の隙間が過大
になり、その隙間からクランク室8内の潤滑油が
燃焼室3へ上がり易くなつて潤滑油消費量が増大
するという不具合や、排気がクランク室8内へ侵
入し易くなる、すなわちブローバイが生じ易くな
るという不具合があり、又下半部6とピストン7
の間の隙間が過小になつて、ピストン7の焼付き
が生じる恐れもある。しかも冷却水量が多いの
で、暖機運転時間が長くなり、低速、低出力運転
状態においてはピストン7の過冷により燃焼不良
が生じ、排気中に青白煙や異臭等が発生するとい
う不具合もある。ライナ下半部6の過冷防止や暖
機運転時間の短縮化等のためには冷却水の循環量
を減すことも考えられるが、その場合には高出力
時に冷却効果が不足し、ライナ上半部5やピスト
ン7の温度が高くなり過ぎて、ライナ1やピスト
ン7の耐久性が低下するという問題が生じる。
In a conventional internal combustion engine, as shown in FIG. 1, which is a partial vertical cross-sectional view, a cooling water chamber 2 formed around a cylinder liner 1 extends along almost the entire length of the liner 1 excluding the upper and lower ends, and the combustion chamber Upper liner half 5 close to 3
Since the lower half 6 of the liner, which is distant from the combustion chamber 3, receives the cooling effect to the same extent, the upper half 5 becomes hot and the lower half 6 becomes cold, resulting in the following problems. In other words, as the amount of thermal expansion of the upper half 5 increases, the gap between the upper half 5 and the piston 7 becomes too large, and the lubricating oil in the crank chamber 8 easily rises into the combustion chamber 3 through the gap, thereby providing lubrication. There are problems in that oil consumption increases, exhaust gas easily enters the crank chamber 8, that is, blow-by tends to occur, and the lower half 6 and piston 7
There is also a risk that the piston 7 may seize if the gap between them becomes too small. Moreover, since the amount of cooling water is large, the warm-up operation time becomes long, and under low-speed, low-output operating conditions, overcooling of the piston 7 causes combustion failure, causing problems such as blue-white smoke and strange odors in the exhaust gas. In order to prevent overcooling of the liner lower half 6 and shorten the warm-up operation time, it is possible to reduce the amount of cooling water circulated, but in that case, the cooling effect will be insufficient at high output, and the liner A problem arises in that the temperatures of the upper half 5 and the piston 7 become too high, reducing the durability of the liner 1 and the piston 7.

本考案は上記不具合を解決するために、シリン
ダヘツド側のシリンダ部分とクランク室側のシリ
ンダ部分とをそれぞれ別系統の冷却装置により各
部分の加熱量に応じて冷却するようにしたもの
で、第2図〜第7図により説明すると次の通りで
ある。
In order to solve the above-mentioned problems, the present invention cools the cylinder part on the cylinder head side and the cylinder part on the crank chamber side using separate cooling systems depending on the amount of heating in each part. The explanation will be as follows with reference to FIGS. 2 to 7.

縦断面部分である第2図において、シリンダラ
イナ10は湿式挿入式であり、上下端部11,1
2及び中間部13の3個所がシリンダブロツク1
5の内筒面に嵌合しており、ライナ10とブロツ
ク15の間には中間部13を挾んで上下に環状の
空間部16,17が形成してある。上側の空間部
16は冷却水Wが充満した冷却水水室になつてお
り、冷却水Wは図示されていない通路を介して外
部のラジエータとの間を循環する。下側の空間部
にはブロツク15の図中左側の孔に嵌合した注油
ノズル18が開口し、ノズル18はブロツク15
の外側を延びる送油パイプ20を介して温調弁2
1に接続している。温調弁21は温度センサを内
蔵した弁で、高温になるほどその開度が増すよう
になつており、空間部17の下方近傍のブロツク
部分22に固定されると共に、部分22の肉厚内
に設けた潤滑油油路23に連通している。油路2
3は機関各部に潤滑油を供給するためのもので、
オイルポンプ(図示せず)からの潤滑油が油路2
3内を常時流れている。ブロツク15の図中右側
の部分には空間部17の上部に連通する大径孔2
5及び空間部17の底部に連通する小径孔26が
設けてある。両孔25,26はライナ10から離
れるにつれて下方へゆくように傾斜しており、孔
25はカム軸27に向かつて開口している。
In FIG. 2, which is a longitudinal section, the cylinder liner 10 is of a wet insertion type, and the upper and lower ends 11, 1
2 and intermediate part 13 are cylinder block 1
5, and between the liner 10 and the block 15, annular spaces 16 and 17 are formed above and below with the intermediate section 13 in between. The upper space 16 is a cooling water chamber filled with cooling water W, and the cooling water W circulates between the cooling water and the external radiator via a passage (not shown). A lubrication nozzle 18 fitted into a hole on the left side in the figure of the block 15 opens in the lower space.
The temperature control valve 2 is connected via an oil pipe 20 extending outside the temperature control valve 2
Connected to 1. The temperature control valve 21 is a valve with a built-in temperature sensor, and its opening degree increases as the temperature rises. It communicates with a lubricating oil passage 23 provided therein. Oil road 2
3 is for supplying lubricating oil to each part of the engine.
Lubricating oil from the oil pump (not shown) is supplied to oil path 2.
3 is constantly flowing. A large diameter hole 2 communicating with the upper part of the space 17 is located on the right side of the block 15 in the figure.
5 and the bottom of the space 17 are provided with a small diameter hole 26 that communicates with the bottom of the space 17. Both holes 25 and 26 are inclined downward as they move away from the liner 10, and the hole 25 opens toward the camshaft 27.

第2図の−線断面部分図である第3図の如
く、カム軸27は各気筒毎に2個のカム面28を
備え、孔25は各カム面28に対向するように各
気筒において2個ずつ設けてある。注油ノズル1
8はライナ10外筒面の概ね接線方向に開口して
おり、ノズル18からの潤滑油がライナ10の外
筒面に沿つて空間部17内を流れ易くなつてい
る。なおノズル18及び第2図の小孔26は各気
筒毎に例えば1個ずつ設けてある。
As shown in FIG. 3, which is a partial cross-sectional view taken along the line 2 in FIG. They are provided one by one. Lubricating nozzle 1
8 is opened generally in the tangential direction of the outer cylindrical surface of the liner 10, so that the lubricating oil from the nozzle 18 can easily flow inside the space 17 along the outer cylindrical surface of the liner 10. Note that, for example, one nozzle 18 and one small hole 26 in FIG. 2 are provided for each cylinder.

低速、低出力運転状態において、第2図のライ
ナ下半部31は燃焼室30から離れているので加
熱される度合は低く、下半部31及びその近傍の
ブロツク部分22の温度はさほど高くはならな
い。従つて温調弁21はブロツク部分22の温度
に対応して全閉(又は低開度)状態を保ち、通路
23から空間部17内へ潤滑油が流れることはな
い(又はほとんどない)。このようにライナ下半
部31は加熱及び冷却される度合が共に低いので
適温に保たれる。又低速、低出力時でもライナ上
半部32は燃焼室30に近い関係上、加熱される
度合は比較的高いが、周囲を循環する冷却水Wに
よつて充分に冷却されるので、上半部32も適温
に保たれる。このようにライナ10全体が適温に
保たれるので、ライナ10の熱膨張量も全長にわ
たつて所定値に均一化され、ライナ内筒面35
(シリンダ内筒面)の各部とピストン(図示せ
ず)の間の隙間が過大あるいは過小になることは
ない。従つてクランク室36内の潤滑油が燃焼室
30内へ上がることや、排気がクランク室36へ
侵入(ブローバイ)することが抑制され、ピスト
ンの焼付きも可及的に防止される。又低速、低出
力時には上側の空間部16内に充満した比較的少
量の冷却水Wだけにより各部が強制冷却されるの
で、暖機運転時間が短くなると共に、各部の過冷
及びそれによる燃焼不良が防止され、排気中に青
白煙や異臭が生じることはない。
In low-speed, low-output operating conditions, the liner lower half 31 in FIG. 2 is far from the combustion chamber 30, so the degree of heating is low, and the temperature of the lower half 31 and the block portion 22 in its vicinity is not very high. No. Therefore, the temperature control valve 21 maintains a fully closed (or slightly opened) state in accordance with the temperature of the block portion 22, and no (or almost no) lubricating oil flows from the passage 23 into the space 17. In this manner, the lower half 31 of the liner is heated and cooled to a low degree, and is thus maintained at an appropriate temperature. Also, even at low speeds and low outputs, the upper half 32 of the liner is heated to a relatively high degree due to its proximity to the combustion chamber 30, but the upper half 32 is sufficiently cooled by the cooling water W circulating around it. The portion 32 is also kept at an appropriate temperature. Since the entire liner 10 is kept at an appropriate temperature in this way, the amount of thermal expansion of the liner 10 is made uniform to a predetermined value over the entire length, and the liner inner cylindrical surface 35
The gap between each part of the cylinder (inner cylindrical surface) and the piston (not shown) will not become too large or too small. Therefore, the lubricating oil in the crank chamber 36 is prevented from rising into the combustion chamber 30, the exhaust gas is prevented from entering the crank chamber 36 (blow-by), and seizure of the piston is also prevented as much as possible. In addition, at low speeds and low output, each part is forcibly cooled by only a relatively small amount of cooling water W filling the upper space 16, which shortens the warm-up time and prevents overcooling of each part and resulting poor combustion. This prevents blue-white smoke and strange odors from occurring in the exhaust gas.

機関が高速、高出力運転状態へ移ると、ライナ
下半部31に対する加熱量も比較的多くなり、下
半部31及びブロツク部分22の温度は上昇する
(後述する)。温調弁21はブロツク部分22の温
度上昇を検知して例えば全開になり、通路23か
ら弁21、パイプ20、ノズル18を経て多量の
潤滑油が空間部17内へ流入する。流入した潤滑
油はライナ10の外筒面に沿つて流れ、孔26か
ら外部へ流出するが、孔26は小径で排出能力が
低いので、潤滑油の一部は空間部17内に溜ま
り、孔25からカム面28に向けて排出される。
潤滑油は空間部17内を流れる間にライナ下半部
31を冷却するので、下半部31の前記温度上昇
の幅はごく僅かであり、下半部31は適温に保た
れる。冷却作用が強すぎると下半部31の温度は
下降するが、その場合には温調弁21が温度降下
を検知して潤滑油量を減すので、温度はごく僅か
しか下降せず、下半部31は適温に保たれる。高
速、高出力時にはライナ上半部32は激しく加熱
されるが、機関回転数に対応して冷却水ポンプ
(図示せず)の回転数が増加するので、冷却水W
の循環量が増す。従つて上半部32は充分に冷却
され、適温に保たれる。このように高速、高出力
時にもライナ10全体が適温に保たれるので、ラ
イナ内筒面35の各部とピストンの間の隙間が過
大あるいは過小になることはなく、潤滑油消費の
増大、ブローバイ、ピストンの焼付きは可及的に
防止される。又ライナ10やピストンが過熱され
ないので、耐久性の低下も防止される。
When the engine shifts to a high speed, high output operating state, the amount of heating to the liner lower half 31 also becomes relatively large, and the temperatures of the lower half 31 and the block portion 22 rise (described later). The temperature control valve 21 detects a temperature rise in the block portion 22 and is, for example, fully opened, and a large amount of lubricating oil flows from the passage 23 through the valve 21, the pipe 20, and the nozzle 18 into the space 17. The inflowing lubricating oil flows along the outer cylindrical surface of the liner 10 and flows out from the hole 26. However, since the hole 26 has a small diameter and low discharge capacity, a portion of the lubricating oil accumulates in the space 17 and flows out from the hole 26. 25 toward the cam surface 28.
Since the lubricating oil cools the liner lower half 31 while flowing in the space 17, the temperature increase in the lower half 31 is very small, and the lower half 31 is kept at an appropriate temperature. If the cooling effect is too strong, the temperature of the lower half 31 will drop, but in that case, the temperature control valve 21 will detect the temperature drop and reduce the amount of lubricating oil, so the temperature will only drop a little and the lower half 31 will drop. The half portion 31 is kept at an appropriate temperature. At high speeds and high outputs, the liner upper half 32 is heated violently, but since the rotation speed of the cooling water pump (not shown) increases in accordance with the engine rotation speed, the cooling water W
The amount of circulation increases. Therefore, the upper half 32 is sufficiently cooled and maintained at an appropriate temperature. In this way, the entire liner 10 is kept at an appropriate temperature even at high speeds and high outputs, so the clearance between each part of the liner inner cylindrical surface 35 and the piston will not become too large or too small, which will prevent increased lubricating oil consumption and blow-by. , seizure of the piston is prevented as much as possible. Furthermore, since the liner 10 and the piston are not overheated, deterioration in durability is also prevented.

上述の作用を第4図,第5図により説明すると
次の通りである。第4図において機関出力が所定
値P以上になると空間部17(第2図)に対する
潤滑油の注油が開始され、以後出力の増加に比例
して潤滑油量も増加する。従つてライナ下半部3
1に対する冷却の度合も増加し、第5図の如く出
力がP以上になつてもピストン温度はほとんど増
加しない。なお第5図の線a−bはライナ下半部
31を潤滑油により冷却しない場合を示してお
り、その場合には出力がP以上になつてもピスト
ン温度は出力に比例して増加する。
The above-mentioned operation will be explained below with reference to FIGS. 4 and 5. In FIG. 4, when the engine output reaches a predetermined value P or more, lubricating oil starts to be filled into the space 17 (FIG. 2), and thereafter the amount of lubricating oil increases in proportion to the increase in output. Therefore, the liner lower half 3
The degree of cooling relative to 1 also increases, and even if the output exceeds P as shown in FIG. 5, the piston temperature hardly increases. Note that the line a-b in FIG. 5 shows the case where the liner lower half 31 is not cooled with lubricating oil, and in that case, even if the output exceeds P, the piston temperature increases in proportion to the output.

以上説明したように本考案によると、ピストン
が摺動するシリンダ内筒面(ライナ内筒面35)
の周囲に沿つて、シリンダヘツド側の空間部16
とクランク室36側の空間部17とを形成し、シ
リンダヘツド側空間部16を常時冷却水が循環す
る冷却水室とし、クランク室側の空間部17を潤
滑油室とし、潤滑油室に潤滑油供給通路(送油パ
イプ20)を接続し、上記潤滑油供給通路にシリ
ンダに対する加熱量が増加した時に潤滑油供給量
を増加させる潤滑油制御装置(温調弁21)を設
け、潤滑油室17を囲むシリンダブロツク15の
壁にその外側のカム軸27に向かつて開口する潤
滑油通路(大径孔26)を設け、該潤滑油通路を
介して潤滑油室内の潤滑油をカム軸27のカム面
28に向けて排出するようになつている。
As explained above, according to the present invention, the cylinder inner cylindrical surface (liner inner cylindrical surface 35) on which the piston slides
along the circumference of the cylinder head side space 16
and a space 17 on the crank chamber 36 side, the cylinder head side space 16 is used as a cooling water chamber in which cooling water is constantly circulated, and the space 17 on the crank chamber side is used as a lubricating oil chamber. An oil supply passage (oil supply pipe 20) is connected, and a lubricant control device (temperature control valve 21) is provided in the lubricant supply passage to increase the amount of lubricant supplied when the amount of heating to the cylinder increases. A lubricating oil passage (large diameter hole 26) that opens toward the camshaft 27 on the outside is provided in the wall of the cylinder block 15 surrounding the cylinder block 17, and the lubricating oil in the lubricating oil chamber is transferred to the camshaft 27 through the lubricating oil passage. It is designed to be discharged toward the cam surface 28.

このように本考案では、ライナ上半部32とラ
イナ下半部31をそれぞれ冷却水と潤滑油により
各部分の加熱量に応じて冷却するようにしたの
で、ライナ10全体を常に適温に保ち、種々の不
具合、すなわち潤滑油消費量の増大、ブローバ
イ、ピストンの焼付き、燃焼不良を防止又は抑制
することができる。
In this way, in the present invention, the liner upper half 32 and the liner lower half 31 are cooled using cooling water and lubricating oil, respectively, depending on the amount of heating of each part, so the entire liner 10 is always kept at an appropriate temperature. It is possible to prevent or suppress various problems such as increased lubricating oil consumption, blow-by, piston seizure, and poor combustion.

更にライナ上半部32と下半部31はそれぞれ
全く別の冷却系統、すなわち冷却水系統と潤滑油
系統とで冷却するようになつているので、上半部
32と下半部31とをそれぞれ他方の冷却状態に
影響されずに冷却でき、両方の部分31,32を
最適の条件で冷却できる。
Furthermore, the liner upper half 32 and lower half 31 are cooled by completely different cooling systems, that is, a cooling water system and a lubricating oil system. Cooling can be performed without being affected by the cooling state of the other, and both parts 31 and 32 can be cooled under optimal conditions.

しかも潤滑油室17の潤滑油を利用してカム軸
27のカム面28を潤滑するようにしたので、カ
ム軸27及びタペツト29の耐久性を高めること
ができる。又カム軸27専用の油路を設ける必要
がないので、構造を簡単化できる。
Moreover, since the cam surface 28 of the camshaft 27 is lubricated using the lubricating oil in the lubricating oil chamber 17, the durability of the camshaft 27 and the tappet 29 can be increased. Further, since there is no need to provide an oil passage exclusively for the camshaft 27, the structure can be simplified.

なお本考案を具体化する場合には、温度センサ
を内蔵しない開度可変式の弁を温調弁21の代わ
りに採用し、燃料ポンプの回転数やレギユレータ
ハンドルの位置を検出する検出装置等により上記
弁の開度を調節することもできる。その場合の検
出装置は機関の速度や出力を検知することによ
り、ライナ10に対する加熱量を間接的に検知し
て空間部17への注油量を制御することになる。
空間部17を上下に隣接する2個以上の室に分割
し、各室17に対する注油量を室毎に調節するこ
ともできる。開度可変式の温調弁21に代えて全
開及び全閉動作のみを行う弁を使用することもで
き、その場合は空間部17に対する注油量及び注
油による温度変化を細かく制御することはできな
いが、下半部31を概ね適温に保つことができ
る。第6図のように本考案を具体化することもで
きる。
In addition, when embodying the present invention, a variable opening type valve without a built-in temperature sensor is adopted in place of the temperature control valve 21, and a detection device that detects the rotation speed of the fuel pump and the position of the regulator handle is used. It is also possible to adjust the opening degree of the above-mentioned valve. In this case, the detection device indirectly detects the amount of heating to the liner 10 by detecting the speed and output of the engine, and controls the amount of oil supplied to the space 17.
It is also possible to divide the space 17 into two or more vertically adjacent chambers, and adjust the amount of oil applied to each chamber 17 for each chamber. Instead of the variable opening temperature control valve 21, a valve that only fully opens and closes can be used, and in that case, the amount of oil applied to the space 17 and the temperature change due to the oil cannot be precisely controlled. , the lower half 31 can be kept at approximately an appropriate temperature. The present invention can also be embodied as shown in FIG.

第6図は圧入式乾式ライナ41を有するシリン
ダに本考案を適用したもので、薄いライナ41は
外筒面全体がシリンダブロツク42に嵌合してお
り、2個の空間部16,17はブロツク42の肉
厚内に形成されている。なお空間部17に対する
注油系路及び排油系路は第2図の場合と同様であ
る。
Fig. 6 shows the present invention applied to a cylinder having a press-fit type dry liner 41. The entire outer cylinder surface of the thin liner 41 is fitted into the cylinder block 42, and the two spaces 16 and 17 are closed to the cylinder block 42. It is formed within a wall thickness of 42 mm. Note that the oil supply system and oil drainage system for the space 17 are the same as in the case of FIG. 2.

更に本考案はライナを備えていないシリンダ、
すなわちシリンダブロツクの内筒面に溶射等によ
り摺動面を形成したシリンダに適用することもで
きる。
Furthermore, the present invention is a cylinder without a liner,
That is, the present invention can also be applied to a cylinder in which a sliding surface is formed by thermal spraying or the like on the inner cylindrical surface of the cylinder block.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の縦断面部分図、第2図,第6
図はそれぞれ別の実施例の縦断面部分図、第3図
は第2図の−断面図、第4図,第5図は冷却
作用を説明するためのグラフである。 15……シリンダブロツク、16,17……空
間部、20……送油パイプ(潤滑油供給通路)、
21……温調弁(潤滑油量制御装置)、26……
大径孔(潤滑油通路)27……カム軸、28……
カム面、36……クランク室、W……冷却水。
Figure 1 is a vertical cross-sectional partial view of the conventional example, Figures 2 and 6.
The drawings are partial vertical cross-sectional views of different embodiments, FIG. 3 is a cross-sectional view taken from the side shown in FIG. 2, and FIGS. 4 and 5 are graphs for explaining the cooling effect. 15... Cylinder block, 16, 17... Space, 20... Oil feed pipe (lubricating oil supply passage),
21...Temperature control valve (lubricating oil amount control device), 26...
Large diameter hole (lubricating oil passage) 27...Camshaft, 28...
Cam surface, 36...Crank chamber, W...Cooling water.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ピストンが摺動するシリンダ内筒面の周囲に沿
つて、シリンダヘツド側の空間部とクランク室側
の空間部とを形成し、シリンダヘツド側空間部を
常時冷却水が循環する冷却水室とし、クランク室
側の空間部を潤滑油室とし、潤滑油室に潤滑油供
給通路を接続し、上記潤滑油供給通路にシリンダ
に対する加熱量が増加した時に潤滑油供給量を増
加させる潤滑油量制御装置を設け、潤滑油室を囲
むシリンダブロツクの壁にその外側のカム軸に向
かつて開口する潤滑油通路を設け、該潤滑油通路
を介して潤滑油室内の潤滑油をカム軸のカム面に
向けて排出するようにしたことを特徴とする内燃
機関の冷却装置。
A space on the cylinder head side and a space on the crank chamber side are formed along the periphery of the inner cylindrical surface of the cylinder on which the piston slides, and the space on the cylinder head side is used as a cooling water chamber in which cooling water is constantly circulated; A lubricating oil amount control device in which a space on the crank chamber side is used as a lubricating oil chamber, a lubricating oil supply passage is connected to the lubricating oil chamber, and the lubricating oil supply amount is increased when the amount of heating to the cylinder increases in the lubricating oil supply passage. A lubricating oil passage is provided in the wall of the cylinder block surrounding the lubricating oil chamber and opens toward the camshaft on the outside thereof, and the lubricating oil in the lubricating oil chamber is directed toward the cam surface of the camshaft through the lubricating oil passage. What is claimed is: 1. A cooling device for an internal combustion engine, characterized in that the cooling device discharges
JP1980122697U 1980-08-28 1980-08-28 Expired JPS6124650Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980122697U JPS6124650Y2 (en) 1980-08-28 1980-08-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980122697U JPS6124650Y2 (en) 1980-08-28 1980-08-28

Publications (2)

Publication Number Publication Date
JPS5744928U JPS5744928U (en) 1982-03-12
JPS6124650Y2 true JPS6124650Y2 (en) 1986-07-24

Family

ID=29483299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980122697U Expired JPS6124650Y2 (en) 1980-08-28 1980-08-28

Country Status (1)

Country Link
JP (1) JPS6124650Y2 (en)

Also Published As

Publication number Publication date
JPS5744928U (en) 1982-03-12

Similar Documents

Publication Publication Date Title
US9976471B2 (en) Method for warming an internal combustion engine, and internal combustion engine
JP3106058B2 (en) Lubrication and cooling equipment for internal combustion engines
US10738730B2 (en) Cooling device for engine
US20120285401A1 (en) Internal combustion engine comprising a liquid cooling system and oil supply and method for operating such an internal combustion engine
JPH04318215A (en) Oil-cooled multiple cylinder engine
US6688263B1 (en) System for controlling the temperature of a cylinder wall in an engine
JPS6124650Y2 (en)
US6526923B2 (en) Internal combustion engine
JP4125460B2 (en) Engine cylinder wall temperature controller
US4037999A (en) Liquid-cooled rotary piston internal combustion engine with housing
JP2010203263A (en) Control device of internal combustion engine
JP4167102B2 (en) Lubricating device for internal combustion engine
JP2797778B2 (en) Internal combustion engine lubrication system
JPS6029653Y2 (en) internal combustion engine cylinder
JPH07180523A (en) Lubricating device for internal combustion engine
JPS63131821A (en) Separation cooling and separation lubricating type engine
JPH0540267Y2 (en)
JPH0650118A (en) Lubricating device for internal combustion engine
JPS62288308A (en) Cooling device for engine
JPH03242410A (en) Lubricating equipment for engine
JPH0513942Y2 (en)
JPS595827A (en) Cooling device for internal combustion engine
JPS63140813A (en) Cooler for engine
JPS63140811A (en) Cooler of engine
JP4506309B2 (en) Crankshaft lubricating oil cooling system