JPS6124526A - Preraration of lower olefin - Google Patents

Preraration of lower olefin

Info

Publication number
JPS6124526A
JPS6124526A JP14628984A JP14628984A JPS6124526A JP S6124526 A JPS6124526 A JP S6124526A JP 14628984 A JP14628984 A JP 14628984A JP 14628984 A JP14628984 A JP 14628984A JP S6124526 A JPS6124526 A JP S6124526A
Authority
JP
Japan
Prior art keywords
alkaline earth
reaction
earth metal
zeolite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14628984A
Other languages
Japanese (ja)
Other versions
JPS6245210B2 (en
Inventor
Hideo Okado
岡戸 秀夫
Yasuyoshi Yamazaki
山崎 康義
Ryuhei Masumoto
升本 竜平
Mitsutaka Kawamura
河村 光隆
Hiroyuki Hagiwara
萩原 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14628984A priority Critical patent/JPS6124526A/en
Priority to DE3524890A priority patent/DE3524890C2/en
Publication of JPS6124526A publication Critical patent/JPS6124526A/en
Publication of JPS6245210B2 publication Critical patent/JPS6245210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

PURPOSE:To obtain the titled compound advantageously from methanol and/or dimethyl ether, by using a specific zeolite catalyst under specific conditions, accompanied with recycling to the reaction system part of or whole fraction remaning after elimination of the titled compound from the reaction product. CONSTITUTION:Methanol or dimethyl ether or both in the gas form are contacted with one or more catalysts selected from alkaline earth metal-containing zeolite, alkaline earth metal-containing zeolite modified with the alkaline earth metal and ZSM based zeolite modified with an alkaline earth metal at a weight hourly space velocity of 0.1-20hr<-1> at 300-650 deg.C reaction temperature under 0.1-100atm total pressure and converted into a hydrocarbon, followed by eliminating 2-3C olefin from the resultant reaction product, preferably further eliminating an aromatic component, and recycling the remaining fraction to the above-mentioned reaction system to obtain the aimed lower olefin, especially 2- 3C olefin in high yield with a long catalyst life and a long stability period.

Description

【発明の詳細な説明】 (発明の分野) 本発明はメタノールおよび/またはジメチルエーテルか
ら低級オレフィン、ことにエチレンおよびプロピレンを
製造する方法に係り、さらに詳細忙は特許のアルカリ土
類金属含有および/またはアルカリ土類金属変性ゼオラ
イト触媒を用いてメタノールおよび/またはジメチルエ
ーテルから低級オレフィン、ことにエチレンおよびプロ
ピレンを製造するに際し、反応生成物からエチレンおよ
びプロピレンを除去した残余の留分のすべてまたは一部
を反応系に再循環させることを特徴とする低級オレフィ
ン、ことにエチレンおよびプロピレンの製造法であって
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for producing lower olefins, in particular ethylene and propylene, from methanol and/or dimethyl ether, and more particularly relates to the patented alkaline earth metal-containing and/or When producing lower olefins, especially ethylene and propylene, from methanol and/or dimethyl ether using an alkaline earth metal-modified zeolite catalyst, all or part of the fraction remaining after removing ethylene and propylene from the reaction product is reacted. A process for the production of lower olefins, in particular ethylene and propylene, characterized in that they are recycled into the system.

高い選択率でエチレンおよびプロピレンを得ることが可
能でありながら、従来この選択率でエチレンおよびプロ
ピレンを得るために必要とされてきた反応温度に比べて
低い反応温度が採用され得て当然そのために長い触媒寿
命が得られ、さらに触媒床中での反応が拡散されるとと
もに反応熱も希釈され触媒床の局所的な過熱も防止しう
るという利益1!!:有するものである。
While it is possible to obtain ethylene and propylene with high selectivities, lower reaction temperatures can be employed compared to those traditionally required to obtain ethylene and propylene with this selectivity, which naturally leads to longer reaction times. Benefits 1: Longer catalyst life is obtained, and furthermore, the reaction in the catalyst bed is diffused and the heat of reaction is diluted, preventing local overheating of the catalyst bed! ! : It is something that one has.

近年原油の安定供i@に心配がもたれ、ことに我国では
海外に依存する率が99%を超える現状にあっては、石
炭、天然ガス等の有効利用が重要な課題となっており、
メタン、CO等から得られるメタノールからオレフイ/
、パラフィン。
In recent years, there has been concern about the stable supply of crude oil, and especially given that our country's dependence on foreign sources exceeds 99%, the effective use of coal, natural gas, etc. has become an important issue.
Olefin from methanol obtained from methane, CO, etc.
,paraffin.

芳香族等の有機化合物の工業的合成法の確立が求められ
ている。
There is a need to establish an industrial synthesis method for aromatic and other organic compounds.

本発明はこの要求に応えるものである。The present invention meets this need.

(先行技術) 従来、炭化水素の転化法忙おいて触媒としてシリカ・ア
ルミナ、結晶性アルミノシリ゛ケートなどが用いられて
きたことは当業界において周知である。
(Prior Art) It is well known in the art that silica/alumina, crystalline aluminosilicate, etc. have been used as catalysts in hydrocarbon conversion processes.

さて、1970年代にモーピルオイル社はメタノールや
ジメチルエーテルから高品質ガソリンを主成分とする炭
1ヒ水素%:製造する形状選択性触媒として、ZSM−
5型ゼオライト触媒を開発した。このゼオライトは従来
のゼオライトと異なり組成SiOν′Al2O3比を自
由に制御できることや、耐熱性が極めて高いなどの優れ
た性質をもっており、その特長を生かすことにより、メ
タノールやジメチルエーテルの転化反応の主生成物を低
級オレフィンとすることも可能である。
Now, in the 1970s, Mopil Oil Co., Ltd. developed ZSM- as a shape-selective catalyst for producing carbon 1% arsenic from methanol and dimethyl ether using high-quality gasoline as its main component.
We have developed a type 5 zeolite catalyst. Unlike conventional zeolites, this zeolite has excellent properties such as the ability to freely control the composition SiOν'Al2O3 ratio and extremely high heat resistance. It is also possible to use lower olefins.

しかしながら、高い選択率でエチレンおよびプロピレン
を得るためには高い反応温度を必要とし、28M5型ゼ
オライト触媒でも活性の持続期間が十分でなく短期間で
失活′してしまう。
However, in order to obtain ethylene and propylene with high selectivity, a high reaction temperature is required, and even the 28M5 type zeolite catalyst does not have a sufficient duration of activity and is deactivated in a short period of time.

本発明者らはZSM−5型触謀に比べて活性持続期間の
長い触媒の開発研究を行なった結果、アルカリ土類金属
含有ゼオライト触媒(特願昭57−205839)およ
びアルカリ土類全屈変性アルカリ土類金属含有、ゼオラ
イト触媒(特願昭59−105530)の開発に成功し
た。
As a result of research and development of a catalyst with a longer activity duration than that of the ZSM-5 type catalyst, the present inventors have developed an alkaline earth metal-containing zeolite catalyst (patent application No. 57-205839) and an alkaline earth metal-containing zeolite catalyst (patent application No. 57-205839). Succeeded in developing a zeolite catalyst containing alkaline earth metals (Japanese Patent Application No. 105530/1982).

これらの触媒は高温においてZSM−5型触媒に比べて
長い触媒寿命を有するとはいうものの触媒寿命をさら圧
延長して長期間安全した運転が可能となる方法の開発が
求められてきた。
Although these catalysts have a longer catalyst life than the ZSM-5 type catalyst at high temperatures, there has been a need to develop a method to further extend the catalyst life and enable safe operation over a long period of time.

(発明の目的、構成、効果) そこで本発明者らは触媒の改良とは別にメタノールおよ
び/またはジメチルエーテルから低級オレフィン、こと
にエチレンおよびプロピレンを製造する方法のプロセス
条件について検討を行なった。
(Purpose, Structure, and Effects of the Invention) Therefore, in addition to improving the catalyst, the present inventors investigated the process conditions of a method for producing lower olefins, particularly ethylene and propylene, from methanol and/or dimethyl ether.

゛ 心配のとおり、メタノールやジメチルエーテルから
低級オレフィンを主成分とする炭化水素を製造するには
反応温度をできるだけ高くする方が有利であるが、反応
温度を高めることは触媒寿命の急激な低下をもたらす。
゛ As feared, it is advantageous to raise the reaction temperature as high as possible in order to produce hydrocarbons mainly composed of lower olefins from methanol or dimethyl ether, but increasing the reaction temperature leads to a rapid reduction in catalyst life. .

たとえば、このメタノールおよび/またはジメチルエー
テルからオレフィンを製造する際に通常用いられる温度
においては、反応温度を約50℃高くすると触媒寿命は
通常的1/2となり長期間安定した運転を続けるとの目
的に反することになる。無理して運転を継続すると、触
媒活性は極度に低下してしまいこの活性が極度に低下し
た触媒はたとえ再生処理を行なったとしてももはや十分
に活性を復活することはできない。
For example, at the temperatures normally used when producing olefins from methanol and/or dimethyl ether, raising the reaction temperature by about 50°C will shorten the catalyst life by half, which is useful for maintaining stable operation for a long period of time. It will be contrary. If the operation is continued forcibly, the catalyst activity will be extremely reduced, and a catalyst whose activity has been extremely reduced will no longer be able to sufficiently restore its activity even if it is regenerated.

そこで本発明者らは反応温度を一定に保ったままエチレ
ンおよびプロピレンへの選択性を高める方法を鋭意研究
した結果、反応生成物中からエチレンおよびプロピレン
を除去した残余のすべてまたは一部を反応系中へ再循環
することによってエチレンおよびプロピレンの収率な高
めることがゼきることを見出した。この生成物の再循環
によっても原料のメタノールおよび/またはジメチルエ
ーテルの低級オレフィンへの転化反応はほとんど阻害さ
れず、結果として低い反応温度でエチレンおよびプロピ
レンを高い選択率で得ることが可能となり、触媒寿命が
延長されることを知った。さらKこの反応生成物の再循
環は触媒床の局所過熱を避ける上で非常に良好な結果を
与えることも判った。すなわちメタノールからジメチル
エーテルへ移る反応は顕著な発熱反応であり、またジメ
チルエーテルからプロピレンなどのオレフィンへの転化
反応も発熱反応であるために反応熱の除去が重要な課題
となり反応熱を十分適切に除去できないと触媒床が過熱
し触媒寿命の低下の原因となる。
Therefore, the present inventors conducted intensive research on a method to increase the selectivity to ethylene and propylene while keeping the reaction temperature constant. It has been found that the yields of ethylene and propylene can be increased by recycling them into the reactor. Even by recycling this product, the conversion reaction of the raw materials methanol and/or dimethyl ether to lower olefins is hardly inhibited, and as a result, it is possible to obtain ethylene and propylene with high selectivity at low reaction temperatures, and the catalyst life span. I learned that it will be extended. It has also been found that recycling this reaction product gives very good results in avoiding local overheating of the catalyst bed. In other words, the reaction from methanol to dimethyl ether is a significantly exothermic reaction, and the conversion reaction from dimethyl ether to olefins such as propylene is also an exothermic reaction, so the removal of the reaction heat is an important issue and cannot be removed adequately. This causes the catalyst bed to overheat and shorten the catalyst life.

一方炭化水素の分解による低級オレフーインの製造は強
い吸熱反応であるため、メタノールからオレフィンを製
造する際の強い発熱を再循環する炭化水素の分解反応に
よる吸熱が一部打ち消すことになり触媒床の温度制御が
容易となる利益が得られることを見出して本発明を完成
した。
On the other hand, since the production of lower olefins by decomposition of hydrocarbons is a strongly endothermic reaction, the strong exothermic heat generated during the production of olefins from methanol is recycled, which partially cancels out the endothermic reaction of the hydrocarbon decomposition reaction, resulting in the temperature of the catalyst bed. The present invention was completed after discovering that the advantage of easy control can be obtained.

従って本発明はメタノールおよび/またはジメチルエー
テルの転化反応において、エチレンおよびプロピレンの
収率を増やす方法として反応生成物からエチレンおよび
プロピレンヲ除去した残余の全部または一部を再循環す
ることによりエチレンおよびプロピレンの収率な高め。
Therefore, the present invention provides a method for increasing the yield of ethylene and propylene in methanol and/or dimethyl ether conversion reactions by recycling all or part of the residue after removing ethylene and propylene from the reaction product. High yield.

さらに反応熱の希釈を行なう方法に関する。Furthermore, it relates to a method for diluting the heat of reaction.

本反応に用いるゼオライト触媒としては、B。The zeolite catalyst used in this reaction is B.

T、Xなどの芳香族化合物はコーク前駆体と見なされ、
触媒寿命の低下をもたらす原因となるためB、 T、 
Xの生成は10%以下であるような触媒が望ましい。ま
たC2〜C5の低級オレフィンの生成割合が50%以上
である触媒が望ましい。
Aromatic compounds such as T, X are considered coke precursors,
B, T, as it causes a decrease in catalyst life.
A catalyst that produces 10% or less of X is desirable. Further, a catalyst in which the production ratio of C2 to C5 lower olefins is 50% or more is desirable.

これらの条件を満足するゼオライト触媒を具体的に示せ
ば前記したアルカリ土類金属含有ゼオラ′イトおよびア
ルカリ土類金属変性アルカリ土類金属含有ゼオライトの
外にアルカリ土類金属析出変性ZSM糸ゼオライト触媒
(特願昭58−234747)およびZSM系触媒とア
ルカリ土類金属含有化合物とを固体状態で単に混合する
だけの処理で得られたアルカリ土類金属変性ZSM系ゼ
オライト触媒を挙げることができる。ここで7.8M系
ゼオライト触媒としてはZSM−5,78M−1i、Z
SM−12,ZSM−23、78M  35 、78 
M ’ 38 オヨヒ78 M−48を挙げることがで
き、特にZ S M −5が好ましい。
Specific examples of zeolite catalysts that satisfy these conditions include the above-mentioned alkaline earth metal-containing zeolite and alkaline earth metal-modified alkaline earth metal-containing zeolite, as well as alkaline earth metal precipitated modified ZSM thread zeolite catalysts ( Examples include Japanese Patent Application No. 58-234747) and an alkaline earth metal-modified ZSM zeolite catalyst obtained by simply mixing a ZSM catalyst and an alkaline earth metal-containing compound in a solid state. Here, as the 7.8M zeolite catalyst, ZSM-5, 78M-1i, Z
SM-12, ZSM-23, 78M 35, 78
M'38 Oyohi78 M-48 can be mentioned, and Z SM-5 is particularly preferred.

前記した如く反応生成物の再循環を行なうことは、エチ
レンおよびプロピレンの収率向上に役立つばかりでなく
5反応熱の除去および希釈にも優れた効果を有する。一
般にメタノールおよび/またはジメチルエーテルの転化
反応はゼオライト触媒の存在下では発熱が極めて大きく
急速に起こるため、反応熱の除去や希釈を行ない、反応
温度の制御を行なう方法が今までに椋々提案されている
。通常反応熱を希釈するためには水や窒素ガスの使用が
提案されており、反応熱の希釈のためにはそれなりの効
果がある。
Recirculating the reaction product as described above not only helps improve the yield of ethylene and propylene, but also has an excellent effect on removing the heat of reaction and diluting the reaction product. Generally, in the presence of a zeolite catalyst, the conversion reaction of methanol and/or dimethyl ether generates an extremely large amount of heat and rapidly occurs, so many methods have been proposed to control the reaction temperature by removing or diluting the reaction heat. There is. The use of water or nitrogen gas is usually proposed to dilute the heat of reaction, and this is effective to some extent.

また煙道ガスも残存している酸素や、たとえば亜硫酸ガ
スの如き不純物を除去して希釈用ガスとして使用するこ
ともでき、炭酸ガスも同じ目的で使用することができる
。しかしながらこれらの物質の使用では単に反応熱が希
釈されるだけでしかない。
Flue gas can also be used as a diluent gas after removing residual oxygen and impurities such as sulfur dioxide, and carbon dioxide can also be used for the same purpose. However, the use of these substances merely dilutes the heat of reaction.

本発明に従い希釈用として反応生成物の一部を再循環さ
せれば希釈効果が得られることは当然として、さらにエ
チレンおよびプ占ピレンの収率の向上と合せて極めて強
い反応熱の除去ないしは緩和作用が得られ、従来認めら
れてきた運転操作の困難性が著しく除去される。
It goes without saying that if a part of the reaction product is recycled for dilution according to the present invention, a dilution effect can be obtained, and in addition to improving the yield of ethylene and pyrene, extremely strong reaction heat can be removed or alleviated. The difficulty of driving, which has hitherto been recognized, is significantly eliminated.

再循環に用いる成分としては、反応生成物からエチレン
およびプロピレンを除いた留分の全部または一部が用い
られる。BT、Xなどの芳香族化合物は触媒のコーキン
グの原因ともなるし、またそれ自体化学工業原料として
優れた価値を有するので再循環する留分からは除去する
のが好ましい。脂肪族炭化水素であっても炭素数の多い
炭化水素は反応でコーキングを起こしたり、タール状物
質な生成したりしやすいので再循環する炭化水素の炭素
数は8以下とするのが好ましく、さらにはC6よりも高
位の炭化水素は高度に分解しなければエチレン、プロピ
レンには変化せず、触媒に負担がかかり、ま、た環化芳
香族化な起こしやすいのでエチレン、プロピレンの得率
を高めるためにはあまり適当ではなく、再循環する炭化
水素の炭素数は6以下とするのがことに適当である。ブ
チレンはそれ自体低級オレフィンであり、8BA、’M
EK、  ブチpyセロソルブなどの各種溶媒、酸化防
止剤、農薬。
As a component used for recycling, all or part of the fraction obtained by removing ethylene and propylene from the reaction product is used. Aromatic compounds such as BT and X cause coking of the catalyst and have excellent value as raw materials for chemical industries, so it is preferable to remove them from the recycled fraction. Hydrocarbons with a large number of carbon atoms, even aliphatic hydrocarbons, tend to cause coking or produce tar-like substances in reactions, so it is preferable that the number of carbon atoms in the recirculated hydrocarbons is 8 or less. Hydrocarbons higher than C6 cannot be converted into ethylene and propylene unless they are highly decomposed, which places a burden on the catalyst and tends to cause cyclization and aromatization, increasing the yield of ethylene and propylene. It is particularly suitable for the recycled hydrocarbons to have a carbon number of less than 6. Butylene is itself a lower olefin, 8BA, 'M
Various solvents such as EK, butipy cellosolve, antioxidants, and pesticides.

界面活性剤など各種用途の合成原料となるのであえて再
循環する必要もない。
There is no need to recycle it because it is used as a synthetic raw material for various uses such as surfactants.

また再循環される留分から除かれた04以上の成分は、
場合によっては、さらに水添後熱分解や水蒸気分解して
低級オレフィンにすることもできる。
In addition, the components of 04 and above removed from the recycled fraction are:
In some cases, lower olefins can be produced by further thermal decomposition or steam decomposition after hydrogenation.

反応は、広い範囲の条件で行なうことができる。例えば
反応温度300〜650℃、新原料の重量時間空間速度
0.1〜20hr、好ましくは1〜10hr、全圧力0
.1〜100気圧、好ましくは0.5〜10気圧の条件
下で行なうことができる。本発明方法では特に苛酷な条
件を採用しなくても高いエチレンおよびプロピレン収車
が得られるので1反応源度は600℃以下。
The reaction can be carried out under a wide range of conditions. For example, the reaction temperature is 300 to 650°C, the weight hourly space velocity of the new raw material is 0.1 to 20 hr, preferably 1 to 10 hr, and the total pressure is 0.
.. It can be carried out under conditions of 1 to 100 atm, preferably 0.5 to 10 atm. In the method of the present invention, high ethylene and propylene yields can be obtained without particularly harsh conditions, so the degree of one reaction source is 600°C or less.

特に550℃以下とし、触媒の活性を長い期間持続させ
るのが好ましい。また上記した空間速度は新原料、すな
わちメタノールおよび/またはジメチルエーテルについ
てのものであり、再循環される炭化水素をも含めて考え
た空間速度はそれよりも当然に高くなり、通常は約1.
2〜1.8倍になる。
In particular, it is preferable to keep the temperature at 550° C. or lower to maintain the activity of the catalyst for a long period of time. Furthermore, the space velocities mentioned above are for new raw materials, ie methanol and/or dimethyl ether, and the space velocities considering recycled hydrocarbons are naturally higher than that, usually about 1.
It becomes 2 to 1.8 times.

本発明方法では反応生成物の一部の再循環により反応熱
の低下および希釈が行なわれるが、勿論従来法における
ごとく原料は水蒸気あるいは不活性ガス、例えば窒素、
アルゴン、炭酸ガス、煙道ガス等で希釈して触媒上に供
給することも可能であり、かつ一般には好ましい。
In the process of the present invention, the heat of reaction is reduced and diluted by recycling a portion of the reaction product, but, of course, as in the conventional process, the raw material is water vapor or an inert gas, such as nitrogen,
It is also possible and generally preferred to feed it over the catalyst diluted with argon, carbon dioxide, flue gas, etc.

本発明の方法において、生成物の流れは水蒸気、炭化水
素、未反応原料から成り1反応条件を適当に設定するこ
とにより炭化水素中のエチレン、プロピレン等の低級オ
レフィンの割合を高めることができる。水蒸気および炭
化水素生成物は公知の方法によって互いに分離、精製さ
れる。
In the process of the present invention, the product stream consists of steam, hydrocarbons, and unreacted raw materials, and by appropriately setting the reaction conditions, the proportion of lower olefins such as ethylene and propylene in the hydrocarbons can be increased. The steam and hydrocarbon products are separated and purified from each other by known methods.

本発明の低級オレフィンの製造方法においては、メタノ
ールもジメチルエーテルも共に出発原料であるので選択
率の計算にあたってはメタノールから生じたジメチルエ
ーテルは未反応原料とみなして良い。
In the method for producing lower olefins of the present invention, both methanol and dimethyl ether are starting materials, so when calculating selectivity, dimethyl ether produced from methanol may be regarded as an unreacted material.

(実施例など) 以下本発明を実施例などKより説明するが、本発明はそ
の要旨を越えない限りこれに限定されるものではない。
(Examples, etc.) The present invention will be described below with reference to Examples, etc., but the present invention is not limited thereto unless it exceeds the gist thereof.

参考例1 硝酸アルミニウム9水和物1.14.9と酢酸カルシウ
ム1水和物1.34Q−水901)に溶かしA液とし、
キャタロイド5I−30水ガラス(触媒化成■、 8i
02 30.5%t Na2O0,42%)601)ヲ
水40Iに溶かし、これをB液とした。激しく攪拌しな
がらA液中KB液を加え、次に水2ONK水酸化ナトリ
ウム1.26.9を溶かしたものを加えた。更に水30
JIにテトラプロピルアンモニウムブロマイド8.1)
.9’に溶かしたものを加え、約10分間攪拌を続けて
、水性ゲル混合物を得た。この仕込み七ル比は3 i 
Q2/At203=200である。
Reference Example 1 Aluminum nitrate nonahydrate 1.14.9 and calcium acetate monohydrate 1.34Q - dissolved in water 901) to make solution A,
Cataloid 5I-30 water glass (Catalyst Chemical ■, 8i
02 30.5%t Na2O0.42%) 601) Dissolved in 40I of water and used as solution B. The KB solution in the A solution was added while stirring vigorously, and then a solution of 2ONK sodium hydroxide in water and 1.26.9% was added. 30 more water
JI with tetrapropylammonium bromide 8.1)
.. 9' was added and stirring continued for about 10 minutes to obtain an aqueous gel mixture. This preparation ratio is 3i
Q2/At203=200.

この水性ゲル混合物を内容積300 mlのオートクレ
ーブに仕込み、自己圧下160’Cで18時間攪拌しな
がら(500r、p、m )  水熱処理をした。反応
生成物は遠心分離器を用いて固体成分と溶液部に分け、
固体成分は充分水洗をほどこし、更に120℃で5時間
乾燥した。次に空気中520℃で5〜lO時間処理し、
この焼成済ゼオライ)IJI対して0.6N塩酸を15
−の割合で混合し、室温で24時間攪拌処理をした。そ
の後室温で充分水洗の後、120”Cで乾燥し次いで5
20℃で5時間空気中で焼成を行い、水素型に変換した
。(8i=43.2%、Aj=0.42%、Ca−0,
70%) このようにして得られたCa含有ゼオライト5gを、水
10づにCa (CH3COO)2− H2O3,14
,S’を入れた溶液と混合した。この混合物を約8Q’
Cで20時間保った後、混合物を乾燥器中100〜1)
0℃で蒸発乾固させた。しかる後、空気中200℃で2
時間、500℃セ18時間焼成してCa変性Ca含有ゼ
オライトを得た。
This aqueous gel mixture was charged into an autoclave with an internal volume of 300 ml, and hydrothermally treated at 160'C under autogenous pressure for 18 hours with stirring (500 r, p, m2). The reaction product is separated into a solid component and a solution part using a centrifuge.
The solid components were thoroughly washed with water and further dried at 120°C for 5 hours. Then, treated in air at 520°C for 5 to 10 hours,
Add 0.6N hydrochloric acid to this calcined zeolite (IJI) for 15 minutes.
- and stirred at room temperature for 24 hours. After that, it was thoroughly washed with water at room temperature, dried at 120"C, and then
Calcination was performed in air at 20° C. for 5 hours to convert it into a hydrogen type. (8i=43.2%, Aj=0.42%, Ca-0,
70%) 5 g of the Ca-containing zeolite thus obtained was added to 10 parts of water with Ca (CH3COO)2- H2O3,14
, S'. About 8Q' of this mixture
After keeping for 20 hours at C, the mixture was heated to 100-1)
Evaporate to dryness at 0°C. After that, in air at 200℃
The zeolite was calcined at 500° C. for 18 hours to obtain a Ca-modified Ca-containing zeolite.

比較例1 参考例1で得たゼオライト粉末を圧力400KII/−
で打錠し、次いでこれな粉砕して10〜20メツシユに
そろえたもの2mlを内径1゜關の反応管に充填した。
Comparative Example 1 The zeolite powder obtained in Reference Example 1 was heated to a pressure of 400KII/-
The tablets were then crushed into 10 to 20 meshes, and 2 ml of the tablets were filled into a reaction tube with an inner diameter of 1°.

液状メタノールを41rL1mlnで送られてくるアル
ゴンガスと混合してはぼ常圧で反応管に送り、反応@度
500’Cで反応を行ない生成物の分析をガスクロマト
グラフを用いて行なった。本発明方法の効果を評価する
基準となるこのメタノールのみを反応原料として用いる
実験を同一の反応条件でくり返えし行ない、その結果の
平均値および変動中な示すため最小値および最大値をも
併せて第1表に示した。
Liquid methanol was mixed with argon gas at 41 rL and 1 ml, and sent to the reaction tube at approximately normal pressure, and the reaction was carried out at 500'C, and the product was analyzed using a gas chromatograph. The experiment using only methanol as a reaction raw material, which serves as a standard for evaluating the effectiveness of the method of the present invention, was repeated under the same reaction conditions, and the average value and minimum and maximum values of the results were also recorded to show fluctuations. They are also shown in Table 1.

実施例1 反応装置上の制約から反応生成物の一部を反応器に再循
環する代りに比較例1の原料に1−ブテンのガスを4−
3vJ/minで添加したものを原料とし、比較例1と
同じ装置および同じ条件で反応を行い、生成物の分析も
同様に行なった。
Example 1 Due to constraints on the reactor, instead of recycling a part of the reaction product to the reactor, 1-butene gas was added to the raw material of Comparative Example 1 with 4-
Using the material added at 3 vJ/min as a raw material, the reaction was carried out using the same equipment and under the same conditions as in Comparative Example 1, and the product was analyzed in the same manner.

結果を第1表に示す。この実験はカーボンベースで比較
例IK対し1.4048倍の原料供給速度に相当する。
The results are shown in Table 1. This experiment corresponds to a raw material feed rate 1.4048 times that of Comparative Example IK on a carbon basis.

この値は比較例1で得られたC4〜C6脂肪族炭化水素
を”循環し新原料と共に反応器に供給した場合とカーボ
ンベースではほぼ同一である。反応生成物中のエチレン
(C2’)+プロピレン(C3’)のカーボンベースで
の割合は比較例1の45.75%から41.90%に低
下しているが、カーボンベースでの供給速度が1.40
48倍になっていることを考えるとC2′十〇3′の収
量は比較例1.に比べて1.29倍に増加したことにな
る。添加したl−ブテンな反応生成物の一部な循環した
ものと仮定して02 +03へのカーボンベースの選択
率を求め°ると58.86係となる。
This value is almost the same on a carbon basis as in the case where the C4-C6 aliphatic hydrocarbon obtained in Comparative Example 1 was recycled and supplied to the reactor together with the new raw material.Ethylene (C2')+ in the reaction product The carbon-based proportion of propylene (C3') has decreased from 45.75% in Comparative Example 1 to 41.90%, but the carbon-based supply rate is 1.40%.
Considering that the increase is 48 times, the yield of C2'103' is that of Comparative Example 1. This is an increase of 1.29 times compared to . Assuming that a portion of the added l-butene reaction product is recycled, the selectivity of the carbon base to 02+03 is determined to be 58.86.

実施例2 実施例1の1−ブテン4.3ml/minに代えてi−
ブテンのガスを4.8ml/min添加した場合につい
て実施例1と同様に実験を行った。結果を第1表に示す
。この実験結果の解釈も実施例1で記したと同様に行な
うことができる。
Example 2 In place of 4.3 ml/min of 1-butene in Example 1, i-
An experiment was conducted in the same manner as in Example 1 for the case where butene gas was added at a rate of 4.8 ml/min. The results are shown in Table 1. The results of this experiment can be interpreted in the same manner as described in Example 1.

実施例1および2においては新原料に対してカーボンベ
ースで約40〜45%に相当する量の反応生成物を循環
したことになるが、この場合には反応生成物中のC4〜
C6成分のカーボンるにつれC4〜C6の成分の循li
I量をさらに増加しうろことを示している。
In Examples 1 and 2, the reaction product was recycled in an amount equivalent to about 40 to 45% on a carbon basis with respect to the new raw material, but in this case, C4 to C4 in the reaction product was recycled.
As the C6 component carbon increases, the C4 to C6 components circulate.
It is shown that the amount of I is further increased.

実施例3 i−ブテンのガスの供給量k 1).4 WLl/mi
 nに増加した点を除いて実施例2と全く同様に操作し
た。結果な第1表に示す。
Example 3 Supply amount k of i-butene gas 1). 4 WLl/mi
The operation was carried out in exactly the same manner as in Example 2 except that n was increased. The results are shown in Table 1.

実施例4 1−ブテンのガスの供給量を16.5 mJ/minに
増加した点を除いて実施例2と全く同様に操作した。結
果1に第1表に示す。
Example 4 The operation was carried out in the same manner as in Example 2 except that the amount of 1-butene gas supplied was increased to 16.5 mJ/min. The results are shown in Table 1.

実施例3ではi−ブてンの添加量は新原料に対しカーボ
ンベースで107.254.そして!l!施例4では1
54.71%に相当する。この場合には反応生成物中の
C4〜C6成分のカーボンベースでの量は添加したi−
ブテンのカーボンベースでの量を下廻っている。この実
施例1〜4の結果は、本発明方法の実施忙適白な炭化水
素の再循環し5る量は運転を継続するにつれ自動的にあ
る一定値に落ち着くことを示している。しかし勿論再循
環量をこの自動的に定まる値とは異った値となるように
運転条件を設定することも可能である。
In Example 3, the amount of i-butene added was 107.254% on a carbon basis with respect to the new raw material. and! l! 1 in Example 4
This corresponds to 54.71%. In this case, the amount of C4 to C6 components in the reaction product on a carbon basis is determined by the amount of i-
This is lower than the amount of butene on a carbon basis. The results of Examples 1 to 4 show that the amount of hydrocarbon recirculation during the implementation of the process of the invention automatically settles to a certain value as operation continues. However, it is of course possible to set the operating conditions so that the recirculation amount is a value different from this automatically determined value.

実施例5 実施例1の1−ブテンのガス4.3mJ/minの添加
に代えて1−ヘキセンを液体で計算して2@j / h
rの割合で添加した以外は実施例1と全く同様に操作し
た。結果を第1表に示す。
Example 5 Instead of adding 1-butene gas at a rate of 4.3 mJ/min in Example 1, 1-hexene was calculated as a liquid at 2@j/h.
The operation was carried out in exactly the same manner as in Example 1, except that the addition was carried out at a ratio of r. The results are shown in Table 1.

実施例6 実施例5の1−ヘキセン2ml/hrの添加九代えて1
−オクテンを液体で計算して21nl/hrの割合で添
加した点を除いて実施例5と全く同様に操作した。結果
を第1表に示す。
Example 6 Addition of 2 ml/hr of 1-hexene in Example 5 instead of 1
-Octene was operated in exactly the same manner as in Example 5, except that octene was added at a rate of 21 nl/hr calculated as a liquid. The results are shown in Table 1.

実施例5の1−ヘキセンを液体で2 TrLl / h
rの割合で添加することは新原料に対しカーボンベース
で90.25%の再循環に相当し、実施例6の1−オク
テン2 ml / hrの添加は同じく1)0.96%
の再循環に相当する。エチレンおよびプロピレンの生成
物中におけるカーボンベースの割合およびこの添加を再
循環と考えた仮想のカーボンペースでの選択率を番よば
同一水準のカーボンペースでの再循環量である実施例3
と比較してみると、割合では実施例5.3および6の順
に低下し、そし【選択率は実施例3,5゜6の順に低下
する。しかし、これら3者間での変動中はそれはと大ぎ
くはなく、比較例1の選択率に比べればいずれも顕著に
高い価を示している。高沸点構造不明炭化水素の生成割
合は実施例3.5.6の順に高くなり、再循環する炭化
水素の炭素数が増すに従って重質物の生成が増え触媒の
汚損およびコーキングの危険が増すことを示している。
1-hexene from Example 5 in liquid form at 2 TrLl/h
The addition at a rate of r corresponds to a recycle of 90.25% on a carbon basis for the fresh feedstock, and the addition of 2 ml/hr of 1-octene in Example 6 is also 1) 0.96%.
corresponds to the recirculation of Example 3 The percentage of carbon base in the product of ethylene and propylene and the selectivity at a hypothetical carbon pace considering this addition as recycle are the amount of recycle at the same level of carbon pace.
When compared with , the ratio decreases in the order of Examples 5.3 and 6, and the selectivity decreases in the order of Examples 3, 5.6. However, the variation among these three is not that great, and compared to the selectivity of Comparative Example 1, all of them show a significantly higher value. The production rate of high-boiling hydrocarbons of unknown structure increases in the order of Examples 3, 5, and 6, indicating that as the number of carbon atoms in the recirculated hydrocarbon increases, the production of heavy substances increases and the risk of catalyst fouling and coking increases. It shows.

壷I  C,オレフィンと06パラフインの合計秦2 
ジメチルエーテル *3  高沸点構造不明炭化水素 秦4 エチレンとプロピレンとの合計 ※5 比較例1を基準にしたカーボンペールでの供給量
※6 添加した炭化水素を反応生成物の再循環とみて計
算した仮想のエチレンとプロピレンへの選択率の合計(
AxB)
Pot I C, total Qin 2 of olefin and 06 paraffin
Dimethyl ether *3 High boiling point hydrocarbon with unknown structure The sum of the selectivities to ethylene and propylene (
AxB)

Claims (6)

【特許請求の範囲】[Claims] (1)メタノールおよび/またはジメチルエーテルを気
相で、重量時間空間速度0.1〜20hr^−^1、反
応温度300〜650℃および0.1〜100気圧の全
圧力下、アルカリ土類金属含有ゼオライト、アルカリ土
類金属変性アルカリ土類金属含有ゼオライトおよびアル
カリ土類金属変性ZSM系ゼオライトからなる群から選
択された少なくとも一種の触媒と接触させ炭化水素への
転化反応を行なわせ、この反応生成物からC_2および
C_3オレフィンを除去した残余の留分のすべてまたは
一部を反応系に再循環することを特徴とする低級オレフ
ィンの製造法。
(1) Methanol and/or dimethyl ether in the gas phase, weight hourly space velocity of 0.1 to 20 hr^-^1, reaction temperature of 300 to 650°C, and total pressure of 0.1 to 100 atm, containing alkaline earth metals. The reaction product is brought into contact with at least one catalyst selected from the group consisting of zeolite, alkaline earth metal-modified alkaline earth metal-containing zeolite, and alkaline earth metal-modified ZSM-based zeolite to carry out a conversion reaction to hydrocarbons. A method for producing lower olefins, which comprises recycling all or a portion of the remaining fraction after removing C_2 and C_3 olefins from C_2 and C_3 olefins to the reaction system.
(2)再循環する留分が該残余の留分から芳香族系成分
を除去した残りの留分である特許請求の範囲第1項に記
載の製造法。
(2) The production method according to claim 1, wherein the recycled fraction is the remaining fraction after aromatic components have been removed from the remaining fraction.
(3)再循環する留分がC_4〜C_8の炭化水素類で
ある特許請求の範囲第2項に記載の製造法。
(3) The production method according to claim 2, wherein the recycled fraction is C_4 to C_8 hydrocarbons.
(4)再循環する留分がC_4〜C_6の炭化水素類で
ある特許請求の範囲第3項に記載の製造法。
(4) The production method according to claim 3, wherein the recycled fraction is C_4 to C_6 hydrocarbons.
(5)再循環する留分がC_5および/またはC_6の
炭化水素類である特許請求の範囲第4項に記載の製造法
(5) The production method according to claim 4, wherein the recycled fraction is C_5 and/or C_6 hydrocarbons.
(6)反応温度が300〜600℃である特許請求の範
囲第1項ないし第5項のいずれかに記載の製造法。
(6) The manufacturing method according to any one of claims 1 to 5, wherein the reaction temperature is 300 to 600°C.
JP14628984A 1984-07-14 1984-07-14 Preraration of lower olefin Granted JPS6124526A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14628984A JPS6124526A (en) 1984-07-14 1984-07-14 Preraration of lower olefin
DE3524890A DE3524890C2 (en) 1984-07-14 1985-07-12 Process for the production of ethylene and propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14628984A JPS6124526A (en) 1984-07-14 1984-07-14 Preraration of lower olefin

Publications (2)

Publication Number Publication Date
JPS6124526A true JPS6124526A (en) 1986-02-03
JPS6245210B2 JPS6245210B2 (en) 1987-09-25

Family

ID=15404318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14628984A Granted JPS6124526A (en) 1984-07-14 1984-07-14 Preraration of lower olefin

Country Status (2)

Country Link
JP (1) JPS6124526A (en)
DE (1) DE3524890C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137769A (en) * 2005-11-14 2007-06-07 Jgc Corp Method for producing lower olefin
WO2008029631A1 (en) * 2006-08-30 2008-03-13 Jgc Corporation Propylene production process and propylene production apparatus
JP2008056593A (en) * 2006-08-30 2008-03-13 Jgc Corp Process for producing propylene
WO2008035743A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Chemical Corporation Process for production of propylene
JP2008100994A (en) * 2006-09-21 2008-05-01 Mitsubishi Chemicals Corp Method for producing propylene
JP2008106046A (en) * 2006-09-28 2008-05-08 Jgc Corp Method for producing propylene and apparatus for producing propylene
US8450550B2 (en) 2006-09-28 2013-05-28 Jgc Corporation Process and apparatus for producing propylene

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229952A3 (en) * 1985-12-30 1988-05-11 Mobil Oil Corporation A process for making light olefins from alcohols and ethers
JPS62207231A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Production of lower olefin
US6455749B1 (en) 1997-10-03 2002-09-24 Exxonmobil Chemical Patents, Inc. Method for increasing light olefin yield by conversion of a heavy hydrocarbon fraction of a product to light olefins
US6613950B1 (en) 2000-06-06 2003-09-02 Exxonmobil Chemical Patents Inc. Stripping hydrocarbon in an oxygenate conversion process
US6441261B1 (en) 2000-07-28 2002-08-27 Exxonmobil Chemical Patents Inc. High pressure oxygenate conversion process via diluent co-feed
US6486219B1 (en) 2000-09-27 2002-11-26 Exxonmobil Chemical Patents, Inc. Methanol, olefin, and hydrocarbon synthesis process
US6797851B2 (en) 2001-08-30 2004-09-28 Exxonmobil Chemical Patents Inc. Two catalyst process for making olefin
DE102005015923B4 (en) * 2005-04-06 2014-12-04 Air Liquide Global E&C Solutions Germany Gmbh Process for the preparation of C2 to C4 olefins from an oxygenate and steam containing feed stream
DE102005029399B4 (en) 2005-06-24 2015-03-05 Air Liquide Global E&C Solutions Germany Gmbh Process and plant for the production of C2-C4 olefins from methanol and / or dimethyl ether with increased yield
EP1955989B1 (en) * 2005-11-14 2017-01-25 JGC Corporation Method for production of lower olefin
CN101265151B (en) * 2008-04-24 2011-05-18 中国石油化工股份有限公司 Method for preparing light olefin from methanol or dimethyl ether
DE102011014892A1 (en) 2011-03-23 2012-09-27 Lurgi Gmbh Process and plant for the preparation of low molecular weight olefins
CN105585396B (en) * 2014-10-20 2018-03-20 中国石油化工股份有限公司 A kind of method by oxygenatedchemicals preparing low-carbon olefins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393265A (en) * 1981-07-24 1983-07-12 E. I. Du Pont De Nemours & Co. Light monoolefins from methanol and/or dimethyl ether
DE3228268A1 (en) * 1982-07-29 1984-02-02 Imhausen-Chemie GmbH, 7630 Lahr Process for the conversion of alcohols and/or aliphatic ethers into unsaturated hydrocarbons
AU567109B2 (en) * 1982-09-30 1987-11-12 Mobil Oil Corp. Catalytic conversion of methanol to light olefins

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137769A (en) * 2005-11-14 2007-06-07 Jgc Corp Method for producing lower olefin
WO2008029631A1 (en) * 2006-08-30 2008-03-13 Jgc Corporation Propylene production process and propylene production apparatus
JP2008056593A (en) * 2006-08-30 2008-03-13 Jgc Corp Process for producing propylene
WO2008035743A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Chemical Corporation Process for production of propylene
JP2008100994A (en) * 2006-09-21 2008-05-01 Mitsubishi Chemicals Corp Method for producing propylene
KR101435230B1 (en) * 2006-09-21 2014-08-28 미쓰비시 가가꾸 가부시키가이샤 Process for production of propylene
JP2008106046A (en) * 2006-09-28 2008-05-08 Jgc Corp Method for producing propylene and apparatus for producing propylene
US8450550B2 (en) 2006-09-28 2013-05-28 Jgc Corporation Process and apparatus for producing propylene

Also Published As

Publication number Publication date
DE3524890C2 (en) 1994-03-17
JPS6245210B2 (en) 1987-09-25
DE3524890A1 (en) 1986-01-23

Similar Documents

Publication Publication Date Title
JPS6124526A (en) Preraration of lower olefin
AU717902B2 (en) Use of transition metal containing small pore molecular sieve catalysts in oxygenate conversion
JP3057398B2 (en) How to convert hydrocarbons
EP1642641B1 (en) A catalyst and process for producing monocyclic aromatic hydrocarbons
EP0463768B1 (en) Zeolites
Corma et al. Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables
EP0162590B1 (en) Process for the production of hydrocarbons from hetero-substituted methanes
JP5135839B2 (en) Propylene production method
JP3938934B2 (en) Method for alkylating benzene-rich reformate using MCM-49
JPH02504263A (en) New zeolite SSZ-26
JPS59227976A (en) Conversion of methanol, dimethyl ether or both to olefins
US20130137913A1 (en) Process for the rejuvenation of a spent molecular sieve catalyst
KR100993397B1 (en) Process of catalytic cracking of hydrocarbon
US10556229B2 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin and method for regenerating composite catalyst
US4423273A (en) Preparation of olefins from methaol and/or dimethyl ether
JPS62238221A (en) Manufacture of butanes from propane
JPS6048488B2 (en) Method for catalytic conversion of butane to propane
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
US9120078B2 (en) Process for the preparation of an olefinic product, oxygenate conversion catalyst particles, and process for the manufacutre thereof
JPS6270325A (en) Production of lower olefin
JPH11180902A (en) Production of lower olefin
JPS61289049A (en) Production of propylene
EP0192289B1 (en) Process for the preparation of an aromatic hydrocarbons-containing mixture
JPS6270324A (en) Production of lower olefin
JPH08126844A (en) Hydrocarbon conversion catalyst and production of lower olefin and monocyclic aromatic hydrocarbon using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term