WO2008035743A1 - Process for production of propylene - Google Patents

Process for production of propylene Download PDF

Info

Publication number
WO2008035743A1
WO2008035743A1 PCT/JP2007/068299 JP2007068299W WO2008035743A1 WO 2008035743 A1 WO2008035743 A1 WO 2008035743A1 JP 2007068299 W JP2007068299 W JP 2007068299W WO 2008035743 A1 WO2008035743 A1 WO 2008035743A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
carbon atoms
reactor
rich
hydrocarbon
Prior art date
Application number
PCT/JP2007/068299
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Yamaguchi
Tohru Setoyama
Kagoto Nakagawa
Fumitaka Utsumi
Shinji Iwade
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020097005802A priority Critical patent/KR101435230B1/en
Publication of WO2008035743A1 publication Critical patent/WO2008035743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing propylene from a raw material mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether.
  • Patent Document 1 U.S. Pat.No. 6888038
  • a first object of the present invention is to provide a novel and economical process for producing propylene by reacting olefin having 4 or more carbon atoms with at least one of methanol and dimethyl ether.
  • the second object of the present invention is to provide a new and economical process that integrates this process and steam cracking.
  • the inventors of the present invention examined the reaction of obtaining propylene by reacting olefins having 4 or more carbon atoms with at least one of methanol and dimethyl ether, and obtained the following findings.
  • aromatic compounds and paraffins are also produced in trace amounts, and are contained in the reactor outlet fluid.
  • the concentration of paraffin in the reactor outlet fluid increases. Since noraffins hardly react in the reactor, paraffin concentrates and accumulates in the system when recycled to the reactor together with olefins having 4 or more carbon atoms. For this reason, it is preferable to extract a part of the fluid containing paraffins from the system.
  • the fluid to be extracted is preferably a fluid having a composition that can be effectively used.
  • the fluid to be extracted is preferably a fluid having a composition that can be used effectively.
  • the present inventors have found various problems in a method for producing propylene using olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether as raw materials, and solved these problems.
  • a process capable of producing propylene it was found that propylene could be produced in a high yield while suppressing deterioration of the catalyst using a small amount of raw materials.
  • the present invention has been achieved based on such findings, and the gist thereof is as follows.
  • At least a part of the aromatic compound contained in the reactor outlet effluent gas is withdrawn and contained in the reactor outlet effluent gas (reactor outlet gas)!
  • the total amount of aromatic compounds contained in all raw materials fed to the reactor is the total of olefins having 4 or more carbon atoms contained in all the raw materials.
  • the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in all raw materials fed to the reactor is 20 vol% or more.
  • Propylene production method characterized by controlling to volume% or less.
  • step (1) In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following step (1) , (2) and a process comprising (3A), characterized in that it comprises a process for producing propylene.
  • Step (1) olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied.
  • the molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%.
  • gas reactor outlet gas
  • Step (2) Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
  • the following steps (1 ), (2) and (3A) In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1 ), (2) and (3A).
  • Step (1) olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied.
  • the molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%.
  • gas reactor outlet gas
  • Step (2) Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
  • the reactor is composed of two or more reaction forces connected in series, the olefin raw material having 4 or more carbon atoms supplied to the reactor; methanol and dimethyl ether At least one of them; and at least one of the recycled hydrocarbon-containing fluid (D) is divided and supplied to the first-stage reaction section and the second-stage and subsequent reaction sections.
  • Propylene production method is composed of two or more reaction forces connected in series, the olefin raw material having 4 or more carbon atoms supplied to the reactor; methanol and dimethyl ether At least one of them; and at least one of the recycled hydrocarbon-containing fluid (D) is divided and supplied to the first-stage reaction section and the second-stage and subsequent reaction sections.
  • Step (1) olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% of the molar flow rate of the olefins at the inlet of the reactor.
  • Step (2) The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water
  • Step (3) In the step (2), the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) is separated into a fluid (F), at least a part (I) of the fluid (G) is recycled to the reactor, and the remaining fluid (H) is extracted from the process.
  • Propylene is produced by contacting a mixture of olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst.
  • a process for producing propylene characterized by comprising a process comprising the following steps (1), (2) and (3B):
  • Step (1) olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other olefins from the reactor outlet.
  • gas containing gas, paraffins, aromatic compounds and water reactor outlet gas
  • Step (2) The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water Step (3B):
  • the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) is separated into a fluid (F), and the fluid (F) is withdrawn from the process, and a part (I) of the fluid (G) is recycled to the reactor, and the remaining fluid Step of extracting (H) from the process
  • the reactor comprises two or more reaction parts connected in series, and the olefin raw material having 4 or more carbon atoms to be supplied to the reactor; methanol and dimethyl ether At least one of them; and at least one of the recycled hydrocarbon-containing fluid (I) is divided into a first-stage reaction section and a second-stage reaction section to be supplied.
  • a method for producing propylene which is characterized.
  • the total raw material supplied to the reactor has 4 or more carbon atoms.
  • a method for producing propylene characterized in that the total concentration (substrate concentration) of olefin, methanol, and dimethyl ether is controlled to 20 volume% or more and 80 volume% or less.
  • step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step
  • carbonization having 2 or less carbon atoms is performed by distillation.
  • a fluid rich in hydrogen and a fluid rich in hydrocarbons having 3 or more carbon atoms are separated, and the fluid rich in hydrocarbons having 3 or more carbon atoms is separated from the fluid rich in hydrocarbons and carbon atoms containing 3 carbon atoms by distillation.
  • a method for producing propylene comprising a step of separating the fluid into a hydrocarbon-rich fluid having a number of 4 or more.
  • step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step
  • carbonization of 3 or less carbon atoms is performed by distillation.
  • a fluid rich in hydrogen and a fluid rich in hydrocarbons having 4 or more carbon atoms are separated into a fluid rich in hydrocarbons having 3 or less carbon atoms, and a fluid rich in hydrocarbons having 2 or less carbon atoms by distillation.
  • step 1 condenses and removes moisture from the reactor outlet gas by a cooling and compression step, and then the number of carbon atoms by distillation.
  • a fluid containing a hydrocarbon having 2 or less hydrocarbons and a hydrocarbon having 3 carbon atoms is separated into a fluid rich in hydrocarbons having 3 or more carbon atoms, and the fluid rich in hydrocarbons having 3 or more carbon atoms is distilled by distillation.
  • a method for producing propylene comprising a step of separating a fluid rich in hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms.
  • the distillation has a carbon number of 3 or less.
  • a fluid rich in hydrocarbons and a fluid rich in hydrocarbons having 4 or more carbon atoms are separated, and the fluid rich in hydrocarbons having 3 or less carbon atoms is separated into hydrocarbons having 2 or less carbon atoms by distillation.
  • a process for producing propylene comprising a step of separating a fluid containing elemental hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms.
  • the total amount of aromatic compounds contained in all the raw materials fed to the reactor is olefin having 4 or more carbon atoms contained in all the raw materials.
  • Propylene production method characterized in that the molar ratio is less than 0.05 with respect to the total amount of
  • the catalyst is brought into contact with the catalyst under reaction conditions such that the molar flow rate of olefins having 4 or more carbon atoms is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other components are discharged from the reactor outlet.
  • the catalyst is brought into contact with the catalyst under reaction conditions such that the molar flow rate of olefins having 4 or more carbon atoms is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other components are discharged from the reactor outlet Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
  • the liquid fluid (M) has an aromatic concentration lower than that in the liquid fluid (M) by distillation! /,
  • the fluid (R) and the carbon number of 4 A method for producing propylene, characterized in that the hydrocarbon concentration is separated into a fluid (S) lower than the liquid fluid (M).
  • the fluid (R) may be any force selected from the fluids (K), (L), (M), (P), and (Q), and one or more fluids A method for producing propylene, which is returned to the distribution location.
  • the gas fluid (L) is obtained by distilling the fluid rich in hydrocarbons having 2 or less carbon atoms and 3 or more carbon atoms by distillation. It is separated into a fluid rich in hydrocarbons, and a fluid rich in hydrocarbons with 3 or more carbon atoms is distilled to enrich a fluid rich in hydrocarbons with 3 carbon atoms and rich in hydrocarbons with 4 or more carbon atoms.
  • a process for producing propylene which comprises a step of separating into a fluid (N).
  • the gas fluid (L) is obtained by distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms.
  • the hydrocarbon-rich fluid (N) is separated into the above-mentioned hydrocarbon-rich fluid, and further, the hydrocarbon-rich fluid having 3 or less carbon atoms is distilled, and the hydrocarbon-rich fluid having 3 or less carbon atoms and carbon 3 or less are obtained by distillation.
  • a process for producing propylene, comprising the step of separating into a hydrocarbon-rich fluid.
  • step 3C) includes distilling the gas fluid (L) into a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms. Is separated into a fluid rich in hydrocarbons containing 3 or more carbon atoms, and a fluid rich in hydrocarbons containing 3 or more carbon atoms is distilled into a fluid rich in hydrocarbons containing 3 carbon atoms. And a fluid rich in hydrocarbons (N) having 4 or more carbon atoms, and a process for producing propylene.
  • the gas fluid (L) is obtained by distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms and the carbon number. It is separated into a hydrocarbon-rich fluid (N) having 4 or more hydrocarbons, and a fluid rich in hydrocarbons having 3 or less carbon atoms is distilled by distillation to produce hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms.
  • a process for producing propylene comprising a step of separating the fluid into a fluid rich in hydrocarbons containing 3 carbon atoms.
  • the olefin raw material having 4 or more carbon atoms which is composed of two or more reaction parts connected in series with each other and fed to the reactor; At least one of methanol and dimethyl ether; and recycled charcoal
  • a method for producing propylene characterized in that at least one of the hydride-containing fluids is divided and supplied to a first-stage reaction section and a second-stage reaction section and thereafter.
  • the total amount of aromatic compounds contained in all the raw materials fed to the reactor is olefin having 4 or more carbon atoms contained in all the raw materials.
  • Propylene production method characterized in that the molar ratio is less than 0.05 with respect to the total amount of
  • the total concentration of aromatic compounds contained in at least one of the fluid (M) and the fluid (P) is less than 5.0% by volume.
  • [55] A method for producing propylene according to any one of [38] to [54], wherein the fluid (R) is supplied to a steam cracking process and used as a cracker raw material.
  • [56] A method for producing propylene according to [55], wherein at least a part of the fluid (R) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
  • the total amount of fluid supplied to the reactor is controlled by controlling the flow rates of the fluid (P), fluid (R), and fluid (S).
  • a method for producing propylene characterized in that the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in the raw material is controlled to 20 volume% or more and 80 volume% or less.
  • the fluid (R) may be any force selected from the fluids (K), (L), (N), (P), and (Q), When returning to the location of 1 or 2 or more fluids, by controlling the return location and flow rate of the fluid (R), olefin and methanol having 4 or more carbon atoms contained in all the raw materials supplied to the reactor Propylene production method characterized in that the total concentration of dimethyl ether and substrate (substrate concentration) is controlled to 20 vol% or more and 80 vol% or less.
  • the raw material in the method for producing propylene by reacting an olefin raw material having 4 or more carbon atoms with at least one of methanol and dimethyl ether in the presence of a catalyst, the raw material is highly advanced. Utilizing the power S to produce propylene in a high yield while suppressing catalyst deterioration.
  • FIG. 1 is a system diagram showing an example of an embodiment of a method for producing propylene of the present invention.
  • FIG. 2 is a system diagram showing another example of the embodiment of the method for producing propylene of the present invention.
  • FIG. 3 is a system diagram showing another example of the embodiment of the method for producing propylene of the present invention. Explanation of symbols
  • the method for producing propylene of the present invention is different from the method for producing propylene by contacting a olefin having 4 or more carbon atoms and a raw material containing at least one of methanol and dimethyl ether in the presence of a catalyst in a reactor.
  • a catalyst in a reactor.
  • at least a part of the aromatic compound contained in the reactor outlet effluent gas is extracted and at least a part of the olefins having 4 or more carbon atoms contained in the reactor outlet effluent gas.
  • the reactor is again brought into contact with the catalyst.
  • More specific first and second embodiments include those including the three steps (1), (2), (3A) or (1), (2), (3B) as described above, As long as it follows the purpose of solving the problem of the present invention, the force S including the four steps (1C), (2C), (3C) and (4C) as described above as the third embodiment There is no need to exclude the existence of other processes. Other processes may exist before and after the four processes, and other processes may exist between each process.
  • the "rich" in the present invention purity of 50 mol% or more of the desired product, preferably 7 0 mole 0/0 or more, more preferably 90 mol 0/0 or more, more preferably 95 mol 0/0 That means it is above.
  • “fluid rich in hydrocarbons having 4 or more carbon atoms (N)” means “hydrocarbons having 4 or more carbon atoms” of 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol%. More preferably, the fluid contains 95 mol% or more.
  • the catalyst used in the reaction according to the present invention is not particularly limited as long as it is a solid having a Bronsted acid point, and a conventionally known catalyst is used.
  • a conventionally known catalyst is used.
  • clay minerals such as kaolin; clay minerals and the like
  • Solid acid catalyst such as mesoporous silica alumina such as A1-MCM41; acidic type ion exchange resin; zeolites; aluminum phosphates;
  • solid acid catalysts those having a molecular sieving effect are preferred, and those having a very high acid strength are preferred.
  • zeolites and aluminum phosphates having a molecular sieve effect As a structure, for example, AEI, AET, AEL, AFI, AFO, AFS, AST, ATN, BEA, CAN, CHA, EMT, ERI, EUO, FAU, FER, LEV, LTL, MAZ, MEL, MFI, MOR, MTT, MTW, MWW, OFF, PAU, RHO, STT, TON, etc.
  • catalysts with a catalyst framework density of 18. OT / nm 3 or less are preferred.
  • MFI, MEL, MOR, MWW, FAU, BEA, and CHA are preferred.
  • MFI, MEL, MOR, MWW, CHA particularly preferably MFI, MEL, MWW, CHA.
  • the framework density (unit: T / nm 3 ) is the number of T atoms (among the atoms constituting the zeolite skeleton, other than oxygen) present per unit volume of zeolite (lnm 3 ). This value is determined by the structure of the zeolite.
  • the solid acid catalyst more preferably has micropores having a pore diameter of 0.3 to 0.9 nm, a BET specific surface area of 200 to 700 m 2 / g, and a pore volume of 0.3; Crystalline aluminosilicates, metamouth silicates, crystalline aluminum phosphates, etc. that are in the range of ⁇ 0.5 g / ml are preferred.
  • the pore diameter to say, International Zeolite Association (IZA) stipulated crystal 'formic white ladle 7 d Chiyanenore DiL diameter (Crystaliographic free diameter of the channels) and non, shape perfect circular pores (channels) In the case of, the diameter is indicated, and when the pore shape is elliptical, the short diameter is indicated.
  • IZA International Zeolite Association
  • aluminosilicates those having a SiO 2 / Al 2 O molar ratio of 10 or more are preferred.
  • the upper limit of the iO / AlO molar ratio is usually 10,000 or less. This is the molar ratio of Si ⁇ / Al ⁇ .
  • the molar ratio can be determined by conventional methods such as fluorescent X-ray and chemical analysis.
  • the aluminum content in the catalyst can be controlled by the amount of raw material charged during catalyst preparation, and A1 can be reduced by steaming after preparation. Further, a part of A1 may be replaced with another element such as boron or gallium. In particular, it is preferable to replace with boron.
  • the catalytically active component as described above may be used as it is as a catalyst in the reaction, or granulated and molded using a substance or binder that is inert to the reaction, or may be used. These may be mixed for use in the reaction.
  • the substance or binder inert to the reaction include alumina or alumina sol, silica, silica gel, quartz, and a mixture thereof.
  • the catalyst composition described above is a composition of only a catalytically active component that does not contain a substance inactive to these reactions, a binder, and the like.
  • the catalyst according to the present invention includes a substance or binder that is inert to these reactions, the catalyst active component is combined with the substance or binder that is inert to these reactions to form a catalyst. In that case, it does not contain substances or binders that are inert to these reactions.
  • the particle diameter of the catalytically active component used in the present invention varies depending on the conditions during synthesis, but is usually 0.01 m to 500 m as an average particle diameter. If the particle size of the catalyst is too large, the surface area showing the catalytic activity will be small, and if it is too small, the handleability will be inferior, which is not preferable in either case. This average particle size can be determined by SEM observation or the like.
  • the method for preparing the catalyst used in the present invention is not particularly limited, and the catalyst can be prepared by a known method generally called hydrothermal synthesis.
  • the composition can be changed after hydrothermal synthesis by modification such as ion exchange, dealumination treatment, impregnation and loading.
  • the catalyst used in the present invention may be prepared by any method as long as it has the above physical properties or composition when subjected to the reaction.
  • the olefin having 4 or more carbon atoms used as a raw material for the reaction is not particularly limited.
  • oil produced by catalytic cracking or steam cracking, etc. (BB fraction, C4 rough rice toe 1, C4 rough rice toe 2, etc.), hydrogen / CO mixed gas obtained by gasification of coal It is obtained by synthesis of FT (Fischer-Tropsch) as a raw material and obtained by oligomerization reaction including ethylene dimerization reaction.
  • the reaction temperature can be easily controlled because norafine serves as a diluent gas, and the raw material containing paraffin is inexpensive. It is preferable because it is often available. More preferred
  • These preferable raw materials include the above-mentioned BB fraction, C4 rough rice toe 1 and C4 rough rice toe 2. These raw materials usually contain butadiene. Since butadiene is easily converted to an aromatic compound by reaction, it is very important to extract at least a part of the produced aromatic compound without recycling it to the reactor as in the present invention. Since the BB fraction contains a large amount of butadiene, it is preferable to use a fluid that has been brought into contact with a hydrogenation catalyst to lower the butadiene concentration as a raw material.
  • the production origin of at least one of methanol and dimethyl ether used as a reaction raw material is not particularly limited.
  • those obtained by hydrogenation reaction of coal and natural gas, and by-product hydrogen / CO gas mixture in the steel industry those obtained by reforming reaction of plant-derived alcohols, by fermentation method And those obtained from organic materials such as recycled plastic and municipal waste.
  • the reaction between olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether is a gas phase reaction.
  • gas phase reactor There are no particular restrictions on the form of the gas phase reactor, but it is usually selected from continuous fixed bed reactors and fluidized bed reactors. A fixed bed reactor is preferred.
  • the reactor may be composed of two or more reaction units connected in series.
  • one reactor may be divided into a plurality of reaction chambers, or two or more reactors may be connected in series.
  • a heat exchanger may be disposed between the reactors for the purpose of removing heat generated by the reaction.
  • reaction substrate may be divided and supplied for the purpose of dispersing heat generation.
  • reaction substrate reaction raw material
  • at least one of methanol and dimethyl ether is divided and supplied to the first-stage reaction section (reactor or reaction chamber) and the second-stage reaction section (reactor or reaction chamber).
  • the catalyst has little coking and the rate of catalyst deterioration is slow.
  • a fixed bed reactor it is desirable to install at least two reactors in parallel and switch between reaction and regeneration.
  • a multitubular reactor or an adiabatic reactor is selected.
  • examples of the catalyst regeneration operation include a method of regenerating the catalyst deteriorated by coking by treating it with nitrogen gas containing oxygen or water vapor.
  • the regeneration operation in the fixed bed reactor preferably, after removing volatile organic compounds adhering to the catalyst with nitrogen gas, the coke content is burned and removed with nitrogen gas containing a low concentration of oxygen, and thereafter.
  • An example is a method of removing molecular oxygen contained in the catalyst layer by treating with nitrogen gas.
  • the amount of olefin having 4 or more carbon atoms fed to the reactor is 0.2 in terms of a molar ratio to the sum of the number of moles of methanol fed to the reactor and twice the number of moles of dimethyl ether. Or more, preferably 0.5 or more, 10 or less, preferably 5 or less
  • Mc4 when the supply molar amount of olefins having 4 or more carbon atoms is Mc4, the supply molar amount of methanol is Mm, and the supply molar amount of dimethyl ether is Mdm, Mc4 is 0.2 to 10 times (Mm + 2Mdm), preferably Is 0.5 to 5 times.
  • this supply concentration ratio is too low or too high, the reaction will be slow, which is preferable. In particular, if this supply concentration ratio is too low, the consumption of olefins as a raw material will be reduced.
  • the supply concentration ratio is obtained by quantifying the composition of each fluid supplied to the reactor or the mixed fluid by a general analytical method such as gas chromatography. .
  • olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether may be supplied separately or after mixing in part or in advance. Also good.
  • the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether in all the feeds fed to the reactor is preferably 20% by volume or more and 80% by volume or less, more preferably 30%.
  • the volume is not less than 70% by volume.
  • the substrate concentration is determined for each fluid supplied to the reactor or after mixing. It can be determined by quantifying the composition using a general analytical method such as gas chromatography.
  • the substrate concentration is too high, aromatic compounds and paraffins are prominently produced, and the propylene selectivity tends to decrease.
  • the substrate concentration is too low, the reaction rate becomes slow, so a large amount of catalyst is required, and the product purification cost and the construction cost of the reaction equipment increase, which is not economical.
  • the reaction substrate is diluted with a diluent gas described below so as to obtain such a substrate concentration.
  • the method for controlling the substrate concentration includes a method for controlling the flow rate of the fluid extracted from the process. That is, by changing the flow rate of the fluid withdrawn from the process, it is possible to change the flow rate of the dilution gas recycled to the reactor and change the substrate concentration.
  • butadiene may be contained in the olefin raw material having 4 or more carbon atoms and / or in the hydrocarbon-containing fluid to be recycled, but butadiene in all the raw materials supplied to the reactor.
  • the concentration of is preferably 2.0% by volume or less. If the concentration of butadiene in the raw material is high, the production of aromatic compounds increases and deterioration due to catalyst coking is accelerated.
  • the butadiene concentration is determined by the force S known by quantifying the composition of each fluid supplied to the reactor or the fluid after mixing by a general analytical method such as gas chromatography.
  • Examples of a method for reducing the concentration of butadiene in the raw material include a partial hydrogenation method in which the fluid is brought into contact with a hydrogenation catalyst and converted into olefins.
  • the hydrocarbon-containing fluid to be recycled to the reactor may contain an aromatic compound! /, But the aromatic compound contained in all raw materials supplied to the reactor Is preferably less than 0.05 in terms of a molar ratio with respect to the total amount of olefins having 4 or more carbon atoms contained in all raw materials fed to the reactor.
  • concentration of the aromatic compound in the raw material is high, the reaction between the aromatic compound and olefin having 4 or more carbon atoms, or the reaction between the aromatic compound and at least one of methanol and dimethyl ether in the reactor becomes remarkable. Therefore, it is not preferable because it consumes at least one of olefins having 4 or more carbon atoms, methanol and dimethyl ether more than necessary.
  • the compound produced by the reaction with the olefin having 4 or more carbon atoms clogs the pores of the catalyst, thereby promoting the deterioration of the catalyst. It is preferable to remove the aromatic compounds present in the reactor outlet fluid from the system as much as possible and reduce the concentration of the aromatic compounds in the fluid recycled to the reactor.
  • the ratio of the total amount of the aromatic compounds and the total amount of olefins having 4 or more carbon atoms depends on the composition of each fluid supplied to the reactor or the fluid after mixing, such as gas chromatography. This can be determined by quantitative analysis using a typical analysis method.
  • An example of a method for reducing the concentration of aromatic compounds in the raw material is a separation method by distillation.
  • paraffins and aromatics are defined as diluting gases because of the small amount of reaction that may react slightly depending on the reaction conditions.
  • impurities contained in the reaction raw material can be used as they are, or a separately prepared dilution gas can be mixed with the reaction raw material.
  • the dilution gas may be mixed with the reaction raw material before entering the reactor, or may be supplied to the reactor separately from the reaction raw material.
  • Preferred diluent gases are paraffins having 4 or more carbon atoms. More preferably, what is contained in the raw material for polyolefin can be used, and since the heat capacity is relatively high and the compound is used, the reaction temperature can be easily controlled.
  • the space velocity mentioned here is the flow rate of olefin having 4 or more carbon atoms as the reaction raw material per weight of the catalyst (catalytic active component).
  • the weight of the catalyst is used for granulating and molding the catalyst. It is the weight of the catalytically active component which does not contain an inactive component or a binder.
  • the flow rate is the flow rate (weight / hour) of olefins with 4 or more carbon atoms.
  • the space velocity is preferably between 0.1 lHr- 1 and 500Hr- 1. 1. More preferably between OHr- 1 and lOOHr- 1 . If the space velocity is too high, the conversion of at least one of the raw materials olefin and methanol and dimethyl ether is low, and sufficient propylene selectivity cannot be obtained. On the other hand, if the space velocity is too low, the amount of catalyst required to obtain a certain production amount increases, the reactor becomes too large, and preferable residues and by-products such as aromatic compounds and paraffin are produced. Since propylene selectivity decreases, it is not preferable.
  • the lower limit of the reaction temperature is usually about 300 ° C or higher, preferably 400 ° C or higher as the gas temperature at the reactor inlet, and the upper limit of the reaction temperature is usually 700 ° C or lower, preferably 600 ° C. It is as follows. If the reaction temperature is too low, a large amount of unreacted raw material with a low reaction rate tends to remain, and the yield of propylene also decreases. On the other hand, if the reaction temperature is too high, the yield of propylene is significantly reduced.
  • the upper limit of the reaction pressure is usually 2 MPa (absolute pressure, the same applies hereinafter) or less, preferably IMPa or less, more preferably 0.7 MPa or less.
  • the lower limit of the reaction pressure is not particularly limited, but is usually 1 kPa or more, preferably 50 kPa or more. If the reaction pressure is too high, the amount of preferable les and by-products such as paraffins and aromatic compounds increases, and the yield of propylene tends to decrease. If the reaction pressure is too low, the reaction rate tends to be slow.
  • the total of the molar flow rate of methanol fed to the reactor and twice the molar flow rate of dimethyl ether is preferably less than 1%. More preferably, it is less than 0.1%.
  • Methods for increasing the consumption of methanol and dimethyl ether include increasing the reaction temperature and decreasing the space velocity.
  • the molar flow rate of olefins having 4 or more carbon atoms at the outlet of the reactor is set to 20% or more and less than 90% with respect to the molar flow rate of olefins having 4 or more carbon atoms supplied to the reactor.
  • the molar flow rate is preferably 20% or more and less than 70%, more preferably 25% or more and less than 60%. If the consumption of olefins having 4 or more carbon atoms in the reactor is too small, the amount of unreacted olefins increases, and the flow rate of the fluid recycled to the reactor becomes too large. On the other hand, if the amount of consumption is too large, paraffin and aromatic compounds are not desirable! /, Which is preferable because the compounds are by-produced and the propylene yield is reduced! /.
  • Examples of the method for adjusting the consumption of olefins having 4 or more carbon atoms in the reactor include a method of appropriately setting the reaction temperature and space velocity.
  • the flow rates of methanol and dimethyl ether and olefins having 4 or more carbon atoms to be supplied to the reactor are different from those of each fluid supplied to the reactor or the composition of the fluid after mixing such as gas chromatography. It is possible to know by measuring the flow rate of each fluid and measuring the flow rate of each fluid.
  • the flow rate of methanol and dimethyl ether and olefins having 4 or more carbon atoms at the outlet of the reactor determines the composition of the outlet fluid of the reactor by gas chromatography. Quantify using a general technique such as graphing, and measure or calculate the flow rate of the reactor outlet fluid.
  • reactor effluent a mixed gas containing the reaction product, propylene, unreacted raw materials, by-products and a diluent is obtained.
  • the propylene concentration in the mixed gas is usually 5 to 95% by weight.
  • the unreacted raw material is usually olefin having 4 or more carbon atoms.
  • By-products include ethylene, olefins with 4 or more carbon atoms, paraffins, and aromatics. Compounds and water are mentioned.
  • the reactor outlet gas is separated into a hydrocarbon-rich fluid having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and water by a general separation process such as cooling, compression and distillation. Separated into rich fluid.
  • a fluid rich in hydrocarbons having 2 or less carbon atoms and carbonization having 3 or more carbon atoms by distillation is separated into a fluid rich in hydrocarbons, and a fluid rich in hydrocarbons containing 3 or more carbon atoms and a fluid rich in hydrocarbons containing 4 or more carbon atoms (A)
  • a method including a step of separating into two is applied.
  • a fluid rich in hydrocarbons having 3 or less carbon atoms and hydrocarbons having 4 or more carbon atoms by distillation After condensing and removing moisture by a cooling and compression step, a fluid rich in hydrocarbons having 3 or less carbon atoms and hydrocarbons having 4 or more carbon atoms by distillation. And a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms by distillation.
  • a method including a step of separating is applied.
  • a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms by distillation and carbon number Separation into a fluid rich in hydrocarbons with 3 or more hydrocarbons, and a fluid rich in hydrocarbons with 3 or more carbon atoms by distillation, fluids rich in hydrocarbons with 3 carbon atoms and fluids rich in hydrocarbons with 4 or more carbon atoms A method including the step of separating into (A) is applied.
  • a fluid rich in hydrocarbons having 3 or less carbon atoms and hydrocarbons having 4 or more carbon atoms are obtained by distillation.
  • a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid containing hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms and carbon having 3 carbon atoms by distillation is applied.
  • a method is applied that includes the step of separating into a hydrofluoric fluid.
  • Separation of water is possible mainly by condensation through compression and cooling. It is preferable to remove the remaining water with an adsorbent such as molecular sieve.
  • the water removed by condensation and / or adsorption may be used for wastewater treatment processes such as activated sludge, but it can be used for process water.
  • the process of the present invention (hereinafter sometimes referred to as “the process”) is in the vicinity of a steam cracking process, the water recovered from the reactor outlet gas is preferably utilized as a steamer steam source. . It may be recycled to the reactor of this process and used as a diluted gas.
  • hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms obtained from the reactor outlet gas can be further purified to ethylene and propylene with high purity by a purification process such as distillation.
  • ethylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
  • the purity of propylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
  • the ethylene and propylene thus obtained can be used as raw materials for ethylene and propylene derivatives that are generally produced from the viewpoint of quality such as the amount of impurities.
  • ethylene glycol, ethanolamine, glycol ethers, etc. for the production of chlorinated butyl monomers, 1, 1, 1 trichloroethane, chlorinated resin, vinylidene chloride by chlorination, and for the polymerization of ethylene, ⁇ -olefin, It can be used for the production of low density or high density polyethylene and for the production of ethylbenzene and the like by benzene ethylation.
  • Polyethylene terephthalate can be further produced from ethylene glycol produced from ethylene power, using ⁇ - olefin as a raw material, and higher alcohol is converted into ethyl benzene by an oxo reaction and subsequent hydrogenation reaction.
  • Acetaldehyde and its derivative ethyl acetate can also be produced by the reaction.
  • Propylene is produced, for example, by ammoxidation for the production of acrylonitrile, by selective oxidation for the production of acrolein, acrylic acid and acrylate esters, and by oxo reaction by oxo-reactions such as cal- butyl alcohol and 2-ethylhexanol. It can be applied to the production of alcohol, the production of polypropylene by polymerization of propylene, and the production of propylene oxide and propylene glycol by the selective oxidation of propylene.
  • acetone can be produced by one reaction, and further, methylisoptyl ketone can be produced from acetone.
  • Acetone can also produce acetone cyanohydrin, which is ultimately converted to methylmethalate.
  • Isopropyl alcohol can also be produced by propylene hydration.
  • phenol, bisphenol A, and polycarbonate resin can be produced from cumene produced by alkylating benzene.
  • the fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms obtained in the third and fourth aspects of the above general separation step! It is preferable to supply it to an ethylene and propylene production process other than this process for purification.
  • ethylene and propylene production processes include steam cracking processes such as naphthaetane. This can significantly reduce the capital investment of this process.
  • the reactor outlet gas is cooled, and the gas fluid (K) after cooling is compressed by gas fluid (L), rich in hydrocarbons having 4 or more carbon atoms, and liquid fluid (M) containing aromatic compounds. And a fluid rich in water (process (2C)), and then a gas fluid (U is separated by a general separation process such as distillation and a fluid rich in hydrocarbons having 3 or less carbon atoms and 4 or more carbon atoms). hydrocarbon Into a rich fluid (N) (step (3C)).
  • the reactor outlet gas is usually at a temperature of about 300 to 600 ° C.
  • the reactor outlet gas is cooled to about 20 to 200 ° C. This cooling may be performed directly by mixing with a fluid usually performed in a heat exchanger or a fluid having a temperature lower than that of the gas.
  • the cooled fluid (K) is compressed into a hydrocarbon-rich gas fluid (L) and hydrocarbons with 4 or more carbon atoms by compression using a compressor, knockout drum or oil-water separator. It is separated into a rich fluid (M) containing aromatics and a fluid rich in water.
  • the partner fluid that exchanges heat with the reactor outlet gas is not particularly limited! /, But is preferably one or more fluids supplied to the reactor! / ,.
  • the gas fluid (L) rich in hydrocarbons having 6 or less carbon atoms separated in this step (2C) contains hydrocarbons.
  • step (3C) general separation such as distillation is performed. The process separates the fluid rich in hydrocarbons with 3 or less carbon atoms and the fluid (N) rich in hydrocarbons with 4 or more carbon atoms.
  • the separation is performed by distillation into a hydrocarbon-rich fluid having 2 or less carbon atoms and a hydrocarbon-rich fluid having 3 or more carbon atoms.
  • a method including a step of separating a fluid rich in hydrocarbons having 3 or more hydrocarbons into a fluid rich in hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms (N) by distillation is applied.
  • a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms are separated into 3 or less carbon atoms.
  • a method including a step of separating a fluid rich in hydrocarbons into a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms by distillation is applied.
  • separation is performed by distillation into a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms and a fluid rich in hydrocarbons having 3 or more carbon atoms
  • a method including a step of separating a fluid rich in hydrocarbons having 3 or more carbon atoms into a fluid rich in hydrocarbons having 3 or more carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms (N) by distillation is applied.
  • a hydrocarbon-rich fluid having a carbon number of 3 or less and a fluid (N) rich in a hydrocarbon having a carbon number of 4 or more are separated by distillation to obtain a hydrocarbon having a carbon number of 3 or less.
  • a method including a step of separating a rich fluid into a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms and a fluid rich in a hydrocarbon having 3 carbon atoms by distillation is applied.
  • Separation of water is possible mainly by condensation through compression and cooling. It is preferable to remove the remaining water with an adsorbent such as molecular sieve.
  • the water removed by condensation and / or adsorption may be used for wastewater treatment processes such as activated sludge, but it can be used for process water.
  • the process of the present invention (hereinafter sometimes referred to as “the process”) is in the vicinity of a steam cracking process, the water recovered from the reactor outlet gas is preferably utilized as a steamer steam source. . It may be recycled to the reactor of this process and used as a diluted gas.
  • hydrocarbons having 2 or less carbon atoms or hydrocarbons having 3 carbon atoms obtained from the reactor outlet gas can be further purified to ethylene and propylene with high purity by a purification process such as distillation.
  • ethylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
  • the purity of propylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
  • the ethylene and propylene thus obtained can be used for all of the generally produced ethylene and propylene derivatives.
  • ethylene is produced by the oxidation reaction to produce ethylene oxide, ethylene glycol, ethanolamine, glycol ether, etc.
  • ethylene is produced by the oxidation reaction to produce ethylene oxide, ethylene glycol, ethanolamine, glycol ether, etc.
  • Benzyl chloride, 1, 1, 1 trichloroethane chlorinated resin
  • vinylidene chloride by chlorination
  • ⁇ - olefin low density or high density polyethylene by polymerization of ethylene.
  • Polyethylene from ethylene glycol produced from ethylene power Terephthalate can be produced, and styrene monomer, ABS resin, etc. can be produced from higher alcohol ethylbenzene as a raw material by the oxo reaction using a-olefin and the subsequent hydrogenation reaction.
  • butyl acetate can be produced by reaction with acetic acid
  • cetyl acetate and its derivatives, such as acetoaldehyde can be produced by the reaction of Zucker.
  • propylene is produced by, for example, ammoxidation for the production of acrylonitrile, by selective oxidation for the production of acrolein, acrylic acid and acrylate esters, and by oxo reaction by oxo-reactions such as cal- butyl alcohol and 2-ethylhexanol. It can be applied to the production of alcohol, the production of polypropylene by polymerization of propylene, and the production of propylene oxide and propylene glycol by the selective oxidation of propylene.
  • acetone can be produced by one reaction, and further, methylisoptyl ketone can be produced from acetone.
  • Acetone can also produce acetone cyanohydrin, which is ultimately converted to methylmethalate.
  • Isopropyl alcohol can also be produced by propylene hydration.
  • phenol, bisphenol A, and polycarbonate resin can be produced from cumene produced by alkylating benzene.
  • the fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms obtained in the third and fourth aspects of the separation step described above is a mixture of ethylene and propylene other than this process. It is preferably supplied to the production process for purification.
  • Other processes for producing ethylene and propylene include steam cracking processes such as naphthaetane. This can significantly reduce the capital investment of this process.
  • hydrocarbon-rich fluid (A) separated from the reactor outlet gas (A) (hereinafter referred to as hydrocarbon fluid (A) having 4 or more carbon atoms) is recycled to the reactor.
  • hydrocarbon fluid (A) having 4 or more carbon atoms) is recycled to the reactor.
  • the remaining fluid is withdrawn from the process.
  • extracted from this process means that it is not recycled to the reactor of this process, and it may be supplied directly to other processes through piping or through piping. Once stored in the tank, it may be supplied to another process. It may also be used as fuel without being supplied to other processes.
  • a part (B) of the hydrocarbon fluid (A) having 4 or more carbon atoms is removed from the process. Extract the remaining fluid (C) using a general separation method such as distillation. The concentration of aromatic compounds (% by weight) is lower than that of fluid (C)! /, And the concentration of fluid (D) and hydrocarbons with 4 carbon atoms is fluid. Lower than (C)! /, Fluid (E) is separated, fluid (D) is recycled to the reactor, and a method including the step of withdrawing fluid (E) from the process is applied.
  • the concentration of aromatic compounds is lower than that of fluid (A) by using a general separation method such as distillation of hydrocarbon fluid (A) having 4 or more carbon atoms! /, Fluid (G) And the hydrocarbon concentration of carbon number 4 is lower than that of the fluid (A)! /, And the fluid (F) is separated, and at least a part of the fluid (F) is extracted from the process, and at least the fluid (G) A method including a step of recycling a part of the fluid (I) to the reactor and extracting the remaining fluid (H) from the process is applied.
  • a general separation method such as distillation of hydrocarbon fluid (A) having 4 or more carbon atoms! /
  • Fluid (G) And the hydrocarbon concentration of carbon number 4 is lower than that of the fluid (A)! /
  • the fluid (F) is separated, and at least a part of the fluid (F) is extracted from the process, and at least the fluid (G)
  • the fluid (B) in the first embodiment or the fluid (H) in the second embodiment is a composition fluid containing a lot of paraffin, so it is difficult to separate and purify active ingredients such as butene. Therefore, when the process is in the vicinity of the steam cracking process, it is preferably supplied to the steam cracking process and effectively used as a cracker raw material.
  • these fluids (B) and (H) can be used as raw materials for producing ethylene and propylene in steam cracking.
  • a fluid having a paraffin concentration increased from that of the fluid (B) or fluid (H) is supplied to the steam cracking process.
  • a fluid having a high olefin concentration is supplied to the cracker in the steam cracking process, carbon deposition is likely to occur in the cracker, which is preferable.
  • the total concentration of aromatic compounds contained in fluid (B) or fluid (H) is preferably less than 5.0% by volume, more preferably less than 3.0% by volume. is there. When the aromatic compound concentration is high, there is a large amount of carbon precipitation when fed to the cracker, and the ethylene yield tends to decrease, which is not preferable.
  • the fluid (E) in the first aspect or the fluid (F) in the second aspect is preferably mixed with a cracked gasoline fraction such as a steam cracking process. This makes it possible to effectively use fluid (E) or fluid (F).
  • the cracked gasoline here is a fluid mainly containing paraffin, olefin, gen, and aromatic compounds having 5 to 10 carbon atoms, and the ability to collect active ingredients from the cracked gasoline as required.
  • S can.
  • active ingredients include hydrocarbons having 5 carbon atoms and aromatic compounds such as benzene, toluene and xylene.
  • the cracked gasoline contains hydrocarbons having 4 carbon atoms, it is not preferable because hydrocarbons having 4 carbon atoms are mixed in the hydrocarbon fluid having 5 carbon atoms recovered from the cracked gasoline. Therefore, it is preferable that the C4 hydrocarbon in the fluid (E) or fluid (F) mixed with the cracked gasoline fraction is less than 5% by weight. More preferably, it is less than 2% by weight.
  • the feature of the first aspect is that the load of the separation process such as distillation can be reduced by extracting the fluid (B). More advantageous.
  • fluid (B) is a fluid having the same composition as fluid (A), and the concentration of the aromatic compound is higher than that of fluid (H) obtained in the second mode. Therefore, the process is selected according to the intended use of the fluid to be extracted.
  • Part (P) of the fluid rich in hydrocarbons with 4 or more carbon atoms (N) separated in step (3C) (hereinafter referred to as “hydrocarbon fluids with 4 or more carbon atoms (N)”)
  • the remaining fluid (Q) is withdrawn and recycled to the reactor, and at least one of the liquid fluid (M) rich in hydrocarbons having 4 or more carbons condensed in the compression process and containing aromatic compounds. Departments are extracted from this process.
  • “extracted from the process” is not recycled to the reactor of the process. This means that it may be supplied directly to other processes through piping, or once stored in a tank through piping, it may be supplied to other processes. It may also be used as fuel without being supplied to other processes.
  • Liquid fluid (M) has a lower concentration of aromatic compounds (wt%) than liquid fluid (M) due to distillation!
  • concentration of fluid (R) and hydrocarbons with 4 carbon atoms is higher than liquid fluid (M). It may be separated into lower fluid and fluid (S).
  • the fluid (R) is preferably returned to one or a plurality of fluid circulation locations selected from the fluids (K), (L), (N), (P), and (Q). This distillation operation is particularly preferred when the liquid fluid (M) contains a large amount of hydrocarbons having 4 or less carbon atoms.
  • the fluids (M), (P), and (R) have a composition containing a large amount of paraffin. Since it is a fluid, it is difficult to separate and purify active ingredients such as butene. Therefore, when the process is in the vicinity of the steam cracking process, one of these fluids (M), (P), (R), one or more fluids are supplied to the steam cracking process, and the cracker raw material is supplied. It is preferable to use as effective.
  • This can be a raw material for producing ethylene or propylene in steam cracking.
  • at least a part of the fluids (M), (P), and (R) is brought into contact with the hydrogenation catalyst, and the fluid whose paraffin concentration is increased from the fluids (M), (P), and (R) is steamed. It is preferable to supply it to the cracking process. It is not preferable to feed a fluid with a high olefin concentration to the cracker in the steam cracking process because carbon is likely to precipitate in the cracker.
  • the total concentration of aromatic compounds contained in the fluids (M), (P), and (R) is preferably less than 5.0% by volume. More preferably, it is less than 3.0 volume%.
  • a high concentration of the aromatic compound is not preferable because when it is supplied to the cracker, there is a large amount of carbon precipitation and the ethylene yield tends to decrease.
  • the fluid (S) is preferably mixed with a cracked gasoline fraction such as a steam cracking process. As a result, the fluid (S) can be used effectively. If the concentration of hydrocarbons with 4 or less carbon atoms in the fluid (M) is low, the fluid (M) You may mix with a catalytic cracking gasoline fraction.
  • the cracked gasoline here is a fluid mainly containing paraffin, olefin, gen, and aromatic compounds having 5 to 10 carbon atoms, and has the ability to collect active ingredients from the cracked gasoline as necessary.
  • S can.
  • active ingredients include hydrocarbons having 5 carbon atoms and aromatic compounds such as benzene, toluene and xylene.
  • cracked gasoline contains hydrocarbons having 4 carbon atoms, it is not preferable because hydrocarbons having 4 carbon atoms are mixed in the hydrocarbon fluid having 5 carbon atoms recovered from the cracked gasoline.
  • the C4 hydrocarbon in the fluid (M) or fluid (S) mixed with the cracked gasoline fraction is less than 5% by weight. More preferably, it is less than 2% by weight.
  • the flow rate of the dilution gas such as paraffin contained in the fluid (I) recycled to the reactor is controlled by controlling the flow rates of the fluid (F) and the fluid (H). Is possible.
  • the total concentration (substrate concentration) of olefins, methanol and dimethyl ether having 4 or more carbon atoms in all the feeds supplied to the reactor is preferable to control the total concentration (substrate concentration) of olefins, methanol and dimethyl ether having 4 or more carbon atoms in all the feeds supplied to the reactor to 20 vol% or more and 80 vol% or less.
  • FIG. 1 shows a first embodiment of the process of the present invention
  • FIG. 2 shows a second embodiment.
  • 10 is a reactor
  • 20 is a first separation and purification system
  • 30A and 30B are second separation and purification systems.
  • At least one of the olefin raw material having 4 or more carbon atoms, the hydrocarbon fluid (D) having 4 or more carbon atoms from the second separation and purification system 30A, methanol and dimethyl ether is connected to pipes 101, 102, 103 and 104, respectively. Then, it is supplied to the reactor 10.
  • the olefin raw material having 4 or more carbon atoms supplied to the reactor 10 may contain paraffins having 4 or more carbon atoms, such as calalebutane and isobutane.
  • the raw material fluid supplied to the reactor 10 via the pipe 104 may contain butadiene or an aromatic compound.
  • the butadiene concentration in the raw material fluid as described above is usually 2.0% by volume or less, and the total amount of aromatic compounds is moles relative to the total amount of olefins having 4 or more carbon atoms contained in the raw material fluid in the pipe 104.
  • the ratio is usually less than 0.05.
  • the feed fluid is a force S, which means the sum of the fluids supplied via pipes 101, 102 and 103, which do not necessarily have to be joined before entering reactor 10, 10 may be supplied.
  • the raw material gas supplied to the reactor 10 reacts in contact with the catalyst in the reactor 10 to obtain a reactor outlet gas containing propylene, other olefins, paraffins, aromatic compounds and water.
  • the reactor outlet gas is sent to a general separation and purification system 20 such as cooling, compression, and distillation through a pipe 105, and in this separation and purification system 20, a fluid rich in hydrocarbons having 3 or less carbon atoms, They are separated into a hydrocarbon-rich fluid (A) and water-rich fluid with 4 or more carbon atoms, and taken out through pipes 106, 108, and 107, respectively.
  • a hydrocarbon-rich fluid having 3 or less carbon atoms indicates one or more fluids.
  • One fluid may be used, a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms, or a fluid containing hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms.
  • Two fluids such as a fluid rich in 3 carbon atoms, may be used.
  • three or more fluids may be used.
  • a part of the hydrocarbon-rich fluid (A) with 4 or more carbon atoms is withdrawn out of the process through the pipe 109, and the remaining fluid (C) is separated through the pipe 110 through general separation such as distillation. Supplied to purification system 30A.
  • a part of the fluid (A) (B) may be extracted out of the process.
  • the extracted fluid (B) may be used as a cracker raw material for the steam cracking process.
  • the total concentration of aromatic compounds in the extracted fluid (B) is preferably less than 5.0% by volume.
  • the aromatic compound concentration is lower than the fluid (C)! / Soot fluid (D) and the fluid (E) in which the hydrocarbon concentration of 4 or more carbon atoms is lower than the fluid (C)
  • At least a part of the fluid (D) is recycled to the reactor 10 via the pipe 102, and the fluid) is extracted from the process via the pipe 111.
  • the extracted fluid (E) may be mixed with a cracked gasoline fraction such as a steam cracking process.
  • the total concentration force of hydrocarbons having 4 carbon atoms contained in the fluid (E) is preferably less than 3% by weight.
  • fluid (X) A part of the fluid (D) (hereinafter, “fluid (X)”) may be extracted out of the process.
  • the extracted fluid (X) may be used as a cracker raw material for the steam cracking process.
  • the total concentration of aromatic compounds in the drawn fluid (X) is preferably less than 5.0 mol%.
  • the fluid (D) and the fluid (X) are not necessarily required, but it is preferable to extract at least one of the fluids from the process in order to prevent accumulation of norafines.
  • Carbon 4 or more olefin raw material, carbonization of 4 or more carbon from the second separation and purification system 30B At least one of hydrogen fluid (I), methanol, and dimethyl ether is supplied to the reactor 10 via pipes 101, 102, 103 and pipe 104, respectively. Thereafter, in the first separation purification system 20, from the outlet gas of the reactor 10, a fluid rich in hydrocarbons having 3 or less carbon atoms, a hydrocarbon fluid having 4 or more carbon atoms (A), and rich in water. The process until separation into a fluid is the same as in FIG.
  • the hydrocarbon fluid (A) having 4 or more carbon atoms is supplied from a pipe 108 to a general separation and purification system 30B such as distillation. Separation and purification system 30B separates the fluid (G) with a lower aromatic compound concentration than the fluid (A) and the hydrocarbon concentration with 4 or more carbon atoms lower than the fluid (A)! /, Fluid (F). . Fluid (F) is withdrawn from the process through line 112.
  • the extraction fluid (F) may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, it is preferable that the total concentration of hydrocarbons having 4 carbon atoms contained in the fluid (F) is less than 5% by weight.
  • the fluid (G) is taken out from the pipe 113, a part (H) is taken out from the process through the pipe 114, and the remaining fluid (I) is recycled to the reactor 10 through the pipe 102.
  • the extracted fluid (H) may be used as a cracker raw material for the steam cracking process.
  • the fluid (H) is preferably supplied to the steam cracking process as a fluid in which the concentration of paraffin is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the fluid (H) is preferably less than 5.0% by volume.
  • FIG. 3 illustrates one embodiment of the process of the present invention.
  • 13 is a reactor
  • 23 is a compressor
  • 33 is a knockout drum
  • 43 is an oil-water separator
  • 53 is a first separation and purification system
  • 63 is a second separation and purification system.
  • To 315 indicate piping.
  • At least one of the olefin raw material having 4 or more carbon atoms, the hydrocarbon fluid (Q) having 4 or more carbon atoms from the first separation and purification system 53, methanol, and dimethyl ether is provided in the pipes 301, 302, 303, and It is supplied to the reactor 13 through the pipe 304.
  • the olefin raw material having 4 or more carbon atoms supplied to the reactor 13 may contain paraffins having 4 or more carbon atoms, such as calalebutane and isobutane.
  • the raw material fluid supplied to the reactor 13 via the pipe 304 may contain butadiene or an aromatic compound.
  • the butadiene concentration in the raw material fluid as described above is usually 2.0% by volume or less, and the total amount of aromatic compounds is mol relative to the total amount of olefins having 4 or more carbon atoms contained in the raw material fluid of the pipe 304.
  • the ratio is usually less than 0.05.
  • the raw material fluid means the sum of the fluids supplied via the pipes 301, 302, and 303!
  • the reactor outlet gas is cooled through, for example, a heat exchanger, and the cooled gas fluid (K) is pressurized by the compressor 23 through the pipe 305.
  • One compressor 23 may be used, but a plurality of compressors 23 are preferable.
  • a heat exchanger and a knockout drum 33 are installed after each compressor 23, and after the compressed gas is cooled, it is separated into a gas fluid (L) and a condensed component. Condensed components are sent to the oil / water separator 43 via the pipe 30 8 and separated into a hydrocarbon-rich liquid fluid (M) having 4 or more carbon atoms and a water-rich fluid.
  • the liquid fluid (M) rich in hydrocarbons with 4 or more carbon atoms extracted is sent to the second separation / purification system 63 through the pipe 309.
  • the gas fluid (L) separated by the knockout drum 33 is sent to a general first separation / purification system 53 such as distillation through a pipe 307, and a fluid rich in hydrocarbons having 3 or less carbon atoms. Then, it is separated into a hydrocarbon-rich fluid (N) having 4 or more carbon atoms and taken out via pipes 313 and 314, respectively.
  • a hydrocarbon-rich fluid having 3 or less carbon atoms represents one or more fluids.
  • a part (P) of the fluid (N) rich in hydrocarbons having 4 or more carbon atoms is extracted from the process through the pipe 315, and the remaining fluid (Q) is supplied to the reactor 13 through the pipe 302. Recycled.
  • the fluid (P) may be used as a cracker raw material for the steam cracking process.
  • the fluid (P) is preferably supplied to the steam cracking process as a fluid in which the paraffin concentration is increased by contacting the hydrogenation catalyst.
  • the total concentration of aromatic compounds in the fluid (P) is preferably less than 5.0% by volume! /.
  • the liquid fluid (M) separated by the oil / water separator 43 is a liquid component rich in hydrocarbons having 4 or more carbon atoms and containing an aromatic compound, which is directly extracted from the process.
  • the liquid fluid (M) may be used as a cracker raw material for the steam cracking process.
  • the fluid (M) is preferably supplied to the steam cracking process as a fluid in which the paraffin concentration is increased by contacting the hydrogenation catalyst.
  • the total concentration of aromatic compounds in the fluid (M) is preferably less than 5.0% by volume.
  • the hydrocarbon concentration of carbon number 4 in the liquid fluid (M) is low, it may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, it is preferable that the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (M) is less than 5% by weight.
  • the second separation / purification system 60 which is a general separation step such as distillation, and the concentration of the aromatic compound is lower than that of the liquid fluid (M)! /, It is preferable to separate the fluid (R) and the C4 hydrocarbon concentration from the liquid fluid (M) and the fluid (S).
  • the separated fluid (R) is extracted from the pipe 111, but the fluid (R) is fluid (K), fluid (L), fluid (N), fluid (P), fluid (Q) flow. It is preferable to return to one or more of 305, 307, 314, 315, 302.
  • the fluid (S) is extracted from the pipe 312 and the fluid (S) may be mixed with a cracked gasoline fraction such as a steam cracking process.
  • the total concentration of C 4 hydrocarbons contained in the fluid (S) is preferably less than 5% by weight.
  • Extraction of the fluid (P) out of the process is not always necessary, but paraffins In order to prevent accumulation of at least one of the fluids is preferably withdrawn from the process.
  • Bromide tetra n- propyl ammonium Niu beam (TPABr) 26. 6 g of sodium hydroxide 4 ⁇ 8 g successively, in water 280g ⁇ Hayashi, then roller Ida Honoré silica (SiO 40 weight 0/0, [alpha] 1 ⁇ (0.1% i%) 75 g and a mixture of 35 g of water were slowly added and stirred sufficiently to obtain an aqueous gel. Next, this gel was charged into a 1000 ml autoclave and hydrothermal synthesis was performed for 72 hours at a force of S, etc .; The product was separated from solid components by pressure filtration, washed thoroughly with water, and dried at 100 ° C for 24 hours. The dried catalyst was calcined at 550 ° C for 6 hours under air flow to obtain Na type aluminosilicate.
  • This catalyst was confirmed by XRD (X-ray diffraction) to have a zeolite structure of MFI type.
  • XRD X-ray diffraction
  • Propylene was produced using the above catalyst.
  • a normal pressure fixed bed flow reactor was used for the reaction, and a quartz reaction tube having an inner diameter of 6 mm was filled with a mixture of the above catalyst (0.10 g) and quartz sand (1 Og).
  • Anti ⁇ inlet gas of the present invention in the reactor isobutene (40 vol 0/0) as a model gas, which corresponds to the composition (Fig. 1 or the pipe 104 in FIG. 2), methanol (20 vol 0/0), benzene (0 . 8 vol 0/0), were fed through butadiene (0.1 body volume%) and isobutane (evaporator 39. was prepared in 1% by volume) gas.
  • the reaction temperature (reactor inlet gas temperature) was 550 ° C. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. The reaction conditions and reaction results at that time are shown in Table 1.
  • the selectivity for propylene was 54.8%, a very high level.
  • the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life. As a result, the catalyst life was 312 hours.
  • the reaction was carried out in the same manner as in Example 1 except that the concentration of benzene supplied to the reactor was 1.6% by volume and the isobutane concentration was 38.3% by volume. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. Table of reaction conditions and reaction results at that time
  • the selectivity for propylene was 54.4%, a very high level.
  • the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life. As a result, the catalyst life was 305 hours.
  • the reaction was performed in the same manner as in Example 1 except that the concentration of benzene supplied to the reactor was 3.2% by volume and the isobutane concentration was 36.7% by volume. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. Table of reaction conditions and reaction results at that time
  • the selectivity for propylene was 51.4%, which was a very low level compared to Examples 1 and 2.
  • the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life.
  • the catalyst life was 221 hours, which was very short compared to Examples 1 and 2. This is presumably because the alkylated benzene blocks the pores of the catalyst and promotes coking.
  • reducing the aromatic compound concentration at the inlet of the reactor by extracting at least a part of the aromatic compound without recycling can achieve a high propylene yield and suppress catalyst coking deterioration. It is very effective.
  • the present invention is a new and economical process for producing propylene by reacting olefins having 4 or more carbon atoms with at least one of methanol and dimethyl ether, and a new and economical process that integrates this process with steam cracking. To provide a realistic process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Disclosed is a process for producing propylene by reacting an olefin raw material having a 4 or more carbon atoms with at least one member selected from methanol and dimethyl ether in the presence of a catalyst, which enables to produce propylene at a high yield by using a raw material in a small quantity while preventing the occurrence of the deterioration of the catalyst.

Description

明 細 書  Specification
プロピレンの製造方法  Propylene production method
技術分野  Technical field
[0001] 本発明は炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少 なくとも 1つを含む原料混合物からプロピレンを製造する方法に関するものである。 背景技術  The present invention relates to a method for producing propylene from a raw material mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether. Background art
[0002] プロピレンを製造する方法としては、従来からナフサゃェタンのスチームクラツキン グ、減圧軽油の流動接触分解が一般的に実施されており、近年ではエチレンと 2— ブテンを原料としたメタセシス反応、炭素数 4以上のォレフィンの接触クラッキング、さ らにメタノールおよびジメチルエーテルのうち少なくとも 1つを原料とした MTOプロセ スも注目を浴びている。一方、炭素数 4以上のォレフィンとメタノール等の含酸素化合 物を原料として低級ォレフィンを製造する方法も知られている(特許文献 1)。  [0002] As a method for producing propylene, conventionally, steam cracking of naphthaethane and fluid catalytic cracking of vacuum gas oil have been generally performed. In recent years, metathesis reaction using ethylene and 2-butene as raw materials has been carried out. In addition, catalytic cracking of olefins with 4 or more carbon atoms, and MTO processes using at least one of methanol and dimethyl ether as a raw material are also attracting attention. On the other hand, a method for producing lower olefins using olefins having 4 or more carbon atoms and oxygen-containing compounds such as methanol as raw materials is also known (Patent Document 1).
特許文献 1 :米国特許第 6888038号  Patent Document 1: U.S. Pat.No. 6888038
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 従来、プロピレンを製造する方法としては、数多くの提案がなされており、そのほと んどは反応と精製それぞれにつ!/、て方法が開示されて!/、る力 炭素数 4以上のォレ フィンとメタノール等の含酸素化合物を原料とする方法につ!/、ては、反応自体の提案 はなされているものの、反応器より後流側の精製系を含めたプロセスについては提案 されていなかった。 [0003] Conventionally, a number of proposals have been made as methods for producing propylene, and most of them have been disclosed for each reaction and purification! The above-mentioned methods using olefins and oxygen-containing compounds such as methanol as raw materials! / Although the reaction itself has been proposed, the process including the purification system on the downstream side of the reactor has been proposed. It was not proposed.
そこで本発明は、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテル のうち少なくとも 1つを反応させてプロピレンを製造するための新規で経済的なプロセ スを提供することを第 1の目的とする。  Accordingly, a first object of the present invention is to provide a novel and economical process for producing propylene by reacting olefin having 4 or more carbon atoms with at least one of methanol and dimethyl ether.
[0004] 一方、現在エチレンやプロピレンの製造法としての主流であるスチームクラッキング プロセスでは、製造するエチレンとプロピレンの割合を大きく変えられないが、本発明 のプロセスをスチームクラッキングプロセスと統合することにより、エチレンとプロピレン の割合を著しく大きく変えることが可能である。さらに、この二つのプロセスを統合する ことにより、互いのプロセスで不要となる流体の有効利用が可能となるため、その相乗 効果により著しく効率的なプロセス構築が期待される。 [0004] On the other hand, in the steam cracking process, which is the mainstream method for producing ethylene and propylene, the ratio of ethylene and propylene to be produced cannot be changed greatly. The ratio of ethylene and propylene can be changed significantly. In addition, these two processes will be integrated As a result, it becomes possible to effectively use fluids that are not required in each other's processes.
よって、本発明は、本プロセスとスチームクラッキングを統合した新規で経済的なプ 口セスを提供することを第 2の目的とする。  Therefore, the second object of the present invention is to provide a new and economical process that integrates this process and steam cracking.
課題を解決するための手段  Means for solving the problem
[0005] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを反応させてプロピレンを得る反応について本発明者らが検討したところ、次の ような知見を得た。 [0005] The inventors of the present invention examined the reaction of obtaining propylene by reacting olefins having 4 or more carbon atoms with at least one of methanol and dimethyl ether, and obtained the following findings.
[0006] 反応によって消費されるォレフイン量が多すぎると芳香族化合物やパラフィンなど の望ましくない化合物の副生が顕著になり、一方、消費されるォレフイン量が少なす ぎるとプロピレンの収率が低すぎるものとなる。温度、圧力、分圧、空間速度などの反 応条件を適切に設定し、消費されるォレフイン量をある特定の範囲に制御することに より、高選択率且つ高収率でプロピレンが得られる。このような条件で反応を行う場合 、反応器出口流体中には反応原料と成り得る炭素数 4以上のォレフィンが多く含まれ ることから、それらの化合物は反応器にリサイクルすることが好ましレ、。  [0006] When too much olefin is consumed by the reaction, undesirable by-products such as aromatic compounds and paraffin are prominently produced. On the other hand, when too little olefin is consumed, the yield of propylene is too low. It will be a thing. Propylene can be obtained with high selectivity and high yield by appropriately setting reaction conditions such as temperature, pressure, partial pressure, space velocity, and controlling the amount of olefins consumed within a specific range. When the reaction is carried out under such conditions, the reactor outlet fluid contains many olefins having 4 or more carbon atoms that can serve as reaction raw materials, and it is preferable to recycle these compounds into the reactor. ,.
[0007] 一方、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なく とも 1つとの反応では微量ながら芳香族化合物やパラフィンも生成し、反応器出口流 体中に含まれる。特に、炭素数 4以上のォレフィン原料としてパラフィンを含有する 原料を使用した場合には、反応器出口流体中のパラフィン濃度は増大する。ノ ラフィ ン類は反応器内でほとんど反応しないため、炭素数 4以上のォレフィンと共に反応器 にリサイクルした場合には系内にパラフィンが濃縮し、蓄積されていく。このため、パラ フィン類を含む流体の一部を系内から抜き出すことが好ましい。この場合、抜き出す 流体は、有効利用できるような組成の流体にすることが好ましい。  [0007] On the other hand, in the reaction of olefins having 4 or more carbon atoms with at least one of methanol and dimethyl ether, aromatic compounds and paraffins are also produced in trace amounts, and are contained in the reactor outlet fluid. In particular, when a raw material containing paraffin is used as an olefin raw material having 4 or more carbon atoms, the concentration of paraffin in the reactor outlet fluid increases. Since noraffins hardly react in the reactor, paraffin concentrates and accumulates in the system when recycled to the reactor together with olefins having 4 or more carbon atoms. For this reason, it is preferable to extract a part of the fluid containing paraffins from the system. In this case, the fluid to be extracted is preferably a fluid having a composition that can be effectively used.
[0008] また、リサイクルされる炭素数 4以上のォレフィン流体中に芳香族化合物が特定の 濃度以上存在すると、それらの芳香族化合物と炭素数 4以上のォレフィンとの反応や 、芳香族化合物とメタノールおよびジメチルエーテルのうち少なくとも 1つとの反応が 顕著になり、供給した炭素数 4以上のォレフィンやメタノールおよびジメチルエーテル のうち少なくとも 1つが必要以上に消費されてしまい好ましくない。 さらに、芳香族化合物が反応器に供給された場合には、前記炭素数 4以上のォレ フィンとの反応で生成した化合物が触媒の孔を閉塞させることにより触媒の劣化も促 進されるため、反応器出口流体中に存在する芳香族化合物はできるだけ系内から抜 き出し、反応器にリサイクルする流体中の芳香族化合物濃度を低くすることが好まし い。この場合にも抜き出す流体は、有効利用できるような組成の流体にすることが好 ましい。 [0008] In addition, when an aromatic compound is present in a recycled olefin fluid having 4 or more carbon atoms in a specific concentration or more, the reaction between the aromatic compound and olefin having 4 or more carbon atoms, or the aromatic compound and methanol. In addition, the reaction with at least one of dimethyl ether becomes remarkable, and at least one of the supplied olefins having 4 or more carbon atoms, methanol and dimethyl ether is consumed more than necessary. Furthermore, when an aromatic compound is supplied to the reactor, the compound produced by the reaction with the olefin having 4 or more carbon atoms clogs the pores of the catalyst, thereby promoting the deterioration of the catalyst. It is preferable to remove the aromatic compounds present in the reactor outlet fluid from the system as much as possible and reduce the concentration of the aromatic compounds in the fluid recycled to the reactor. Also in this case, the fluid to be extracted is preferably a fluid having a composition that can be used effectively.
[0009] このように、本発明者らは、炭素数 4以上のォレフィンと、メタノールおよびジメチル エーテルのうち少なくとも 1つを原料としてプロピレンを製造する方法における種々の 課題を見出し、それらの課題を解決できるプロセスを構築することにより、少ない原料 を用いて、触媒の劣化を抑えながら高い収率でプロピレンを製造できることを見出し た。  [0009] As described above, the present inventors have found various problems in a method for producing propylene using olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether as raw materials, and solved these problems. By constructing a process capable of producing propylene, it was found that propylene could be produced in a high yield while suppressing deterioration of the catalyst using a small amount of raw materials.
さらに、本プロセスから抜き出す流体をスチームクラッキングプロセスに供給し、また スチームクラッキングプロセスにおける流体を本プロセスに供給することにより、価値 の低い流体の有効利用を可能とし、著しく効率的なプロセスを実現できることを見出 した。  Furthermore, by supplying the fluid extracted from this process to the steam cracking process and supplying the fluid in the steam cracking process to this process, it is possible to effectively use low-value fluids and realize a highly efficient process. I found it.
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。  The present invention has been achieved based on such findings, and the gist thereof is as follows.
[0010] [1]炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1つを含む原料を触媒の存在下、反応器中で接触させてプロピレンを製造する方法 において、 [1] In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst,
該反応器出口流出ガス(反応器出口ガス)中において含まれる芳香族化合物の少な くとも一部は抜き出すと共に、該反応器出口流出ガス(反応器出口ガス)中にお!/、て 含まれる炭素数 4以上のォレフィンの少なくとも一部を該反応器にて再度触媒と接触 させることを特徴とするプロピレンの製造方法。  At least a part of the aromatic compound contained in the reactor outlet effluent gas (reactor outlet gas) is withdrawn and contained in the reactor outlet effluent gas (reactor outlet gas)! A method for producing propylene, wherein at least a part of olefin having 4 or more carbon atoms is brought into contact with a catalyst again in the reactor.
[2] [1]において、前記炭素数 4以上のォレフィン原料が、炭素数 4以上のパラフィン 類を含有することを特徴とするプロピレンの製造方法。  [2] A method for producing propylene according to [1], wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[3] [2]において、前記パラフィン類がノルマルブタンおよびイソブタンのうち少なくと も 1つを含むことを特徴とするプロピレンの製造方法。  [3] The method for producing propylene according to [2], wherein the paraffins contain at least one of normal butane and isobutane.
[4] [1]ないし [3]のいずれかにおいて、前記反応器に供給される原料中にブタジ ェンを含有することを特徴とするプロピレンの製造方法。 [4] In any one of [1] to [3], butadiene is contained in the raw material supplied to the reactor. A process for producing propylene, characterized by comprising an ethylene.
[5] [1]ないし [4]のいずれかにおいて、前記反応器に供給される全原料に含まれ る芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィンの合計 量に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法。  [5] In any one of [1] to [4], the total amount of aromatic compounds contained in all raw materials fed to the reactor is the total of olefins having 4 or more carbon atoms contained in all the raw materials. A method for producing propylene, wherein the molar ratio is less than 0.05 with respect to the amount.
[6] [1]から [5]のいずれかにおいて、前記反応器に供給する炭素数 4以上のォレフ インの量力、該反応器に供給するメタノールのモル数とジメチルエーテルのモル数の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とするプロピレン の製造方法。 [6] In any one of [1] to [5], the quantity of polyolefin having 4 or more carbon atoms fed to the reactor, the number of moles of methanol fed to the reactor, and twice the number of moles of dimethyl ether A method for producing propylene, wherein the molar ratio is 0.2 or more and 10 or less with respect to the total of the above.
[7] [1]から [6]のいずれかにおいて、前記反応器に供給される全原料に含まれる炭 素数 4以上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20 体積%以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。  [7] In any one of [1] to [6], the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in all raw materials fed to the reactor is 20 vol% or more. Propylene production method characterized by controlling to volume% or less.
[8]炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1つとを含む原料を、触媒の存在下、反応器中で接触させてプロピレンを製造する方 法において、以下の工程(1) , (2)および(3A)を含むプロセスよりなることを特徴とす るプロピレンの製造方法。 [8] In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following step (1) , (2) and a process comprising (3A), characterized in that it comprises a process for producing propylene.
工程(1):炭素数 4以上のォレフィン原料、工程 (3A)からリサイクルされた炭化水素 流体(D)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器 に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォ レフインのモル流量に対して 20%以上 90%未満になるような反応条件で前記触媒と 接触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族 化合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied. The molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%. Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2):前記工程(1)からの反応器出口ガスを、炭素数 3以下の炭化水素に富ん だ流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分 離する工程 Step (2): Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
工程 (3A):前記工程(2)における流体 (A)の少なくとも一部の流体(C)を、芳香族化 合物濃度が該流体 (C)より低!/、流体 (D)と炭素数 4の炭化水素濃度が該流体 (C)よ り低い流体 (E)とに分離し、前記流体 (D)は反応器にリサイクルし、前記流体 (E)を 該プロセスから抜き出す工程 [9] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくと も 1つとを含む原料を、触媒の存在下、反応器中で接触させてプロピレンを製造する 方法において、以下の工程(1) , (2)および (3A)を含むプロセスよりなることを特徴と するプロピレンの製造方法。 Step (3A): At least a part of fluid (C) of fluid (A) in step (2) above has an aromatic compound concentration lower than that of fluid (C) !, fluid (D) and carbon number 4 is separated into a fluid (E) having a hydrocarbon concentration lower than that of the fluid (C), the fluid (D) is recycled to the reactor, and the fluid (E) is extracted from the process. [9] In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1 ), (2) and (3A).
工程(1):炭素数 4以上のォレフィン原料、工程 (3A)からリサイクルされた炭化水素 流体(D)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器 に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォ レフインのモル流量に対して 20%以上 90%未満になるような反応条件で前記触媒と 接触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族 化合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied. The molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%. Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2):前記工程(1)からの反応器出口ガスを、炭素数 3以下の炭化水素に富ん だ流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分 離する工程 Step (2): Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
工程 (3A):前記工程(2)における流体 (A)の一部(B)を該プロセスから抜き出し、残 りの流体 (C)を、芳香族化合物濃度が該流体 (C)より低!/ヽ流体 (D)と炭素数 4の炭 化水素濃度が該流体(C)より低!/、流体 (E)とに分離し、前記流体 (D)は反応器にリ サイクルし、前記流体 (E)を該プロセスから抜き出す工程 Step (3A): A part (B) of the fluid (A) in the step (2) is extracted from the process, and the remaining fluid (C) has a lower aromatic compound concentration than the fluid (C)! /ヽ Fluid (D) and C4 hydrocarbon concentration are lower than fluid (C)! /, Fluid (E), and fluid (D) is recycled to the reactor and fluid (D) Step of extracting E) from the process
[10] [8]または [9]において、前記反応器が直列に接続された二つ以上の反応部 力、らなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよび ジメチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭化水素含有流体 (D)のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部とに分割し て供給することを特徴とするプロピレンの製造方法。 [10] In [8] or [9], the reactor is composed of two or more reaction forces connected in series, the olefin raw material having 4 or more carbon atoms supplied to the reactor; methanol and dimethyl ether At least one of them; and at least one of the recycled hydrocarbon-containing fluid (D) is divided and supplied to the first-stage reaction section and the second-stage and subsequent reaction sections. Propylene production method.
[11] [8]から [10]のいずれかにおいて、前記流体(B)をスチームクラッキングプロ セスに供給し、クラッカー原料として利用することを特徴とするプロピレンの製造方法  [11] The method for producing propylene according to any one of [8] to [10], wherein the fluid (B) is supplied to a steam cracking process and used as a cracker raw material.
[12] [11]において、前記流体 (B)の少なくとも一部を水素添加触媒と接触させた 後、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法 [13] [8]ないし [12]のいずれかにおいて、前記流体 (B)に含まれる芳香族化合物 濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。 [12] The method for producing propylene according to [11], wherein at least a part of the fluid (B) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process. [13] The method for producing propylene according to any one of [8] to [12], wherein the total concentration of aromatic compounds contained in the fluid (B) is less than 5.0% by volume.
[14] [8]ないし [13]のいずれかにおいて、前記流体(E)をスチームクラッキングプ 口セスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。 [14] The method for producing propylene according to any one of [8] to [13], wherein the fluid (E) is mixed with a cracked gasoline fraction of a steam cracking process.
[15] [8]ないし [14]のいずれかにおいて、前記流体 (E)に含まれる炭素数 4の炭 化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。 [15] The method for producing propylene according to any one of [8] to [14], wherein the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (E) is less than 5% by weight.
[16] [8]ないし [15]のいずれかにおいて、前記流体(B)および前記流体(E)の流 量を制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以上の ォレフインとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積%以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。 [16] In any one of [8] to [15], by controlling the flow rates of the fluid (B) and the fluid (E), the number of carbon atoms contained in all raw materials supplied to the reactor is 4 A method for producing propylene, characterized in that the total concentration (substrate concentration) of the above olefin, methanol and dimethyl ether is controlled to 20 vol% or more and 80 vol% or less.
[17]炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくと も 1つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造す る方法において、以下の工程(1) , (2)および (3B)を含むプロセスよりなることを特徴 とするプロピレンの製造方法。 [17] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps ( 1) A process for producing propylene characterized by comprising a process comprising (2) and (3B).
工程(1):炭素数 4以上のォレフィン原料、工程 (3B)からリサイクルされた炭化水素 流体(I)並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器に 供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォレ フィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接触さ せ、反応器出口から、プロピレンと、その他ォレフィン、パラフィン類、芳香族化合物 および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% of the molar flow rate of the olefins at the inlet of the reactor. Step of obtaining gas (reactor outlet gas) containing olefin, paraffins, aromatic compounds and water
工程(2) :前記工程(1)からの反応器出口ガスを炭素数 3以下の炭化水素に富んだ 流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分離 する工程工程 (3B):前記工程(2)における流体 (A)を、芳香族化合物濃度が流体( A)より低!/、流体 (G)と炭素数 4の炭化水素濃度が流体 (A)より低!/、流体 (F)とに分 離し、前記前記流体 (G)の少なくとも一部(I)は反応器にリサイクルし、残りの流体 (H )を該プロセスから抜き出す工程 Step (2): The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water Step (3B): In the step (2), the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) is separated into a fluid (F), at least a part (I) of the fluid (G) is recycled to the reactor, and the remaining fluid (H) is extracted from the process.
[18] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なく とも 1つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造 する方法において、以下の工程(1) , (2)および(3B)を含むプロセスよりなることを特 徴とするプロピレンの製造方法。 [18] Propylene is produced by contacting a mixture of olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst. A process for producing propylene characterized by comprising a process comprising the following steps (1), (2) and (3B):
工程(1):炭素数 4以上のォレフィン原料、工程 (3B)からリサイクルされた炭化水素 流体(I)並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器に 供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォレ フィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接触 させ、反応器出口から、プロピレンと、その他ォレフィン、パラフィン類、芳香族化合物 および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other olefins from the reactor outlet. To obtain gas containing gas, paraffins, aromatic compounds and water (reactor outlet gas)
工程(2) :前記工程(1)からの反応器出口ガスを炭素数 3以下の炭化水素に富んだ 流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分離 する工程工程 (3B):前記工程(2)における流体 (A)を、芳香族化合物濃度が流体( A)より低!/、流体 (G)と炭素数 4の炭化水素濃度が流体 (A)より低!/、流体 (F)とに分 離し、前記流体 (F)を該プロセスから抜き出すと共に、前記流体 (G)の一部(I)は反 応器にリサイクルし、残りの流体 (H)を該プロセスから抜き出す工程 Step (2): The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water Step (3B): In the step (2), the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) is separated into a fluid (F), and the fluid (F) is withdrawn from the process, and a part (I) of the fluid (G) is recycled to the reactor, and the remaining fluid Step of extracting (H) from the process
[19] [17]または [18]において、前記反応器が直列に接続された二つ以上の反応 部からなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよ びジメチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭化水素含有流 体 (I)のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部とに分割し て供給することを特徴とするプロピレンの製造方法。 [19] In [17] or [18], the reactor comprises two or more reaction parts connected in series, and the olefin raw material having 4 or more carbon atoms to be supplied to the reactor; methanol and dimethyl ether At least one of them; and at least one of the recycled hydrocarbon-containing fluid (I) is divided into a first-stage reaction section and a second-stage reaction section to be supplied. A method for producing propylene, which is characterized.
[20] [17]ないし [19]において、前記流体(H)をスチームクラッキングプロセスに供 給し、クラッカー原料として利用することを特徴とするプロピレンの製造方法。  [20] A method for producing propylene according to [17] to [19], wherein the fluid (H) is supplied to a steam cracking process and used as a cracker raw material.
[21] [20]において、前記流体 (H)の少なくとも一部を水素添加触媒と接触させた 後、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法[21] The method for producing propylene according to [20], wherein at least a part of the fluid (H) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
Yes
[22] [17]ないし [21]のいずれかにおいて、前記流体 (H)に含まれる芳香族化合 物濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。  [22] The method for producing propylene according to any one of [17] to [21], wherein the total concentration of aromatic compounds contained in the fluid (H) is less than 5.0% by volume.
[23] [17]ないし [22]のいずれかにおいて、前記流体(F)をスチームクラッキング プロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。 [24] [17]から [23]のいずれかにおいて、前記流体 (F)に含まれる炭素数 4の炭 化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。 [23] The method for producing propylene according to any one of [17] to [22], wherein the fluid (F) is mixed with a cracked gasoline fraction of a steam cracking process. [24] The method for producing propylene according to any one of [17] to [23], wherein the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (F) is less than 5% by weight.
[25] [17]から [24]のいずれかにおいて、前記流体(F)および流体(H)の流量を 制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以上のォレ フィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積%以上 80体 積%以下に制御することを特徴とするプロピレンの製造方法。 [25] In any one of [17] to [24], by controlling the flow rates of the fluid (F) and the fluid (H), the total raw material supplied to the reactor has 4 or more carbon atoms. A method for producing propylene, characterized in that the total concentration (substrate concentration) of olefin, methanol, and dimethyl ether is controlled to 20 volume% or more and 80 volume% or less.
[26] [8]から [25]のいずれかにおいて、前記工程(2)が、前記反応器出口ガスか ら、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 2以下の 炭化水素に富んだ流体と炭素数 3以上の炭化水素に富んだ流体とに分離し、前記 炭素数 3以上の炭化水素に富んだ流体を、蒸留により炭素数 3の炭化水素に富んだ 流体と炭素数 4以上の炭化水素に富んだ流体とに分離する工程を含むことを特徴と するプロピレンの製造方法。  [26] In any one of [8] to [25], after the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, carbonization having 2 or less carbon atoms is performed by distillation. A fluid rich in hydrogen and a fluid rich in hydrocarbons having 3 or more carbon atoms are separated, and the fluid rich in hydrocarbons having 3 or more carbon atoms is separated from the fluid rich in hydrocarbons and carbon atoms containing 3 carbon atoms by distillation. A method for producing propylene, comprising a step of separating the fluid into a hydrocarbon-rich fluid having a number of 4 or more.
[27] [8]から [25]のいずれかにおいて、前記工程(2)が、前記反応器出口ガスか ら、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 3以下の 炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体とに分離し、前記 炭素数 3以下の炭化水素に富んだ流体を、蒸留により炭素数 2以下の炭化水素に富 んだ流体と炭素数 3の炭化水素に富んだ流体とに分離する工程を含むことを特徴と するプロピレンの製造方法。  [27] In any one of [8] to [25], after the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, carbonization of 3 or less carbon atoms is performed by distillation. A fluid rich in hydrogen and a fluid rich in hydrocarbons having 4 or more carbon atoms are separated into a fluid rich in hydrocarbons having 3 or less carbon atoms, and a fluid rich in hydrocarbons having 2 or less carbon atoms by distillation. A process for separating propylene into a hydrocarbon-rich fluid having 3 carbon atoms.
[28] [8]から [25]に記載のいずれ力、 1項において、前記工程(2)が、前記反応器 出口ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭 素数 2以下の炭化水素および炭素数 3の炭化水素を含む流体と炭素数 3以上の炭 化水素に富んだ流体とに分離し、前記炭素数 3以上の炭化水素に富んだ流体を、蒸 留により炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体 とに分離する工程を含むことを特徴とするプロピレンの製造方法。  [28] In any one of the forces described in [8] to [25], in step 1, the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, and then the number of carbon atoms by distillation. A fluid containing a hydrocarbon having 2 or less hydrocarbons and a hydrocarbon having 3 carbon atoms is separated into a fluid rich in hydrocarbons having 3 or more carbon atoms, and the fluid rich in hydrocarbons having 3 or more carbon atoms is distilled by distillation. A method for producing propylene, comprising a step of separating a fluid rich in hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms.
[29] [8]から [25]に記載のいずれかにおいて、前記工程(2)が、前記反応器出口 ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 3 以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体とに分離し 、前記炭素数 3以下の炭化水素に富んだ流体を、蒸留により炭素数 2以下の炭化水 素および炭素数 3の炭化水素を含む流体と炭素数 3の炭化水素に富んだ流体とに 分離する工程を含むことを特徴とするプロピレンの製造方法。 [29] In any one of [8] to [25], after the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, the distillation has a carbon number of 3 or less. A fluid rich in hydrocarbons and a fluid rich in hydrocarbons having 4 or more carbon atoms are separated, and the fluid rich in hydrocarbons having 3 or less carbon atoms is separated into hydrocarbons having 2 or less carbon atoms by distillation. A process for producing propylene, comprising a step of separating a fluid containing elemental hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms.
[30] [8]ないし [29]のいずれかにおいて、前記炭素数 4以上のォレフィン原料が、 炭素数 4以上のパラフィン類を含有することを特徴とするプロピレンの製造方法。 [30] The method for producing propylene according to any one of [8] to [29], wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[31 ] [30]において、前記パラフィン類がノルマルブタンおよびイソブタンのうち少な くとも 1つを含むことを特徴とするプロピレンの製造方法。 [31] The method for producing propylene according to [30], wherein the paraffins contain at least one of normal butane and isobutane.
[32] [8]ないし [31]のいずれ力、 1項において、前記反応器に供給される原料中に ブタジエンを含有することを特徴とするプロピレンの製造方法。  [32] The method for producing propylene according to any one of [8] to [31], wherein the raw material supplied to the reactor contains butadiene.
[33] [8]ないし [32]のいずれ力、 1項において、前記反応器に供給される全原料に 含まれる芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィン の合計量に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法  [33] In any one of [8] to [32], the total amount of aromatic compounds contained in all the raw materials fed to the reactor is olefin having 4 or more carbon atoms contained in all the raw materials. Propylene production method, characterized in that the molar ratio is less than 0.05 with respect to the total amount of
[34] [8]ないし [33]のいずれ力、 1項において、前記反応器に供給する炭素数 4以 上のォレフィンの量力 S、該反応器に供給するメタノールのモル数とジメチルエーテル のモル数の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とする プロピレンの製造方法。 [34] In any one of [8] to [33], in item 1, the quantity S of olefin having 4 or more carbon atoms to be supplied to the reactor, the number of moles of methanol to be fed to the reactor, and the number of moles of dimethyl ether The method for producing propylene, characterized in that the molar ratio is 0.2 or more and 10 or less with respect to the total of 2 times.
[35] [8]ないし [34]のいずれ力、 1項において、前記反応器に供給する炭素数 4以 上のォレフィン原料力 S、スチームクラッキングプロセスで得られる炭素数 4の炭化水素 流体を含むことを特徴とするプロピレンの製造方法。  [35] In any one of [8] to [34], including the olefin raw material force S having 4 or more carbon atoms to be supplied to the reactor, and a hydrocarbon fluid having 4 carbon atoms obtained by the steam cracking process Propylene production method characterized by the above.
[36]炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくと も 1つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造す る方法において、以下の工程(1C) , (2C) , (3C)および(4C)を含むプロセスよりな ることを特徴とするプロピレンの製造方法。  [36] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps ( 1C), (2C), (3C), and a process comprising (4C).
工程(1C):炭素数 4以上のォレフィン原料、工程 (4C)からリサイクルされた炭化水 素流体(Q)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応 器に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該 ォレフィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接 触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族化 合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1C): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (Q) recycled from step (4C), and at least one of methanol and dimethyl ether are supplied to the reactor, and the reactor outlet The catalyst is brought into contact with the catalyst under reaction conditions such that the molar flow rate of olefins having 4 or more carbon atoms is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other components are discharged from the reactor outlet. Olefins, paraffins, aromatization Step of obtaining a gas (reactor outlet gas) containing a compound and water
工程(2C):前記工程(1C)からの反応器出口ガスを冷却し、ガス流体 (L)、炭素数 4以上の炭化水素に富み、芳香族化合物を含んだ液流体 (M)、および水に富んだ 流体に分離する工程  Step (2C): Reactor outlet gas from step (1C) is cooled, gas fluid (L), liquid fluid (M) rich in hydrocarbons having 4 or more carbon atoms and containing aromatic compounds, and water To separate into a rich fluid
工程(3C):前記工程(2C)におけるガス流体 (L)を炭素数 3以下の炭化水素に富 んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N)とに分離する工程  Step (3C): a step of separating the gas fluid (L) in the step (2C) into a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms.
工程 (4C):前記流体 (N)の少なくとも一部の流体(Q)を反応器にリサイクルするェ 程  Step (4C): Process of recycling at least a part of the fluid (N) (Q) to the reactor.
[37]炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくと も 1つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造す る方法において、以下の工程(1C) , (2C) , (3C)および(4C)を含むプロセスよりな ることを特徴とするプロピレンの製造方法。  [37] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps ( 1C), (2C), (3C), and a process comprising (4C).
工程(1C):炭素数 4以上のォレフィン原料、工程 (4C)からリサイクルされた炭化水 素流体(Q)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応 器に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該 ォレフィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接 触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族化 合物および水を含有するガス(反応器出口ガス)を得る工程  Step (1C): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (Q) recycled from step (4C), and at least one of methanol and dimethyl ether are supplied to the reactor, and the reactor outlet The catalyst is brought into contact with the catalyst under reaction conditions such that the molar flow rate of olefins having 4 or more carbon atoms is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other components are discharged from the reactor outlet Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2C):前記工程(1C)からの反応器出口ガスを冷却し、冷却後のガス流体 (K )を圧縮によりガス流体 (L)、炭素数 4以上の炭化水素に富み、芳香族化合物を含ん だ液流体 (M)、および水に富んだ流体に分離する工程  Step (2C): The reactor outlet gas from the step (1C) is cooled, and the gas fluid (K) after cooling is compressed by gas fluid (L), rich in hydrocarbons having 4 or more carbon atoms, and aromatic compounds. Separation into liquid fluid (M) containing water and fluid rich in water
工程(3C):前記工程(2C)におけるガス流体 (L)を炭素数 3以下の炭化水素に富 んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N)とに分離する工程  Step (3C): a step of separating the gas fluid (L) in the step (2C) into a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms.
工程 (4C):前記流体(N)の一部(P)を該プロセスから抜き出し、残りの流体(Q)を 反応器にリサイクルする工程  Step (4C): A step of extracting a part (P) of the fluid (N) from the process and recycling the remaining fluid (Q) to the reactor.
[38] [36]または [37]において、前記液流体 (M)を、蒸留により、芳香族化合物濃 度が液流体 (M)中よりも低!/、流体 (R)と炭素数 4の炭化水素濃度が液流体 (M)より も低い流体(S)とに分離することを特徴とするプロピレンの製造方法。 [39] [38]において、前記流体(R)を、前記流体(K)、 (L)、 (M)、 (P)、および(Q) から選ばれるいずれ力、 1または 2以上の流体の流通箇所に戻すことを特徴とするプロ ピレンの製造方法。 [38] In [36] or [37], the liquid fluid (M) has an aromatic concentration lower than that in the liquid fluid (M) by distillation! /, The fluid (R) and the carbon number of 4 A method for producing propylene, characterized in that the hydrocarbon concentration is separated into a fluid (S) lower than the liquid fluid (M). [39] In [38], the fluid (R) may be any force selected from the fluids (K), (L), (M), (P), and (Q), and one or more fluids A method for producing propylene, which is returned to the distribution location.
[40] [36]ないし [39]のいずれかにおいて、前記工程(3C)が、前記ガス流体(L) を、蒸留により、炭素数 2以下の炭化水素に富んだ流体と炭素数 3以上の炭化水素 に富んだ流体とに分離し、さらに、炭素数 3以上の炭化水素に富んだ流体を、蒸留に より、炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N )とに分離する工程を含むことを特徴とするプロピレンの製造方法。  [40] In any one of [36] to [39], in the step (3C), the gas fluid (L) is obtained by distilling the fluid rich in hydrocarbons having 2 or less carbon atoms and 3 or more carbon atoms by distillation. It is separated into a fluid rich in hydrocarbons, and a fluid rich in hydrocarbons with 3 or more carbon atoms is distilled to enrich a fluid rich in hydrocarbons with 3 carbon atoms and rich in hydrocarbons with 4 or more carbon atoms. A process for producing propylene, which comprises a step of separating into a fluid (N).
[41] [36]ないし [39]のいずれか 1項において、前記工程(3C)が、前記ガス流体( L)を、蒸留により、炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水 素に富んだ流体 (N)とに分離し、さらに、炭素数 3以下の炭化水素に富んだ流体を、 蒸留により、炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水素に富んだ 流体とに分離する工程を含むことを特徴とするプロピレンの製造方法。 [41] In any one of [36] to [39], in the step (3C), the gas fluid (L) is obtained by distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms. The hydrocarbon-rich fluid (N) is separated into the above-mentioned hydrocarbon-rich fluid, and further, the hydrocarbon-rich fluid having 3 or less carbon atoms is distilled, and the hydrocarbon-rich fluid having 3 or less carbon atoms and carbon 3 or less are obtained by distillation. A process for producing propylene, comprising the step of separating into a hydrocarbon-rich fluid.
[42] [36]ないし [39]のいずれ力、 1項において、前記工程(3C)が、前記ガス流体( L)を、蒸留により、炭素数 2以下の炭化水素と炭素数 3の炭化水素を含んだ流体と 炭素数 3以上の炭化水素に富んだ流体とに分離し、さらに、炭素数 3以上の炭化水 素に富んだ流体を、蒸留により、炭素数 3の炭化水素に富んだ流体と炭素数 4以上 の炭化水素に富んだ流体 (N)とに分離する工程を含むことを特徴とするプロピレンの 製造方法。 [42] In any one of the powers of [36] to [39], in step 1, the step (3C) includes distilling the gas fluid (L) into a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms. Is separated into a fluid rich in hydrocarbons containing 3 or more carbon atoms, and a fluid rich in hydrocarbons containing 3 or more carbon atoms is distilled into a fluid rich in hydrocarbons containing 3 carbon atoms. And a fluid rich in hydrocarbons (N) having 4 or more carbon atoms, and a process for producing propylene.
[43] [36]ないし [39]のいずれ力、 1項において、前記工程(3C)が、前記ガス流体( L)を、蒸留により、炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水 素に富んだ流体 (N)とに分離し、さらに、炭素数 3以下の炭化水素に富んだ流体を、 蒸留により、炭素数 2以下の炭化水素と炭素数 3の炭化水素を含んだ流体と炭素数 3 の炭化水素に富んだ流体とに分離する工程を含むことを特徴とするプロピレンの製 造方法。  [43] In any one of the forces [36] to [39], in the step (3C), the gas fluid (L) is obtained by distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms and the carbon number. It is separated into a hydrocarbon-rich fluid (N) having 4 or more hydrocarbons, and a fluid rich in hydrocarbons having 3 or less carbon atoms is distilled by distillation to produce hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms. A process for producing propylene, comprising a step of separating the fluid into a fluid rich in hydrocarbons containing 3 carbon atoms.
[44] [36]ないし [43]のいずれ力、 1項において、前記反応器が直列に接続された二 つ以上の反応部からなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよびジメチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭 化水素含有流体のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部 とに分割して供給することを特徴とするプロピレンの製造方法。 [44] In any one of the forces of [36] to [43], the olefin raw material having 4 or more carbon atoms, which is composed of two or more reaction parts connected in series with each other and fed to the reactor; At least one of methanol and dimethyl ether; and recycled charcoal A method for producing propylene, characterized in that at least one of the hydride-containing fluids is divided and supplied to a first-stage reaction section and a second-stage reaction section and thereafter.
[45] [36]ないし [44]のいずれ力、 1項において、前記炭素数 4以上のォレフィン原 料が、炭素数 4以上のパラフィン類を含有することを特徴とするプロピレンの製造方 法。 [45] A method for producing propylene according to any one of [36] to [44], wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[46] [45]において、前記パラフィン類がノルマルブタンおよびイソブタンのうち少な くとも 1つを含むことを特徴とするプロピレンの製造方法。  [46] The method for producing propylene according to [45], wherein the paraffin contains at least one of normal butane and isobutane.
[47] [36]ないし [46]のいずれか 1項において、前記反応器に供給される原料中に ブタジエンを含有することを特徴とするプロピレンの製造方法。  [47] The method for producing propylene according to any one of [36] to [46], wherein the raw material supplied to the reactor contains butadiene.
[48] [36]ないし [47]のいずれ力、 1項において、前記反応器に供給される全原料に 含まれる芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィン の合計量に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法  [48] In any one of the powers of [36] to [47], the total amount of aromatic compounds contained in all the raw materials fed to the reactor is olefin having 4 or more carbon atoms contained in all the raw materials. Propylene production method, characterized in that the molar ratio is less than 0.05 with respect to the total amount of
[49] [36]ないし [48]のいずれ力、 1項において、前記流体(M)および前記流体(P) のうち少なくとも 1つをスチームクラッキングプロセスに供給し、クラッカー原料として利 用することを特徴とするプロピレンの製造方法。 [49] In any one of the forces of [36] to [48], in item 1, at least one of the fluid (M) and the fluid (P) is supplied to a steam cracking process and used as a cracker raw material. A method for producing propylene, which is characterized.
[50] [49]において、前記流体(M)および前記流体(P)のうち少なくとも 1つの少な くとも一部を水素添加触媒と接触させた後、スチームクラッキングプロセスに供給する ことを特徴とするプロピレンの製造方法。  [50] In [49], at least a part of at least one of the fluid (M) and the fluid (P) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process. Propylene production method.
[51] [36]ないし [50]のいずれか 1項において、前記流体(M)および前記流体(P) のうち少なくとも 1つに含まれる芳香族化合物濃度の合計が 5. 0体積%未満であるこ とを特徴とするプロピレンの製造方法。  [51] In any one of [36] to [50], the total concentration of aromatic compounds contained in at least one of the fluid (M) and the fluid (P) is less than 5.0% by volume. A process for producing propylene characterized by the above.
[52] [36]ないし [51]のいずれか 1項において、前記流体(M)をスチームクラツキン グプロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。  [52] The method for producing propylene according to any one of [36] to [51], wherein the fluid (M) is mixed with a cracked gasoline fraction of a steam cracking process.
[53] [36]ないし [52]のいずれ力、 1項において、前記流体(M)に含まれる炭素数 4 の炭化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方 法。 [53] The production of propylene according to any one of [36] to [52], wherein the total concentration of C 4 hydrocarbons contained in the fluid (M) is less than 5% by weight Method.
[54] [36]ないし [53]のいずれ力、 1項において、前記流体(M)および前記流体(P) の流量を制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以 上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積% 以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。 [54] Any force of [36] to [53], wherein the fluid (M) and the fluid (P) The total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in all raw materials fed to the reactor is controlled to 20 vol% or more and 80 vol% or less. Propylene production method characterized by the above.
[55] [38]ないし [54]のいずれ力、 1項において、前記流体(R)をスチームクラツキン グプロセスに供給し、クラッカー原料として利用することを特徴とするプロピレンの製 造方法。 [55] A method for producing propylene according to any one of [38] to [54], wherein the fluid (R) is supplied to a steam cracking process and used as a cracker raw material.
[56] [55]にお!/、て、前記流体 (R)の少なくとも一部を水素添加触媒と接触させた後 、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法。  [56] A method for producing propylene according to [55], wherein at least a part of the fluid (R) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
[57] [38]ないし [56]のいずれ力、 1項において、前記流体 (R)に含まれる芳香族化 合物濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。 [57] In any one of the forces of [38] to [56], the total concentration of aromatic compounds contained in the fluid (R) is less than 5.0% by volume of propylene. Production method.
[58] [38]ないし [57]のいずれ力、 1項において、前記流体(S)をスチームクラツキン グプロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。 [58] The method for producing propylene according to any one of the powers of [38] to [57], wherein the fluid (S) is mixed with a cracked gasoline fraction of a steam cracking process.
[59] [38]ないし [58]のいずれか 1項において、前記流体(S)に含まれる炭素数 4 の炭化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方 法。 [59] The method for producing propylene according to any one of [38] to [58], wherein the total concentration of hydrocarbons having 4 carbon atoms contained in the fluid (S) is less than 5% by weight. Law.
[60] [38]ないし [59]のいずれ力、 1項において、前記流体(P)、流体(R)および流 体(S)の流量を制御することにより、前記反応器に供給される全原料に含まれる炭素 数 4以上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体 積%以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。  [60] In any one of the forces of [38] to [59], the total amount of fluid supplied to the reactor is controlled by controlling the flow rates of the fluid (P), fluid (R), and fluid (S). A method for producing propylene, characterized in that the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in the raw material is controlled to 20 volume% or more and 80 volume% or less.
[61] [38]ないし [60]のいずれかにおいて、前記流体(R)を、前記流体(K)、 (L)、 (N)、 (P)、および(Q)から選ばれるいずれ力、 1または 2以上の流体の箇所に戻すに あたり、前記流体 (R)の返送箇所およびその流量を制御することにより、前記反応器 に供給される全原料に含まれる炭素数 4以上のォレフィンとメタノールとジメチルエー テルの合計濃度 (基質濃度)を 20体積%以上 80体積%以下に制御することを特徴と するプロピレンの製造方法。 [61] In any one of [38] to [60], the fluid (R) may be any force selected from the fluids (K), (L), (N), (P), and (Q), When returning to the location of 1 or 2 or more fluids, by controlling the return location and flow rate of the fluid (R), olefin and methanol having 4 or more carbon atoms contained in all the raw materials supplied to the reactor Propylene production method characterized in that the total concentration of dimethyl ether and substrate (substrate concentration) is controlled to 20 vol% or more and 80 vol% or less.
[62] [36]ないし [61]のいずれか 1項において、前記反応器に供給する炭素数 4以 上のォレフィンの量力 S、該反応器に供給するメタノールのモル数とジメチルエーテル のモル数の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とする プロピレンの製造方法。 [62] In any one of [36] to [61], the quantity S of olefin having 4 or more carbon atoms to be fed to the reactor, the number of moles of methanol to be fed to the reactor, and the number of moles of dimethyl ether The molar ratio is 0.2 or more and 10 or less with respect to the total of 2 times. Propylene production method.
[63] [36]ないし [62]のいずれ力、 1項において、前記反応器に供給する炭素数 4以 上のォレフィン原料力 S、スチームクラッキングプロセスで得られる炭素数 4の炭化水素 流体を含むことを特徴とするプロピレンの製造方法。  [63] In any one of the forces [36] to [62], including the olefin raw material power S having 4 or more carbon atoms to be supplied to the reactor, and the hydrocarbon fluid having 4 carbon atoms obtained by the steam cracking process Propylene production method characterized by the above.
発明の効果  The invention's effect
[0013] 本発明によれば、触媒の存在下に、炭素数 4以上のォレフィン原料とメタノールおよ びジメチルエーテルのうち少なくとも 1つとを反応させてプロピレンを製造する方法に おいて、原料を高度に利用して、触媒の劣化を抑えながら高い収率でプロピレンを 製造すること力 Sでさる。  [0013] According to the present invention, in the method for producing propylene by reacting an olefin raw material having 4 or more carbon atoms with at least one of methanol and dimethyl ether in the presence of a catalyst, the raw material is highly advanced. Utilizing the power S to produce propylene in a high yield while suppressing catalyst deterioration.
また、本発明の方法をスチームクラッキングプロセスと統合して経済的なプロセスを 提供すること力でさる。  It is also the power of integrating the method of the present invention with a steam cracking process to provide an economical process.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明のプロピレンの製造方法の実施形態の一例を示す系統図である。  FIG. 1 is a system diagram showing an example of an embodiment of a method for producing propylene of the present invention.
[図 2]本発明のプロピレンの製造方法の実施形態の他の例を示す系統図である。  FIG. 2 is a system diagram showing another example of the embodiment of the method for producing propylene of the present invention.
[図 3]本発明のプロピレンの製造方法の実施形態の他の例を示す系統図である。 符号の説明  FIG. 3 is a system diagram showing another example of the embodiment of the method for producing propylene of the present invention. Explanation of symbols
[0015] 10 反応器 [0015] 10 reactors
20 第 1の分離精製系  20 First separation and purification system
30A, 30B 第 2の分離精製系  30A, 30B Second separation and purification system
13 反応器  13 Reactor
23 圧縮機  23 Compressor
33 ノックアウトドラム  33 Knockout drum
43 油水分離機  43 Oil-water separator
53 第 1の分離精製系  53 First separation and purification system
63 第 2の分離精製系  63 Second separation and purification system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明を実施するための代表的な態様を具体的に説明するが、本発明は その要旨を超えな!/、限り、以下の態様に限定されるものではなレ、。 [0016] Hereinafter, typical embodiments for carrying out the present invention will be described in detail. Beyond that gist! /, As long as it is not limited to the following aspects.
本発明のプロピレンの製造方法は、炭素数 4以上のォレフィンと、メタノールおよび ジメチルエーテルのうち少なくとも 1つを含む原料を触媒の存在下、反応器中で接触 させてプロピレンを製造する方法にぉレ、て、該反応器出口流出ガス中にぉレ、て含ま れる芳香族化合物の少なくとも一部は抜き出すと共に、該反応器出口流出ガス中に おいて含まれる炭素数 4以上のォレフィンの少なくとも一部を該反応器にて再度触媒 と接触させることを特徴とするものである。  The method for producing propylene of the present invention is different from the method for producing propylene by contacting a olefin having 4 or more carbon atoms and a raw material containing at least one of methanol and dimethyl ether in the presence of a catalyst in a reactor. Thus, at least a part of the aromatic compound contained in the reactor outlet effluent gas is extracted and at least a part of the olefins having 4 or more carbon atoms contained in the reactor outlet effluent gas. The reactor is again brought into contact with the catalyst.
より具体的な第一、第二、の実施態様として、前述したような 3つの工程(1) , (2) , ( 3A)または(1)、(2)、(3B)を含むもの、また第 3の態様として前述したような 4つのェ 程(1C) , (2C) , (3C)および (4C)を含むものである力 S、本発明の課題を解決すると いう目的に従う限り、それ以外の工程の存在を排除するものではなぐ 4つの工程の 前後に他の工程が存在していてもよぐ各工程の間に他の工程が存在していてもよ い。  More specific first and second embodiments include those including the three steps (1), (2), (3A) or (1), (2), (3B) as described above, As long as it follows the purpose of solving the problem of the present invention, the force S including the four steps (1C), (2C), (3C) and (4C) as described above as the third embodiment There is no need to exclude the existence of other processes. Other processes may exist before and after the four processes, and other processes may exist between each process.
なお、本発明において「富んだ」とは、 目的物の純度が 50モル%以上、好ましくは 7 0モル0 /0以上、より好ましくは 90モル0 /0以上、さらに好ましくは 95モル0 /0以上であるこ とを意味する。例えば、「炭素数 4以上の炭化水素に富んだ流体 (N)」とは、「炭素数 4以上の炭化水素」を 50モル%以上、好ましくは 70モル%以上、より好ましくは 90モ ル%以上、さらに好ましくは 95モル%以上含む流体である。 Note that the "rich" in the present invention, purity of 50 mol% or more of the desired product, preferably 7 0 mole 0/0 or more, more preferably 90 mol 0/0 or more, more preferably 95 mol 0/0 That means it is above. For example, “fluid rich in hydrocarbons having 4 or more carbon atoms (N)” means “hydrocarbons having 4 or more carbon atoms” of 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol%. More preferably, the fluid contains 95 mol% or more.
[0017] [触媒] [0017] [Catalyst]
まず、本発明で用いる触媒について説明する。  First, the catalyst used in the present invention will be described.
本発明に係る反応に用いられる触媒としては、ブレンステッド酸点を有する固体状 のものであれば特に限定されず、従来公知の触媒が用いられ、例えば、カオリン等の 粘土鉱物;粘土鉱物等の担体に硫酸、燐酸等の酸を含浸 ·担持させたもの;酸性型 イオン交換樹脂;ゼォライト類;燐酸アルミニウム類; A1— MCM41等のメソポーラス シリカアルミナ等の固体酸触媒が挙げられる。  The catalyst used in the reaction according to the present invention is not particularly limited as long as it is a solid having a Bronsted acid point, and a conventionally known catalyst is used. For example, clay minerals such as kaolin; clay minerals and the like Solid acid catalyst such as mesoporous silica alumina such as A1-MCM41; acidic type ion exchange resin; zeolites; aluminum phosphates;
[0018] これらの固体酸触媒のうちでも、分子篩効果を有するものが好ましぐまた、酸強度 があまり高くなレ、ものが好ましレ、。  Of these solid acid catalysts, those having a molecular sieving effect are preferred, and those having a very high acid strength are preferred.
[0019] 前記固体酸触媒のうち、分子篩効果を有するゼォライト類や燐酸アルミニウム類の 構造としては、 International Zeolite Association (IZA)が規定するコードで表すと、 例えば、 AEI、 AET、 AEL、 AFI、 AFO、 AFS、 AST, ATN、 BEA、 CAN, CHA 、 EMT、 ERI、 EUO、 FAU、 FER、 LEV, LTL、 MAZ、 MEL、 MFI、 MOR、 MT T、 MTW、 MWW、 OFF, PAU、 RHO、 STT、 TON等が挙げられる。その中でも 触媒のフレームワーク密度が 18. OT/nm3以下である触媒が好ましぐこのようなも のとしては、好ましくは、 MFI、 MEL、 MOR、 MWW、 FAU、 BEA、 CHAで、より好 ましくは、 MFI、 MEL、 MOR、 MWW、 CHA、特に好ましくは MFI、 MEL、 MWW 、 CHAが挙げられる。 [0019] Among the solid acid catalysts, zeolites and aluminum phosphates having a molecular sieve effect As a structure, for example, AEI, AET, AEL, AFI, AFO, AFS, AST, ATN, BEA, CAN, CHA, EMT, ERI, EUO, FAU, FER, LEV, LTL, MAZ, MEL, MFI, MOR, MTT, MTW, MWW, OFF, PAU, RHO, STT, TON, etc. Of these, catalysts with a catalyst framework density of 18. OT / nm 3 or less are preferred. MFI, MEL, MOR, MWW, FAU, BEA, and CHA are preferred. Preferably, MFI, MEL, MOR, MWW, CHA, particularly preferably MFI, MEL, MWW, CHA.
ここで、フレームワーク密度(単位: T/nm3)とは、ゼォライトの単位体積(lnm3)当 たりに存在する T原子(ゼオライトの骨格を構成する原子のうち、酸素以外の原子)の 個数を意味し、この値はゼオライトの構造により決まるものである。 Here, the framework density (unit: T / nm 3 ) is the number of T atoms (among the atoms constituting the zeolite skeleton, other than oxygen) present per unit volume of zeolite (lnm 3 ). This value is determined by the structure of the zeolite.
[0020] 更に、該固体酸触媒としてより好ましくは、細孔径が 0. 3〜0. 9nmのミクロ細孔を 有し、 BET比表面積が 200〜700m2/g、細孔容積が 0. ;!〜 0. 5g/mlである結晶 性アルミノシリケート類、メタ口シリケート類又は結晶性燐酸アルミニウム類等が好まし い。なお、ここで言う細孔径とは、 International Zeolite Association (IZA)が定める 結晶'ギ白勺7 dチヤネノレ DiL径(Crystaliographic free diameter of the channels)を不 し、細孔(チャネル)の形状が真円形の場合は、その直径をさし、細孔の形状が楕円 形の場合は、短径をさす。 [0020] Further, the solid acid catalyst more preferably has micropores having a pore diameter of 0.3 to 0.9 nm, a BET specific surface area of 200 to 700 m 2 / g, and a pore volume of 0.3; Crystalline aluminosilicates, metamouth silicates, crystalline aluminum phosphates, etc. that are in the range of ~ 0.5 g / ml are preferred. Here, the pore diameter to say, International Zeolite Association (IZA) stipulated crystal 'formic white ladle 7 d Chiyanenore DiL diameter (Crystaliographic free diameter of the channels) and non, shape perfect circular pores (channels) In the case of, the diameter is indicated, and when the pore shape is elliptical, the short diameter is indicated.
[0021] また、アルミノシリケートの中では、 SiO /Al Oのモル比が 10以上のものが好まし  [0021] Of the aluminosilicates, those having a SiO 2 / Al 2 O molar ratio of 10 or more are preferred.
2 2 3  2 2 3
い。 SiO /Al Oモル比が低すぎると触媒の耐久性が低下するため好ましくない。 S  Yes. If the SiO 2 / Al 2 O molar ratio is too low, the durability of the catalyst is lowered, which is not preferable. S
2 2 3  2 2 3
i〇 /Al〇のモル比の上限は通常 10000以下である。 Si〇 /Al〇のモル比がこ The upper limit of the iO / AlO molar ratio is usually 10,000 or less. This is the molar ratio of Si〇 / Al〇.
2 2 3 2 2 3 れより高すぎると触媒活性が低下してしまうため好ましくない。上記モル比は、蛍光 X 線や化学分析法などの常法により求めることができる。 If it is higher than 2 2 3 2 2 3, the catalytic activity will decrease, such being undesirable. The molar ratio can be determined by conventional methods such as fluorescent X-ray and chemical analysis.
触媒中のアルミニウム含量は触媒調製の際の原料仕込み量でコントロールすること ができ、また、調製後にスチーミング等により A1を減らすこともできる。また、 A1の一部 をホウ素やガリウム等の他の元素に置き換えても良ぐ特にホウ素で置換することが 好ましい。  The aluminum content in the catalyst can be controlled by the amount of raw material charged during catalyst preparation, and A1 can be reduced by steaming after preparation. Further, a part of A1 may be replaced with another element such as boron or gallium. In particular, it is preferable to replace with boron.
[0022] これらの触媒は 1種を単独で用いてもよぐ 2種以上を混合して用いてもよい。 [0023] 本発明においては、上述のような触媒活性成分を、そのまま触媒として反応に用い ても良いし、反応に不活性な物質やバインダーを用いて、造粒'成型して、或いはこ れらを混合して反応に用いても良い。該反応に不活性な物質やバインダーとしては、 アルミナまたはアルミナゾル、シリカ、シリカゲル、石英、およびそれらの混合物等が 挙げられる。 [0022] These catalysts may be used alone or as a mixture of two or more. In the present invention, the catalytically active component as described above may be used as it is as a catalyst in the reaction, or granulated and molded using a substance or binder that is inert to the reaction, or may be used. These may be mixed for use in the reaction. Examples of the substance or binder inert to the reaction include alumina or alumina sol, silica, silica gel, quartz, and a mixture thereof.
[0024] なお、上記した触媒組成は、これらの反応に不活性な物質やバインダー等を含まな い触媒活性成分のみの組成である。しかして、本発明に係る触媒とは、これらの反応 に不活性な物質やバインダー等を含む場合は、前述の触媒活性成分とこれらの反 応に不活性な物質やバインダー等とを合わせて触媒と称し、これらの反応に不活性 な物質やバインダー等を含まな!/、場合は、触媒活性成分のみで触媒と称す。  [0024] The catalyst composition described above is a composition of only a catalytically active component that does not contain a substance inactive to these reactions, a binder, and the like. Thus, when the catalyst according to the present invention includes a substance or binder that is inert to these reactions, the catalyst active component is combined with the substance or binder that is inert to these reactions to form a catalyst. In that case, it does not contain substances or binders that are inert to these reactions.
[0025] 本発明で用いる触媒活性成分の粒径は合成時の条件により異なるが、通常、平均 粒径として 0. 01 m〜 500 mである。触媒の粒径が大き過ぎると、触媒活性を示 す表面積が小さくなり、小さ過ぎると取り扱い性が劣るものとなり、いずれの場合も好 ましくない。この平均粒径は、 SEM観察等により求めることができる。  [0025] The particle diameter of the catalytically active component used in the present invention varies depending on the conditions during synthesis, but is usually 0.01 m to 500 m as an average particle diameter. If the particle size of the catalyst is too large, the surface area showing the catalytic activity will be small, and if it is too small, the handleability will be inferior, which is not preferable in either case. This average particle size can be determined by SEM observation or the like.
[0026] 本発明で用いる触媒の調製方法は特に限定されず、一般的に水熱合成と呼ばれ る公知の方法により調製することが可能である。また、水熱合成後にイオン交換、脱 アルミニウム処理、含浸や担持などの修飾により組成を変えることも可能である。 本発明で使用する触媒は、反応に供する際に、上記物性ないし組成を有している ものであれば良ぐいずれの方法によって調製されたものであっても良い。  [0026] The method for preparing the catalyst used in the present invention is not particularly limited, and the catalyst can be prepared by a known method generally called hydrothermal synthesis. In addition, the composition can be changed after hydrothermal synthesis by modification such as ion exchange, dealumination treatment, impregnation and loading. The catalyst used in the present invention may be prepared by any method as long as it has the above physical properties or composition when subjected to the reaction.
[0027] [反応原料]  [0027] [Reaction raw materials]
次に、本発明で反応原料とする炭素数 4以上のォレフィン、メタノール、ジメチルェ 一テルについて説明する。  Next, olefins having 4 or more carbon atoms, methanol, and dimethyl ether used as reaction raw materials in the present invention will be described.
[0028] <ォレフイン原料〉  [0028] <Olefin raw material>
反応の原料として用いる炭素数 4以上のォレフィンとしては、特に限定されるもので はない。例えば、石油供給原料力 接触分解法またはスチームクラッキング等により 製造されるもの(BB留分、 C4ラフイネ一トー 1、 C4ラフイネ一トー 2等)、石炭のガス化 により得られる水素/ CO混合ガスを原料として FT (フィッシャートロプシュ)合成を行 うことにより得られるもの、エチレンの二量化反応を含むオリゴマー化反応により得ら れるもの、炭素数 4以上のパラフィンの脱水素法または酸化脱水素法により得られる もの、 MTO反応によって得られるもの、アルコールの脱水反応によって得られるもの 、炭素数 4以上のジェン化合物の水素化反応により得られるもの等の、公知の各種 方法により得られる、炭素数 4以上、特に炭素数 4〜; 10のォレフインを任意に用いる ことができ、このとき各製造方法に起因する炭素数 4以上のォレフィン以外の化合物 が任意に混合した状態のものをそのまま用いても良いし、精製したォレフィンを用い ても良い。 The olefin having 4 or more carbon atoms used as a raw material for the reaction is not particularly limited. For example, oil produced by catalytic cracking or steam cracking, etc. (BB fraction, C4 rough rice toe 1, C4 rough rice toe 2, etc.), hydrogen / CO mixed gas obtained by gasification of coal It is obtained by synthesis of FT (Fischer-Tropsch) as a raw material and obtained by oligomerization reaction including ethylene dimerization reaction. Those obtained by dehydrogenation or oxidative dehydrogenation of paraffins having 4 or more carbon atoms, those obtained by MTO reaction, those obtained by dehydration reaction of alcohol, hydrogenation reaction of gen compounds having 4 or more carbon atoms Olefins having 4 or more carbon atoms, particularly 4 to 10 carbon atoms, which are obtained by various known methods such as those obtained by the above, can be used arbitrarily. At this time, 4 or more carbon atoms resulting from each production method can be used. A compound in which a compound other than olefin is arbitrarily mixed may be used as it is, or purified olefin may be used.
[0029] この中でも、炭素数 4以上のパラフィン類を含んだォレフィン原料を使用する場合、 ノ ラフィンが希釈ガスの役割を果たすため反応温度の制御が容易になり、さらにパラ フィン含有の原料は安価に入手可能であることが多いため好ましい。さらに好ましく  [0029] Among these, when using an olefin raw material containing paraffins having 4 or more carbon atoms, the reaction temperature can be easily controlled because norafine serves as a diluent gas, and the raw material containing paraffin is inexpensive. It is preferable because it is often available. More preferred
これらの好ましい原料としては上記の BB留分、 C4ラフイネ一トー 1や C4ラフイネ一 トー 2が挙げられる。これらの原料には通常ブタジエンが含まれる。ブタジエンは反応 により芳香族化合物に変換されやすいため、本発明のように、生成した芳香族化合 物の少なくとも一部を反応器にリサイクルせずに抜き出すことは非常に重要である。 尚、 BB留分についてはブタジエンを多く含むため、水素添加触媒に接触させてブタ ジェン濃度を低下させた流体を原料とするのが好ましい。 These preferable raw materials include the above-mentioned BB fraction, C4 rough rice toe 1 and C4 rough rice toe 2. These raw materials usually contain butadiene. Since butadiene is easily converted to an aromatic compound by reaction, it is very important to extract at least a part of the produced aromatic compound without recycling it to the reactor as in the present invention. Since the BB fraction contains a large amount of butadiene, it is preferable to use a fluid that has been brought into contact with a hydrogenation catalyst to lower the butadiene concentration as a raw material.
[0030] <メタノール、ジメチルエーテル〉  [0030] <Methanol, dimethyl ether>
反応の原料として用いるメタノールおよびジメチルエーテルのうち少なくとも 1つの 製造由来は特に限定されない。例えば、石炭および天然ガス、ならびに製鉄業にお ける副生物由来の水素/ COの混合ガスの水素化反応により得られるもの、植物由 来のアルコール類の改質反応により得られるもの、発酵法により得られるもの、再循 環プラスチックや都市廃棄物等の有機物質から得られるもの等が挙げられる。このと き各製造方法に起因するメタノールおよびジメチルエーテル以外の化合物が任意に 混合した状態のものをそのまま用いても良!/、し、精製したものを用いても良レ、。  The production origin of at least one of methanol and dimethyl ether used as a reaction raw material is not particularly limited. For example, those obtained by hydrogenation reaction of coal and natural gas, and by-product hydrogen / CO gas mixture in the steel industry, those obtained by reforming reaction of plant-derived alcohols, by fermentation method And those obtained from organic materials such as recycled plastic and municipal waste. At this time, it is possible to use a compound in which compounds other than methanol and dimethyl ether resulting from each production method are arbitrarily mixed, and it is also possible to use a purified product.
[0031] [反応操作 ·条件:第 1〜3の態様における工程(1) (1C) ] [0031] [Reaction Operation · Conditions: Step (1) (1C) in Embodiments 1 to 3]
以下に、前述の触媒および反応原料を用いる本発明のプロピレン製造反応の操作 •条件について説明する。 In the following, the operation of the propylene production reaction of the present invention using the aforementioned catalyst and reaction raw materials • Explain the conditions.
[0032] <反応器〉 [0032] <Reactor>
本発明における、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテル のうち少なくとも 1つとの反応は、気相反応である。この気相反応器の形態に特に制 限はないが、通常、連続式の固定床反応器や流動床反応器から選ばれる。好ましく は固定床反応器である。  In the present invention, the reaction between olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether is a gas phase reaction. There are no particular restrictions on the form of the gas phase reactor, but it is usually selected from continuous fixed bed reactors and fluidized bed reactors. A fixed bed reactor is preferred.
[0033] なお、固定床反応器に前述の触媒を充填する場合には、触媒層の温度分布を小さ く抑えるために、石英砂、アルミナ、シリカ、シリカ—アルミナ等の反応に不活性な粒 状物を、触媒と混合して充填しても良い。この場合、石英砂等の反応に不活性な粒 状物の使用量は特に制限はない。なお、この粒状物は、触媒との均一混合性の面か ら、触媒と同程度の粒径であることが好ましい。  [0033] When the above-mentioned catalyst is packed in a fixed bed reactor, in order to keep the temperature distribution of the catalyst layer small, particles inert to the reaction such as quartz sand, alumina, silica, silica-alumina, etc. The product may be mixed with the catalyst and filled. In this case, there is no particular limitation on the amount of particulates inert to the reaction such as quartz sand. In addition, it is preferable that this granular material is a particle size comparable as a catalyst from the surface of uniform mixing property with a catalyst.
[0034] また、反応器は直列に接続された二つ以上の反応部からなるものであっても良い。  [0034] The reactor may be composed of two or more reaction units connected in series.
この場合、一つの反応器内を複数の反応室に仕切ったものであっても良ぐ 2以上の 反応器を直列に連結したものであっても良い。  In this case, one reactor may be divided into a plurality of reaction chambers, or two or more reactors may be connected in series.
このように 2以上の反応器を直列に連結したものである場合、反応に伴う発熱を除 去することを目的として反応器と反応器の間に熱交換器を配置しても良い。  When two or more reactors are connected in series as described above, a heat exchanger may be disposed between the reactors for the purpose of removing heat generated by the reaction.
また、発熱を分散させることを目的に、反応基質 (反応原料)を分割して供給しても 良い。好ましくはメタノールおよびジメチルエーテルのうち少なくとも 1つを 1段目の反 応部(反応器または反応室)と 2段目以降の反応部(反応器または反応室)に分割し て供給する。  In addition, the reaction substrate (reaction raw material) may be divided and supplied for the purpose of dispersing heat generation. Preferably, at least one of methanol and dimethyl ether is divided and supplied to the first-stage reaction section (reactor or reaction chamber) and the second-stage reaction section (reactor or reaction chamber).
[0035] 本発明で用いる反応条件においては、触媒はコーキングが少なぐ触媒劣化の速 度は遅いが、 1年以上の連続運転を行う場合には運転中に触媒再生を行う必要があ 例えば、固定床反応器を選択する場合、反応器を少なくとも並列に二つ以上設置 し、反応と再生を切り替えながら運転することが望ましい。固定床反応器の形態として は、多管式の反応器または断熱型の反応器が選ばれる。  [0035] Under the reaction conditions used in the present invention, the catalyst has little coking and the rate of catalyst deterioration is slow. However, when performing continuous operation for more than one year, it is necessary to regenerate the catalyst during operation. When selecting a fixed bed reactor, it is desirable to install at least two reactors in parallel and switch between reaction and regeneration. As the form of the fixed bed reactor, a multitubular reactor or an adiabatic reactor is selected.
一方、流動床反応器を選択する場合、触媒を連続的に再生槽に送り、再生槽にお いて再生された触媒を連続的に反応器に戻しながら反応を行うことが好ましい。 [0036] ここで、触媒の再生操作としては、コーキングにより劣化した触媒を、酸素を含有し た窒素ガスや水蒸気などで処理することにより再生する方法が挙げられる。固定床反 応器における再生操作としては、好ましくは窒素ガスで触媒に付着している揮発性有 機化合物を除去した後、低濃度の酸素を含有する窒素ガスでコーク分を燃焼除去し 、その後窒素ガスで処理することにより触媒層に含まれる分子状酸素を除去する方 法が挙げられる。 On the other hand, when selecting a fluidized bed reactor, it is preferable to carry out the reaction while continuously feeding the catalyst to the regeneration tank and continuously returning the catalyst regenerated in the regeneration tank to the reactor. Here, examples of the catalyst regeneration operation include a method of regenerating the catalyst deteriorated by coking by treating it with nitrogen gas containing oxygen or water vapor. As the regeneration operation in the fixed bed reactor, preferably, after removing volatile organic compounds adhering to the catalyst with nitrogen gas, the coke content is burned and removed with nitrogen gas containing a low concentration of oxygen, and thereafter. An example is a method of removing molecular oxygen contained in the catalyst layer by treating with nitrogen gas.
[0037] <反応器に供給するォレフインとメタノールおよびジメチルエーテルのうち少なくとも 1 つの濃度比〉  [0037] <Concentration ratio of at least one of olefin and methanol and dimethyl ether supplied to the reactor>
本発明においては、反応器に供給する炭素数 4以上のォレフィンの量は、反応器 に供給するメタノールのモル数とジメチルエーテルのモル数の 2倍との合計に対して 、モル比で 0. 2以上、好ましくは 0. 5以上であって、 10以下、好ましくは 5以下である In the present invention, the amount of olefin having 4 or more carbon atoms fed to the reactor is 0.2 in terms of a molar ratio to the sum of the number of moles of methanol fed to the reactor and twice the number of moles of dimethyl ether. Or more, preferably 0.5 or more, 10 or less, preferably 5 or less
Yes
即ち、炭素数 4以上のォレフィンの供給モル量を Mc4、メタノールの供給モル量を Mm、ジメチルエーテルの供給モル量を Mdmとした場合、 Mc4は(Mm+ 2Mdm) の 0· 2〜; 10倍、好ましくは 0. 5〜5倍である。  That is, when the supply molar amount of olefins having 4 or more carbon atoms is Mc4, the supply molar amount of methanol is Mm, and the supply molar amount of dimethyl ether is Mdm, Mc4 is 0.2 to 10 times (Mm + 2Mdm), preferably Is 0.5 to 5 times.
この供給濃度比が低すぎても高すぎても反応が遅くなり好ましくなぐ特に、この供 給濃度比が低すぎると、原料のォレフィンの消費量が減少するため好ましくなレ、。  If this supply concentration ratio is too low or too high, the reaction will be slow, which is preferable. In particular, if this supply concentration ratio is too low, the consumption of olefins as a raw material will be reduced.
[0038] ここで、供給濃度比は、反応器に供給するそれぞれの流体または混合した後の流 体の組成をガスクロマトグラフィーなどの一般的な分析手法で定量することにより知る こと力 Sでさる。 [0038] Here, the supply concentration ratio is obtained by quantifying the composition of each fluid supplied to the reactor or the mixed fluid by a general analytical method such as gas chromatography. .
なお、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なく とも 1つとを反応器に供給する際には、これらを別々に供給しても、予め一部または 全部を混合した後に供給してもよい。  When supplying olefins having 4 or more carbon atoms and at least one of methanol and dimethyl ether to the reactor, they may be supplied separately or after mixing in part or in advance. Also good.
[0039] <反応器に供給する基質濃度〉 <Substrate concentration supplied to reactor>
本発明において、反応器に供給する全供給原料中の、炭素数 4以上のォレフィンと メタノールとジメチルエーテルの合計濃度(基質濃度)は、好ましくは 20体積%以上 8 0体積%以下、より好ましくは 30体積%以上 70体積%以下である。  In the present invention, the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether in all the feeds fed to the reactor is preferably 20% by volume or more and 80% by volume or less, more preferably 30%. The volume is not less than 70% by volume.
ここで基質濃度は、反応器に供給するそれぞれの流体または混合した後の流体の 組成をガスクロマトグラフィーなどの一般的な分析手法で定量することにより知ること ができる。 Here, the substrate concentration is determined for each fluid supplied to the reactor or after mixing. It can be determined by quantifying the composition using a general analytical method such as gas chromatography.
[0040] この基質濃度が高すぎると芳香族化合物やパラフィン類の生成が顕著になりプロピ レンの選択率が低下する傾向がある。逆に、この基質濃度が低すぎると、反応速度が 遅くなるため多量の触媒が必要となり、さらに生成物の精製コストや反応設備の建設 費も大きくなり経済的でない。  [0040] If the substrate concentration is too high, aromatic compounds and paraffins are prominently produced, and the propylene selectivity tends to decrease. On the other hand, if the substrate concentration is too low, the reaction rate becomes slow, so a large amount of catalyst is required, and the product purification cost and the construction cost of the reaction equipment increase, which is not economical.
本発明では、このような基質濃度となるように、以下に記載する希釈ガスで反応基 質を希釈する。この場合において、基質濃度を制御する方法としては、プロセスから 抜き出される流体の流量を制御する方法が挙げられる。即ち、プロセスから抜き出さ れる流体の流量を変えることにより、反応器にリサイクルされる希釈ガスの流量が変化 し、基質濃度を変えることが可能である。  In the present invention, the reaction substrate is diluted with a diluent gas described below so as to obtain such a substrate concentration. In this case, the method for controlling the substrate concentration includes a method for controlling the flow rate of the fluid extracted from the process. That is, by changing the flow rate of the fluid withdrawn from the process, it is possible to change the flow rate of the dilution gas recycled to the reactor and change the substrate concentration.
[0041] <反応器に供給するガス中の不純物濃度〉  [0041] <Impurity concentration in gas supplied to reactor>
本発明において、炭素数 4以上のォレフィン原料中および/またはリサイクルされる 後述の炭化水素含有流体中にブタジエンを含有している場合があるが、反応器に供 給される全供給原料中のブタジエンの濃度としては、 2. 0体積%以下が好ましい。原 料中のブタジエン濃度が高いと芳香族化合物の生成が増加すると共に触媒のコーキ ングによる劣化が速くなるため、好ましくない。  In the present invention, butadiene may be contained in the olefin raw material having 4 or more carbon atoms and / or in the hydrocarbon-containing fluid to be recycled, but butadiene in all the raw materials supplied to the reactor. The concentration of is preferably 2.0% by volume or less. If the concentration of butadiene in the raw material is high, the production of aromatic compounds increases and deterioration due to catalyst coking is accelerated.
[0042] ここでブタジエン濃度は、反応器に供給するそれぞれの流体または混合した後の 流体の組成をガスクロマトグラフィーなどの一般的な分析手法で定量することにより知 ること力 Sでさる。  [0042] Here, the butadiene concentration is determined by the force S known by quantifying the composition of each fluid supplied to the reactor or the fluid after mixing by a general analytical method such as gas chromatography.
原料中のブタジエン濃度を低下させる方法としては、該流体を水素添加触媒と接 触させてォレフィン類に変換する部分水添法が挙げられる。  Examples of a method for reducing the concentration of butadiene in the raw material include a partial hydrogenation method in which the fluid is brought into contact with a hydrogenation catalyst and converted into olefins.
[0043] また、反応器にリサイクルされる後述の炭化水素含有流体中に芳香族化合物を含 有して!/、る場合があるが、反応器に供給される全原料に含まれる芳香族化合物の合 計量が、反応器に供給される全原料に含まれる炭素数 4以上のォレフィンの合計量 に対してモル比で 0. 05未満であることが好ましい。原料中の芳香族化合物濃度が 高いと、反応器内で芳香族化合物と炭素数 4以上のォレフィンとの反応や、芳香族 化合物とメタノールおよびジメチルエーテルのうち少なくとも 1つとの反応が顕著にな り、必要以上に炭素数 4以上のォレフィンやメタノールおよびジメチルエーテルのうち 少なくとも 1つを消費してしまうため好ましくない。 [0043] The hydrocarbon-containing fluid to be recycled to the reactor may contain an aromatic compound! /, But the aromatic compound contained in all raw materials supplied to the reactor Is preferably less than 0.05 in terms of a molar ratio with respect to the total amount of olefins having 4 or more carbon atoms contained in all raw materials fed to the reactor. When the concentration of the aromatic compound in the raw material is high, the reaction between the aromatic compound and olefin having 4 or more carbon atoms, or the reaction between the aromatic compound and at least one of methanol and dimethyl ether in the reactor becomes remarkable. Therefore, it is not preferable because it consumes at least one of olefins having 4 or more carbon atoms, methanol and dimethyl ether more than necessary.
さらに、芳香族化合物が反応器に供給された場合には、前記炭素数 4以上のォレ フィンとの反応で生成した化合物が触媒の孔を閉塞させることにより触媒の劣化も促 進されるため、反応器出口流体中に存在する芳香族化合物はできるだけ系内から抜 き出し、反応器にリサイクルする流体中の芳香族化合物濃度を低くすることが好まし い。  Furthermore, when an aromatic compound is supplied to the reactor, the compound produced by the reaction with the olefin having 4 or more carbon atoms clogs the pores of the catalyst, thereby promoting the deterioration of the catalyst. It is preferable to remove the aromatic compounds present in the reactor outlet fluid from the system as much as possible and reduce the concentration of the aromatic compounds in the fluid recycled to the reactor.
[0044] ここで上記の芳香族化合物の合計量と炭素数 4以上のォレフィンの合計量の比は、 反応器に供給するそれぞれの流体または混合した後の流体の組成をガスクロマトグ ラフィーなどの一般的な分析手法で定量することにより知ることができる。  [0044] Here, the ratio of the total amount of the aromatic compounds and the total amount of olefins having 4 or more carbon atoms depends on the composition of each fluid supplied to the reactor or the fluid after mixing, such as gas chromatography. This can be determined by quantitative analysis using a typical analysis method.
原料中の芳香族化合物濃度を低下させる方法としては、蒸留による分離法が挙げ られる。  An example of a method for reducing the concentration of aromatic compounds in the raw material is a separation method by distillation.
[0045] <希釈ガス〉 [0045] <Dilution gas>
反応器内には、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルの うち少なくとも 1つの他に、パラフィン類、芳香族類、水蒸気、二酸化炭素、一酸化炭 素、窒素、アルゴン、ヘリウム、および、それらの混合物といった、反応に不活性な気 体を存在させること力できる。なお、これらの希釈ガスのうち、パラフィン類や芳香族 類は、反応条件によっては若干反応することがある力 反応量が少ないことから、希 釈ガスとして定義する。  In the reactor, in addition to olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether, paraffins, aromatics, steam, carbon dioxide, carbon monoxide, nitrogen, argon, helium, and There can be a gas inert to the reaction, such as a mixture of them. Of these diluting gases, paraffins and aromatics are defined as diluting gases because of the small amount of reaction that may react slightly depending on the reaction conditions.
このような希釈ガスとしては、反応原料に含まれている不純物をそのまま使用しても 良レ、し、別途調製した希釈ガスを反応原料と混合して用いても良レ、。  As such a dilution gas, impurities contained in the reaction raw material can be used as they are, or a separately prepared dilution gas can be mixed with the reaction raw material.
また、希釈ガスは反応器に入れる前に反応原料と混合しても良いし、反応原料とは 別に反応器に供給しても良い。  Further, the dilution gas may be mixed with the reaction raw material before entering the reactor, or may be supplied to the reactor separately from the reaction raw material.
好ましい希釈ガスとしては、炭素数 4以上のパラフィン類である。さらに好ましくはノ レフイン原料に含まれるものを利用することができると共に、熱容量が比較的大きレ、 化合物であることから反応温度の制御が容易になる。  Preferred diluent gases are paraffins having 4 or more carbon atoms. More preferably, what is contained in the raw material for polyolefin can be used, and since the heat capacity is relatively high and the compound is used, the reaction temperature can be easily controlled.
[0046] <空間速度〉 ここで言う空間速度とは、触媒 (触媒活性成分)の重量当たりの反応原料である炭 素数 4以上のォレフィンの流量であり、ここで触媒の重量とは触媒の造粒 ·成型に使 用する不活性成分やバインダーを含まない触媒活性成分の重量である。また、流量 は炭素数 4以上のォレフィンの流量(重量/時間)である。 [0046] <Space velocity> The space velocity mentioned here is the flow rate of olefin having 4 or more carbon atoms as the reaction raw material per weight of the catalyst (catalytic active component). Here, the weight of the catalyst is used for granulating and molding the catalyst. It is the weight of the catalytically active component which does not contain an inactive component or a binder. The flow rate is the flow rate (weight / hour) of olefins with 4 or more carbon atoms.
[0047] 空間速度は、 0. lHr— 1から 500Hr— 1の間が好ましぐ 1. OHr— 1から lOOHr— 1の間 が更に好ましい。空間速度が高すぎると原料のォレフィンとメタノールおよびジメチル エーテルのうち少なくとも 1つの転化率が低ぐまた、十分なプロピレン選択率が得ら れない。また、空間速度が低すぎると、一定の生産量を得るのに必要な触媒量が多く なり反応器が大きくなりすぎると共に、芳香族化合物やパラフィン等の好ましくなレ、副 生成物が生成し、プロピレン選択率が低下するため好ましくない。 [0047] The space velocity is preferably between 0.1 lHr- 1 and 500Hr- 1. 1. More preferably between OHr- 1 and lOOHr- 1 . If the space velocity is too high, the conversion of at least one of the raw materials olefin and methanol and dimethyl ether is low, and sufficient propylene selectivity cannot be obtained. On the other hand, if the space velocity is too low, the amount of catalyst required to obtain a certain production amount increases, the reactor becomes too large, and preferable residues and by-products such as aromatic compounds and paraffin are produced. Since propylene selectivity decreases, it is not preferable.
[0048] <反応温度 > [0048] <Reaction temperature>
反応温度の下限としては、反応器入口のガス温度として通常約 300°C以上、好まし くは 400°C以上であり、反応温度の上限としては、通常 700°C以下、好ましくは 600 °C以下である。反応温度が低すぎると、反応速度が低ぐ未反応原料が多く残る傾向 となり、更にプロピレンの収率も低下する。一方で反応温度が高すぎるとプロピレンの 収率が著しく低下する。  The lower limit of the reaction temperature is usually about 300 ° C or higher, preferably 400 ° C or higher as the gas temperature at the reactor inlet, and the upper limit of the reaction temperature is usually 700 ° C or lower, preferably 600 ° C. It is as follows. If the reaction temperature is too low, a large amount of unreacted raw material with a low reaction rate tends to remain, and the yield of propylene also decreases. On the other hand, if the reaction temperature is too high, the yield of propylene is significantly reduced.
[0049] <反応圧力〉 [0049] <Reaction pressure>
反応圧力の上限は通常 2MPa (絶対圧、以下同様)以下好ましくは IMPa以下であ り、より好ましくは 0. 7MPa以下である。また、反応圧力の下限は特に制限されない ヽ通常 lkPa以上、好ましくは 50kPa以上である。反応圧力が高すぎるとパラフィン 類や芳香族化合物等の好ましくなレ、副生成物の生成量が増え、プロピレンの収率が 低下する傾向がある。反応圧力が低すぎると反応速度が遅くなる傾向がある。  The upper limit of the reaction pressure is usually 2 MPa (absolute pressure, the same applies hereinafter) or less, preferably IMPa or less, more preferably 0.7 MPa or less. The lower limit of the reaction pressure is not particularly limited, but is usually 1 kPa or more, preferably 50 kPa or more. If the reaction pressure is too high, the amount of preferable les and by-products such as paraffins and aromatic compounds increases, and the yield of propylene tends to decrease. If the reaction pressure is too low, the reaction rate tends to be slow.
[0050] <反応による原料の消費量〉 [0050] <Raw material consumption by reaction>
反応器に供給するメタノールのモル流量とジメチルエーテルのモル流量の 2倍との 合計に対して、反応器出口のメタノールのモル流量とジメチルエーテルのモル流量 の 2倍との合計は 1 %未満が好ましい。さらに好ましくは 0. 1 %未満である。  The total of the molar flow rate of methanol fed to the reactor and twice the molar flow rate of dimethyl ether is preferably less than 1%. More preferably, it is less than 0.1%.
反応器におけるメタノールとジメチルエーテルの消費量が少なぐ反応器出口のメ タノールゃジメチルエーテルの量が増えすぎると、製品ォレフィンの精製が困難にな メタノールとジメチルエーテルの消費量を多くする方法としては、反応温度を上げた り、空間速度を下げたりする方法が挙げられる。 Reducing the consumption of methanol and dimethyl ether in the reactor If the amount of methanol or dimethyl ether at the reactor outlet increases too much, purification of the product olefin is difficult. Methods for increasing the consumption of methanol and dimethyl ether include increasing the reaction temperature and decreasing the space velocity.
[0051] また、本発明において、反応器に供給する炭素数 4以上のォレフィンのモル流量に 対して、反応器出口の炭素数 4以上のォレフィンのモル流量は 20%以上 90%未満 とする。このモル流量割合は好ましくは 20%以上 70%未満、より好ましくは 25%以 上 60 %未満である。反応器における炭素数 4以上のォレフィンの消費量が少なすぎ ると、未反応のォレフィンが多くなり、反応器にリサイクルする流体の流量が大きくなり すぎて好ましくない。逆に消費量が多すぎると、パラフィンや芳香族化合物など望ま しくな!/、化合物が副生し、プロピレン収率が低下するため好ましくな!/、。  [0051] In the present invention, the molar flow rate of olefins having 4 or more carbon atoms at the outlet of the reactor is set to 20% or more and less than 90% with respect to the molar flow rate of olefins having 4 or more carbon atoms supplied to the reactor. The molar flow rate is preferably 20% or more and less than 70%, more preferably 25% or more and less than 60%. If the consumption of olefins having 4 or more carbon atoms in the reactor is too small, the amount of unreacted olefins increases, and the flow rate of the fluid recycled to the reactor becomes too large. On the other hand, if the amount of consumption is too large, paraffin and aromatic compounds are not desirable! /, Which is preferable because the compounds are by-produced and the propylene yield is reduced! /.
反応器における炭素数 4以上のォレフィンの消費量を調整する方法としては、反応 温度や空間速度などを適切に設定する方法が挙げられる。  Examples of the method for adjusting the consumption of olefins having 4 or more carbon atoms in the reactor include a method of appropriately setting the reaction temperature and space velocity.
[0052] ここで反応器に供給するメタノールとジメチルエーテルならびに炭素数 4以上のォ レフインの流量は、反応器に供給するそれぞれの流体または混合した後の流体の組 成をガスクロマトグラフィーなどの一般的な分析手法で定量し、それぞれの流体の流 量を測定することにより知ることができ、反応器出口のメタノールとジメチルエーテル ならびに炭素数 4以上のォレフィンの流量は、反応器出口流体の組成をガスクロマト グラフィーなどの一般的な手法で定量し、反応器出口流体の流量を測定または計算 することにより失口ること力 Sでさる。  [0052] Here, the flow rates of methanol and dimethyl ether and olefins having 4 or more carbon atoms to be supplied to the reactor are different from those of each fluid supplied to the reactor or the composition of the fluid after mixing such as gas chromatography. It is possible to know by measuring the flow rate of each fluid and measuring the flow rate of each fluid. The flow rate of methanol and dimethyl ether and olefins having 4 or more carbon atoms at the outlet of the reactor determines the composition of the outlet fluid of the reactor by gas chromatography. Quantify using a general technique such as graphing, and measure or calculate the flow rate of the reactor outlet fluid.
[0053] <反応生成物〉 [0053] <Reaction product>
反応器出口ガス(反応器流出物)としては、反応生成物であるプロピレン、未反応 原料、副生成物および希釈剤を含む混合ガスが得られる。該混合ガス中のプロピレ ン濃度は通常 5〜95重量%である。  As the reactor outlet gas (reactor effluent), a mixed gas containing the reaction product, propylene, unreacted raw materials, by-products and a diluent is obtained. The propylene concentration in the mixed gas is usually 5 to 95% by weight.
未反応原料は、通常炭素数 4以上のォレフィンである。反応条件によってはメタノー ルおよびジメチルエーテルのうち少なくとも 1つが含まれる力 S、メタノールおよびジメチ ルエーテルのうち少なくとも 1つが残らないような反応条件で反応を行うのが好ましい The unreacted raw material is usually olefin having 4 or more carbon atoms. Depending on the reaction conditions, it is preferable to carry out the reaction under the reaction conditions such that at least one of methanol and dimethyl ether does not remain, and force S containing at least one of methanol and dimethyl ether.
。それにより、反応生成物と未反応原料との分離が容易になる。 . Thereby, separation of the reaction product and the unreacted raw material becomes easy.
副生成物としてはエチレン、炭素数が 4以上のォレフィン類、パラフィン類、芳香族 化合物および水が挙げられる。 By-products include ethylene, olefins with 4 or more carbon atoms, paraffins, and aromatics. Compounds and water are mentioned.
[0054] [分離工程]  [0054] [Separation step]
第 1および第 2の態様における分離工程  Separation process in the first and second embodiments
<炭素数 3以下の炭化水素および水の分離:工程(2) >  <Separation of hydrocarbons and water with 3 or less carbon atoms: Process (2)>
反応器出口ガスは冷却、圧縮および蒸留等の一般的な分離工程により、炭素数 3 以下の炭化水素に富んだ流体と、炭素数 4以上の炭化水素に富んだ流体 (A)と、水 に富んだ流体とに分離される。  The reactor outlet gas is separated into a hydrocarbon-rich fluid having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and water by a general separation process such as cooling, compression and distillation. Separated into rich fluid.
[0055] 上記の一般的な分離工程の第 1の態様として、冷却および圧縮工程により水分を 凝縮除去した後に、蒸留により炭素数 2以下の炭化水素に富んだ流体と炭素数 3以 上の炭化水素に富んだ流体とに分離し、炭素数 3以上の炭化水素に富んだ流体を 蒸留により炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流 体 (A)とに分離する工程を含む方法が適用される。  [0055] As a first aspect of the above general separation process, after condensing and removing moisture by a cooling and compression process, a fluid rich in hydrocarbons having 2 or less carbon atoms and carbonization having 3 or more carbon atoms by distillation. A fluid rich in hydrocarbons containing 3 or more carbon atoms is separated into a fluid rich in hydrocarbons, and a fluid rich in hydrocarbons containing 3 or more carbon atoms and a fluid rich in hydrocarbons containing 4 or more carbon atoms (A) A method including a step of separating into two is applied.
[0056] 一般的な分離工程の第 2の態様として、冷却および圧縮工程により水分を凝縮除 去した後に、蒸留により炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭 化水素に富んだ流体 (A)とに分離し、炭素数 3以下の炭化水素に富んだ流体を蒸 留により炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水素に富んだ流体 とに分離する工程を含む方法が適用される。  [0056] As a second aspect of a general separation step, after condensing and removing moisture by a cooling and compression step, a fluid rich in hydrocarbons having 3 or less carbon atoms and hydrocarbons having 4 or more carbon atoms by distillation. And a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms by distillation. A method including a step of separating is applied.
[0057] 一般的な分離工程の第 3の態様として、冷却および圧縮工程により水分を凝縮除 去した後に、蒸留により炭素数 2以下の炭化水素および炭素数 3の炭化水素を含む 流体と炭素数 3以上の炭化水素に富んだ流体とに分離し、炭素数 3以上の炭化水素 に富んだ流体を蒸留により炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化 水素に富んだ流体 (A)とに分離する工程を含む方法が適用される。  [0057] As a third aspect of a general separation process, after condensing and removing moisture by a cooling and compression process, a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms by distillation and carbon number Separation into a fluid rich in hydrocarbons with 3 or more hydrocarbons, and a fluid rich in hydrocarbons with 3 or more carbon atoms by distillation, fluids rich in hydrocarbons with 3 carbon atoms and fluids rich in hydrocarbons with 4 or more carbon atoms A method including the step of separating into (A) is applied.
[0058] 一般的な分離工程の第 4の態様として、冷却および圧縮工程により水分を凝縮除 去した後に、蒸留により炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭 化水素に富んだ流体 (A)とに分離し、炭素数 3以下の炭化水素に富んだ流体を蒸 留により炭素数 2以下の炭化水素と炭素数 3の炭化水素を含む流体と炭素数 3の炭 化水素に富んだ流体とに分離する工程を含む方法が適用される。  [0058] As a fourth aspect of a general separation process, after condensing and removing moisture by a cooling and compression process, a fluid rich in hydrocarbons having 3 or less carbon atoms and hydrocarbons having 4 or more carbon atoms are obtained by distillation. And a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid containing hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms and carbon having 3 carbon atoms by distillation. A method is applied that includes the step of separating into a hydrofluoric fluid.
[0059] 上記した一般的な分離工程の第 1〜第 4の態様において、必要に応じてタエンチ、 アルカリ洗浄、脱水等の処理を行うのが好ましい。反応器出口ガスに含酸素化合物 が含まれる場合には、クェンチェ程により、含酸素化合物の少なくとも一部が除去さ れる。反応器出口ガスに二酸化炭素などの酸性ガスが含まれる場合には、アルカリ 洗浄により、酸性ガスの少なくとも一部が除去される。 [0059] In the first to fourth embodiments of the general separation step described above, if necessary, It is preferable to perform treatments such as alkali washing and dehydration. When the oxygen-containing compound is contained in the reactor outlet gas, at least a part of the oxygen-containing compound is removed by the quenching process. When acidic gas such as carbon dioxide is contained in the reactor outlet gas, at least a part of the acidic gas is removed by alkali cleaning.
水の分離は主に圧縮と冷却により凝縮することにより可能である。残った水分はモ レキユラ一シーブ等の吸着剤で除去するのが好ましレ、。凝縮および/または吸着に より除去した水は活性汚泥等の廃水処理工程に供しても良いが、プロセス水等に使 用することあでさる。  Separation of water is possible mainly by condensation through compression and cooling. It is preferable to remove the remaining water with an adsorbent such as molecular sieve. The water removed by condensation and / or adsorption may be used for wastewater treatment processes such as activated sludge, but it can be used for process water.
本発明のプロセス(以下、「本プロセス」と称する場合がある)がスチームクラッキング プロセスの近くにある場合には、反応器出口ガスから回収した水はクラッカーのスチ ーム源として利用することが好ましい。また、本プロセスの反応器にリサイクルして希 釈ガスとして用いても良い。  When the process of the present invention (hereinafter sometimes referred to as “the process”) is in the vicinity of a steam cracking process, the water recovered from the reactor outlet gas is preferably utilized as a steamer steam source. . It may be recycled to the reactor of this process and used as a diluted gas.
[0060] また、反応器出口ガスから得られた炭素数 2以下の炭化水素や炭素数 3の炭化水 素は、さらに蒸留等の精製工程により純度の高いエチレンおよびプロピレンをそれぞ れ得るのが好ましい。エチレンの純度としては 95%以上であり、 99%以上が好ましい 。さらに好ましくは 99. 9%以上である。プロピレンの純度としては 95%以上であり、 9 9%以上が好ましい。さらに好ましくは 99. 9%以上である。  [0060] In addition, hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms obtained from the reactor outlet gas can be further purified to ethylene and propylene with high purity by a purification process such as distillation. preferable. The purity of ethylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more. The purity of propylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
[0061] このようにして得られるエチレンおよびプロピレンは、不純物量などの品質的観点か らみても、一般的に製造されるエチレンおよびプロピレン誘導体の原料として使用で き、エチレンは例えば酸化反応によりエチレンオキサイド、エチレングリコール、ェタノ ールァミン、グリコールエーテル等の製造に、塩素化により塩化ビュルモノマー、 1 , 1 , 1 トリクロルェタン、塩化ビュル樹脂、塩化ビニリデンの製造に、また、エチレンの 重合により αォレフィン、低密度、或いは高密度のポリエチレンの製造に、ベンゼン のェチル化によりェチルベンゼン等の製造にそれぞれ用いることができる。  [0061] The ethylene and propylene thus obtained can be used as raw materials for ethylene and propylene derivatives that are generally produced from the viewpoint of quality such as the amount of impurities. For the production of oxides, ethylene glycol, ethanolamine, glycol ethers, etc., for the production of chlorinated butyl monomers, 1, 1, 1 trichloroethane, chlorinated resin, vinylidene chloride by chlorination, and for the polymerization of ethylene, α-olefin, It can be used for the production of low density or high density polyethylene and for the production of ethylbenzene and the like by benzene ethylation.
[0062] エチレン力、ら製造されたエチレングリコールからはさらにこれを原料としてポリェチレ ンテレフタレートを製造することができ、 αォレフィンを原料としてォキソ反応およびそ れに続く水素化反応により高級アルコールが、ェチルベンゼンを原料としてスチレン モノマー, ABS樹脂等が製造できる。また、酢酸との反応により酢酸ビュル、ヮッカー 反応によりァセトアルデヒドおよびその誘導品である酢酸ェチル等も製造できる。 [0062] Polyethylene terephthalate can be further produced from ethylene glycol produced from ethylene power, using α- olefin as a raw material, and higher alcohol is converted into ethyl benzene by an oxo reaction and subsequent hydrogenation reaction. Can be used to produce styrene monomer, ABS resin, etc. Also, by reaction with acetic acid Acetaldehyde and its derivative ethyl acetate can also be produced by the reaction.
[0063] また、プロピレンは例えばアンモ酸化によりアクリロニトリルの製造に、選択酸化によ りァクロレイン、アクリル酸およびアクリル酸エステルの製造に、ォキソ反応によりカレ マルブチルアルコール、 2—ェチルへキサノール等のォキソアルコールの製造に、プ ロピレンの重合によりポリプロピレンの製造に、プロピレンの選択酸化によりプロピレン オキサイドおよびプロピレングリコール等の製造に適用することができる。また、ヮッカ 一反応によりアセトンが製造でき、更にアセトンよりメチルイソプチルケトンを製造する こと力 Sできる。アセトンからはまたアセトンシアンヒドリンが製造でき、これは最終的にメ チルメタタリレートに転換される。またプロピレン水和によりイソプロピルアルコールも 製造できる。また、ベンゼンをアルキル化することにより製造したキュメンを原料に、フ ェノール,ビスフエノール A,ポリカーボネート樹脂を製造することができる。 [0063] Propylene is produced, for example, by ammoxidation for the production of acrylonitrile, by selective oxidation for the production of acrolein, acrylic acid and acrylate esters, and by oxo reaction by oxo-reactions such as cal- butyl alcohol and 2-ethylhexanol. It can be applied to the production of alcohol, the production of polypropylene by polymerization of propylene, and the production of propylene oxide and propylene glycol by the selective oxidation of propylene. In addition, acetone can be produced by one reaction, and further, methylisoptyl ketone can be produced from acetone. Acetone can also produce acetone cyanohydrin, which is ultimately converted to methylmethalate. Isopropyl alcohol can also be produced by propylene hydration. In addition, phenol, bisphenol A, and polycarbonate resin can be produced from cumene produced by alkylating benzene.
[0064] また、上記の一般的な分離工程の第 3の態様および第 4の態様にお!/、て得られた 炭素数 2以下の炭化水素と炭素数 3の炭化水素を含む流体は、本プロセス以外のェ チレンとプロピレンの製造プロセスに供給して精製するのが好ましい。本プロセス以 外のエチレンとプロピレンの製造プロセスとしてはナフサゃェタンなどのスチームクラ ッキングプロセスが挙げられる。このことにより本プロセスの設備投資を著しく削減す ることが可能である。 [0064] In addition, the fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms obtained in the third and fourth aspects of the above general separation step! It is preferable to supply it to an ethylene and propylene production process other than this process for purification. Other than this process, ethylene and propylene production processes include steam cracking processes such as naphthaetane. This can significantly reduce the capital investment of this process.
一方、本プロセスで生成したエチレンを含む流体を本プロセス以外のエチレンとプ ロピレンの製造プロセスに供給できない場合には、本プロセスにおいてエチレンを精 製する必要があるため、その場合には上記の第 1の態様または第 2の態様を採用す ることが好ましい。  On the other hand, if the fluid containing ethylene produced in this process cannot be supplied to other ethylene and propylene production processes, it is necessary to purify ethylene in this process. It is preferable to adopt the first embodiment or the second embodiment.
[0065] 第 3の態様における分離工程 [0065] Separation step in the third embodiment
[分離工程]  [Separation process]
<ガス成分、液成分および水の分離:工程(2C) , (3C) >  <Gas component, liquid component and water separation: Process (2C), (3C)>
本発明では、反応器出口ガスは冷却し、冷却後のガス流体 (K)を圧縮によりガス流 体 (L)、炭素数 4以上の炭化水素に富み、芳香族化合物を含む液流体 (M)および 水に富んだ流体に分離し(工程 (2C) )、その後、ガス流体 (Uを蒸留等の一般的な 分離工程により、炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素 に富んだ流体 (N)とに分離する(工程 (3C) )。 In the present invention, the reactor outlet gas is cooled, and the gas fluid (K) after cooling is compressed by gas fluid (L), rich in hydrocarbons having 4 or more carbon atoms, and liquid fluid (M) containing aromatic compounds. And a fluid rich in water (process (2C)), and then a gas fluid (U is separated by a general separation process such as distillation and a fluid rich in hydrocarbons having 3 or less carbon atoms and 4 or more carbon atoms). hydrocarbon Into a rich fluid (N) (step (3C)).
[0066] 工程(2C)において、反応器出口ガスは通常 300〜600°C程度の温度である力 こ の反応器出口ガスを 20〜200°C程度に冷却する。この冷却は通常熱交換器で行わ れるカ S、該ガスよりも低温の流体と混合することにより直接冷却を行ってもよい。冷却 された流体 (K)は、圧縮機、ノックアウトドラムあるいは油水分離器等を用いて、圧縮 により炭素数 6以下の炭化水素に富んだガス流体 (L)と、炭素数 4以上の炭化水素 に富み、芳香族化合物を含んだ液流体 (M)と、水に富んだ流体とに分離される。な お、上記の熱交換器において反応器出口ガスと熱交換する相手の流体は特に限定 されな!/、が、反応器に供給される一つまたは複数の流体であることが好まし!/、。  [0066] In the step (2C), the reactor outlet gas is usually at a temperature of about 300 to 600 ° C. The reactor outlet gas is cooled to about 20 to 200 ° C. This cooling may be performed directly by mixing with a fluid usually performed in a heat exchanger or a fluid having a temperature lower than that of the gas. The cooled fluid (K) is compressed into a hydrocarbon-rich gas fluid (L) and hydrocarbons with 4 or more carbon atoms by compression using a compressor, knockout drum or oil-water separator. It is separated into a rich fluid (M) containing aromatics and a fluid rich in water. In the above heat exchanger, the partner fluid that exchanges heat with the reactor outlet gas is not particularly limited! /, But is preferably one or more fluids supplied to the reactor! / ,.
[0067] この工程(2C)で分離された炭素数 6以下の炭化水素に富んだガス流体 (L)は炭 化水素を含むものであり、工程(3C)において、蒸留等の一般的な分離工程により、 炭素数 3以下の炭化水素に富んだ流体と、炭素数 4以上の炭化水素に富んだ流体( N)とに分離される。  [0067] The gas fluid (L) rich in hydrocarbons having 6 or less carbon atoms separated in this step (2C) contains hydrocarbons. In step (3C), general separation such as distillation is performed. The process separates the fluid rich in hydrocarbons with 3 or less carbon atoms and the fluid (N) rich in hydrocarbons with 4 or more carbon atoms.
[0068] 上記の一般的な分離工程の第 1の態様として、蒸留により炭素数 2以下の炭化水 素に富んだ流体と炭素数 3以上の炭化水素に富んだ流体とに分離し、炭素数 3以上 の炭化水素に富んだ流体を蒸留により炭素数 3の炭化水素に富んだ流体と炭素数 4 以上の炭化水素に富んだ流体 (N)とに分離する工程を含む方法が適用される。  [0068] As a first aspect of the above general separation process, the separation is performed by distillation into a hydrocarbon-rich fluid having 2 or less carbon atoms and a hydrocarbon-rich fluid having 3 or more carbon atoms. A method including a step of separating a fluid rich in hydrocarbons having 3 or more hydrocarbons into a fluid rich in hydrocarbons having 3 carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms (N) by distillation is applied.
[0069] 分離工程の第 2の態様として、蒸留により炭素数 3以下の炭化水素に富んだ流体と 炭素数 4以上の炭化水素に富んだ流体 (N)とに分離し、炭素数 3以下の炭化水素に 富んだ流体を蒸留により炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水 素に富んだ流体とに分離する工程を含む方法が適用される。  [0069] As a second aspect of the separation step, by distillation, a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms are separated into 3 or less carbon atoms. A method including a step of separating a fluid rich in hydrocarbons into a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms by distillation is applied.
[0070] 分離工程の第 3の態様として、蒸留により炭素数 2以下の炭化水素と炭素数 3の炭 化水素を含んだ流体と炭素数 3以上の炭化水素に富んだ流体とに分離し、炭素数 3 以上の炭化水素に富んだ流体を蒸留により炭素数 3の炭化水素に富んだ流体と炭 素数 4以上の炭化水素に富んだ流体 (N)とに分離する工程を含む方法が適用され  [0070] As a third aspect of the separation step, separation is performed by distillation into a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms and a fluid rich in hydrocarbons having 3 or more carbon atoms, A method including a step of separating a fluid rich in hydrocarbons having 3 or more carbon atoms into a fluid rich in hydrocarbons having 3 or more carbon atoms and a fluid rich in hydrocarbons having 4 or more carbon atoms (N) by distillation is applied.
[0071] 分離工程の第 4の様態として、蒸留により炭素数 3以下の炭化水素に富んだ流体と 炭素数 4以上の炭化水素に富んだ流体 (N)とに分離し、炭素数 3以下の炭化水素に 富んだ流体を蒸留により炭素数 2以下の炭化水素と炭素数 3の炭化水素を含んだ流 体と炭素数 3の炭化水素に富んだ流体とに分離する工程を含む方法が適用される。 [0071] As a fourth aspect of the separation step, a hydrocarbon-rich fluid having a carbon number of 3 or less and a fluid (N) rich in a hydrocarbon having a carbon number of 4 or more are separated by distillation to obtain a hydrocarbon having a carbon number of 3 or less. To hydrocarbon A method including a step of separating a rich fluid into a fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms and a fluid rich in a hydrocarbon having 3 carbon atoms by distillation is applied.
[0072] 上記のプロセスにおいて、必要に応じてタエンチ、アルカリ洗浄、脱水等の処理を 行うのが好ましい。反応器出口ガスに含酸素化合物が含まれる場合には、タエンチ 工程により、含酸素化合物の少なくとも一部が除去される。反応器出口ガスに二酸化 炭素などの酸性ガスが含まれる場合には、アルカリ洗浄により、酸性ガスの少なくとも 一部が除去される。 [0072] In the above-described process, it is preferable to perform treatment such as taenchi, alkali washing, dehydration and the like as necessary. When the oxygen-containing compound is contained in the reactor outlet gas, at least a part of the oxygen-containing compound is removed by the taenti process. When acidic gas such as carbon dioxide is contained in the reactor outlet gas, at least a part of the acidic gas is removed by alkali cleaning.
水の分離は主に圧縮と冷却により凝縮することにより可能である。残った水分はモ レキユラ一シーブ等の吸着剤で除去するのが好ましレ、。凝縮および/または吸着に より除去した水は活性汚泥等の廃水処理工程に供しても良いが、プロセス水等に使 用することあでさる。  Separation of water is possible mainly by condensation through compression and cooling. It is preferable to remove the remaining water with an adsorbent such as molecular sieve. The water removed by condensation and / or adsorption may be used for wastewater treatment processes such as activated sludge, but it can be used for process water.
本発明のプロセス(以下、「本プロセス」と称する場合がある)がスチームクラッキング プロセスの近くにある場合には、反応器出口ガスから回収した水はクラッカーのスチ ーム源として利用することが好ましい。また、本プロセスの反応器にリサイクルして希 釈ガスとして用いても良い。  When the process of the present invention (hereinafter sometimes referred to as “the process”) is in the vicinity of a steam cracking process, the water recovered from the reactor outlet gas is preferably utilized as a steamer steam source. . It may be recycled to the reactor of this process and used as a diluted gas.
[0073] また、反応器出口ガスから得られた炭素数 2以下の炭化水素や炭素数 3の炭化水 素は、さらに蒸留等の精製工程により純度の高いエチレンおよびプロピレンをそれぞ れ得るのが好ましい。エチレンの純度としては 95%以上であり、 99%以上が好ましい 。さらに好ましくは 99. 9%以上である。プロピレンの純度としては 95%以上であり、 9 9%以上が好ましい。さらに好ましくは 99. 9%以上である。  [0073] In addition, hydrocarbons having 2 or less carbon atoms or hydrocarbons having 3 carbon atoms obtained from the reactor outlet gas can be further purified to ethylene and propylene with high purity by a purification process such as distillation. preferable. The purity of ethylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more. The purity of propylene is 95% or more, preferably 99% or more. More preferably, it is 99.9% or more.
[0074] このようにして得られるエチレンおよびプロピレンは一般的に製造されるエチレンお よびプロピレン誘導体すべてに使用でき、エチレンは例えば酸化反応によりエチレン オキサイド、エチレングリコール、エタノールァミン、グリコールエーテル等の製造に、 塩素化により塩化ビュルモノマー、 1 , 1 , 1 トリクロルェタン、塩化ビュル樹脂、塩化 ビニリデンの製造に、また、エチレンの重合により αォレフイン、低密度、或いは高密 度のポリエチレンの製造に、ベンゼンのェチル化によりェチルベンゼン等の製造にそ れぞれ用いることができる。 [0074] The ethylene and propylene thus obtained can be used for all of the generally produced ethylene and propylene derivatives. For example, ethylene is produced by the oxidation reaction to produce ethylene oxide, ethylene glycol, ethanolamine, glycol ether, etc. Benzyl chloride, 1, 1, 1 trichloroethane, chlorinated resin, vinylidene chloride by chlorination, and α- olefin, low density or high density polyethylene by polymerization of ethylene. These can be used for the production of ethylbenzene and the like by ethenylation.
[0075] エチレン力、ら製造されたエチレングリコールからさらにこれを原料としてポリエチレン テレフタレートを製造することができ、 aォレフィンを原料としてォキソ反応およびそれ に続く水素化反応により高級アルコール力 ェチルベンゼンを原料としてスチレンモ ノマー, ABS樹脂等が製造できる。また、酢酸との反応により酢酸ビュル、ヮッカー反 応によりァセトアルデヒドおよびその誘導品である酢酸ェチル等も製造できる。 [0075] Polyethylene from ethylene glycol produced from ethylene power Terephthalate can be produced, and styrene monomer, ABS resin, etc. can be produced from higher alcohol ethylbenzene as a raw material by the oxo reaction using a-olefin and the subsequent hydrogenation reaction. In addition, butyl acetate can be produced by reaction with acetic acid, and cetyl acetate and its derivatives, such as acetoaldehyde, can be produced by the reaction of Zucker.
[0076] また、プロピレンは例えばアンモ酸化によりアクリロニトリルの製造に、選択酸化によ りァクロレイン、アクリル酸およびアクリル酸エステルの製造に、ォキソ反応によりカレ マルブチルアルコール、 2—ェチルへキサノール等のォキソアルコールの製造に、プ ロピレンの重合によりポリプロピレンの製造に、プロピレンの選択酸化によりプロピレン オキサイドおよびプロピレングリコール等の製造に適用することができる。また、ヮッカ 一反応によりアセトンが製造でき、更にアセトンよりメチルイソプチルケトンを製造する こと力 Sできる。アセトンからはまたアセトンシアンヒドリンが製造でき、これは最終的にメ チルメタタリレートに転換される。またプロピレン水和によりイソプロピルアルコールも 製造できる。また、ベンゼンをアルキル化することにより製造したキュメンを原料に、フ ェノール,ビスフエノール A,ポリカーボネート樹脂を製造することができる。  [0076] In addition, propylene is produced by, for example, ammoxidation for the production of acrylonitrile, by selective oxidation for the production of acrolein, acrylic acid and acrylate esters, and by oxo reaction by oxo-reactions such as cal- butyl alcohol and 2-ethylhexanol. It can be applied to the production of alcohol, the production of polypropylene by polymerization of propylene, and the production of propylene oxide and propylene glycol by the selective oxidation of propylene. In addition, acetone can be produced by one reaction, and further, methylisoptyl ketone can be produced from acetone. Acetone can also produce acetone cyanohydrin, which is ultimately converted to methylmethalate. Isopropyl alcohol can also be produced by propylene hydration. In addition, phenol, bisphenol A, and polycarbonate resin can be produced from cumene produced by alkylating benzene.
[0077] また、上記の分離工程の第 3の態様および第 4の態様において得られた炭素数 2 以下の炭化水素と炭素数 3の炭化水素を含む流体は、本プロセス以外のエチレンと プロピレンの製造プロセスに供給して精製するのが好ましい。本プロセス以外のェチ レンとプロピレンの製造プロセスとしてはナフサゃェタンなどのスチームクラッキング プロセスが挙げられる。このことにより本プロセスの設備投資を著しく削減することが 可能である。  [0077] Further, the fluid containing a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms obtained in the third and fourth aspects of the separation step described above is a mixture of ethylene and propylene other than this process. It is preferably supplied to the production process for purification. Other processes for producing ethylene and propylene include steam cracking processes such as naphthaetane. This can significantly reduce the capital investment of this process.
一方、本プロセスで生成したエチレンを含む流体を本プロセス以外のエチレンとプ ロピレンの製造プロセスに供給できない場合には、本プロセスにおいてエチレンを精 製する必要があるため、その場合には上記の第 1の態様または第 2の態様を採用す ることが好ましい。  On the other hand, if the fluid containing ethylene produced in this process cannot be supplied to other ethylene and propylene production processes, it is necessary to purify ethylene in this process. It is preferable to adopt the first embodiment or the second embodiment.
[0078] 第 1および第 2の態様 [0078] First and second embodiments
<炭素数 4以上の炭化水素の分離およびリサイクル:工程 (3A) , (3B) >  <Separation and recycling of hydrocarbons with 4 or more carbons: Process (3A), (3B)>
反応器出口ガスから分離された炭素数 4以上の炭化水素に富んだ流体 (A) (以下 炭素数 4以上の炭化水素流体 (A)と称す。)の少なくとも一部は反応器にリサイクルさ れ、残りの流体は本プロセスから抜き出される。 At least a portion of the hydrocarbon-rich fluid (A) separated from the reactor outlet gas (A) (hereinafter referred to as hydrocarbon fluid (A) having 4 or more carbon atoms) is recycled to the reactor. The remaining fluid is withdrawn from the process.
ここで、「本プロセスから抜き出される」とは、本プロセスの反応器にリサイクルされな いことを意味しており、配管を通して他のプロセスに直接供給しても良いし、配管を通 して一度タンクに貯蔵したものを他のプロセスに供給しても良い。また、他のプロセス に供給せずに燃料として使用しても良い。  Here, “extracted from this process” means that it is not recycled to the reactor of this process, and it may be supplied directly to other processes through piping or through piping. Once stored in the tank, it may be supplied to another process. It may also be used as fuel without being supplied to other processes.
[0079] 炭素数 4以上の炭化水素流体 (A)を反応器にリサイクルする方法の第 1の態様とし て、炭素数 4以上の炭化水素流体 (A)の一部(B)を該プロセスから抜き出し、残りの 流体 (C)を蒸留等の一般的な分離手法により芳香族化合物濃度 (重量%)が流体( C)より低!/、流体 (D)と炭素数 4の炭化水素濃度が流体 (C)より低!/、流体 (E)とに分 離し、流体 (D)は反応器にリサイクルし、流体 (E)を該プロセスから抜き出す工程を 含む方法が適用される。  [0079] As a first aspect of the method for recycling the hydrocarbon fluid (A) having 4 or more carbon atoms to the reactor, a part (B) of the hydrocarbon fluid (A) having 4 or more carbon atoms is removed from the process. Extract the remaining fluid (C) using a general separation method such as distillation. The concentration of aromatic compounds (% by weight) is lower than that of fluid (C)! /, And the concentration of fluid (D) and hydrocarbons with 4 carbon atoms is fluid. Lower than (C)! /, Fluid (E) is separated, fluid (D) is recycled to the reactor, and a method including the step of withdrawing fluid (E) from the process is applied.
[0080] 第 2の態様として、炭素数 4以上の炭化水素流体 (A)を蒸留等の一般的な分離手 法により、芳香族化合物濃度が流体 (A)より低!/、流体 (G)と炭素数 4の炭化水素濃 度が流体 (A)より低!/、流体 (F)とに分離し、流体 (F)の少なくとも一部を該プロセスか ら抜き出すと共に、流体 (G)の少なくとも一部の流体 (I)は反応器にリサイクルし、残 りの流体 (H)を該プロセスから抜き出す工程を含む方法が適用される。  [0080] As a second embodiment, the concentration of aromatic compounds is lower than that of fluid (A) by using a general separation method such as distillation of hydrocarbon fluid (A) having 4 or more carbon atoms! /, Fluid (G) And the hydrocarbon concentration of carbon number 4 is lower than that of the fluid (A)! /, And the fluid (F) is separated, and at least a part of the fluid (F) is extracted from the process, and at least the fluid (G) A method including a step of recycling a part of the fluid (I) to the reactor and extracting the remaining fluid (H) from the process is applied.
[0081] 炭素数 4以上のォレフィン原料として、炭素数 4以上のパラフィンを含有した原料を 用いる場合には、上記の第 1の態様における流体 (B)または第 2の態様における流 体 (H)は、パラフィンを多く含んだ組成流体であることから、ブテン等の有効成分を分 離精製するのは難しい。そのため、該プロセスがスチームクラッキングプロセスの近く にある場合には、スチームクラッキングプロセスに供給し、クラッカー原料として有効 利用することが好ましい。  [0081] When a raw material containing paraffin having 4 or more carbon atoms is used as the olefin raw material having 4 or more carbon atoms, the fluid (B) in the first embodiment or the fluid (H) in the second embodiment. Is a composition fluid containing a lot of paraffin, so it is difficult to separate and purify active ingredients such as butene. Therefore, when the process is in the vicinity of the steam cracking process, it is preferably supplied to the steam cracking process and effectively used as a cracker raw material.
[0082] これにより、これらの流体(B) , (H)はスチームクラッキングにおけるエチレンやプロ ピレン製造用の原料と成り得る。この際、流体 (B)または流体 (H)の少なくとも一部を 水素添加触媒と接触させ、パラフィン濃度を流体 (B)または流体 (H)より増加させた 流体をスチームクラッキングプロセスに供給するのが好ましい。ォレフィン濃度の高い 流体をスチームクラッキングプロセスのクラッカーに供給するとクラッカー内でカーボ ン析出が起こりやすレ、ため好ましくなレ、。 [0083] また、この場合、流体 (B)または流体 (H)に含まれる芳香族化合物濃度の合計が 5 . 0体積%未満であることが好ましぐさらに好ましくは 3. 0体積%未満である。芳香 族化合物濃度が高いとクラッカーに供給した場合にカーボン析出が多いと共に、ェ チレン収率が低下する傾向があるため好ましくない。 [0082] Thereby, these fluids (B) and (H) can be used as raw materials for producing ethylene and propylene in steam cracking. At this time, at least a part of the fluid (B) or fluid (H) is brought into contact with the hydrogenation catalyst, and a fluid having a paraffin concentration increased from that of the fluid (B) or fluid (H) is supplied to the steam cracking process. preferable. If a fluid having a high olefin concentration is supplied to the cracker in the steam cracking process, carbon deposition is likely to occur in the cracker, which is preferable. [0083] In this case, the total concentration of aromatic compounds contained in fluid (B) or fluid (H) is preferably less than 5.0% by volume, more preferably less than 3.0% by volume. is there. When the aromatic compound concentration is high, there is a large amount of carbon precipitation when fed to the cracker, and the ethylene yield tends to decrease, which is not preferable.
[0084] また、上記の第 1の態様における流体 (E)または第 2の態様における流体 (F)は、 スチームクラッキングプロセス等の分解ガソリン留分に混合することが好ましレ、。このこ とにより、流体 (E)または流体 (F)を有効利用することが可能である。  [0084] The fluid (E) in the first aspect or the fluid (F) in the second aspect is preferably mixed with a cracked gasoline fraction such as a steam cracking process. This makes it possible to effectively use fluid (E) or fluid (F).
[0085] ここでいう分解ガソリンとは、炭素数 5以上 10以下のパラフィン、ォレフィン、ジェン、 芳香族化合物を主に含む流体であり、必要に応じて分解ガソリンから有効成分を回 収すること力 Sできる。有効成分としては、例えば炭素数 5の炭化水素やベンゼン、トル ェン、キシレンなどの芳香族化合物が挙げられる。  [0085] The cracked gasoline here is a fluid mainly containing paraffin, olefin, gen, and aromatic compounds having 5 to 10 carbon atoms, and the ability to collect active ingredients from the cracked gasoline as required. S can. Examples of active ingredients include hydrocarbons having 5 carbon atoms and aromatic compounds such as benzene, toluene and xylene.
[0086] 分解ガソリンに炭素数 4の炭化水素が含まれていると、分解ガソリンから回収される 炭素数 5の炭化水素流体中に炭素数 4の炭化水素が混入してしまうため好ましくない 。そのため、分解ガソリン留分に混合する流体 (E)または流体 (F)中の炭素数 4の炭 化水素は 5重量%未満であることが好ましい。さらに好ましくは 2重量%未満である。  [0086] If the cracked gasoline contains hydrocarbons having 4 carbon atoms, it is not preferable because hydrocarbons having 4 carbon atoms are mixed in the hydrocarbon fluid having 5 carbon atoms recovered from the cracked gasoline. Therefore, it is preferable that the C4 hydrocarbon in the fluid (E) or fluid (F) mixed with the cracked gasoline fraction is less than 5% by weight. More preferably, it is less than 2% by weight.
[0087] 第 1の態様の特徴としては、流体 (B)を抜き出すことにより蒸留等の分離工程の負 荷を低減させることができるため、用役費用と設備投資費用の両面で第 2の態様より も有利である。し力もながら、流体 (B)は流体 (A)と同じ組成の流体であり、第 2の態 様で得られる流体 (H)と比べると芳香族化合物の濃度が高くなる。よって、抜き出さ れる流体の用途に応じてプロセスは選定される。  [0087] The feature of the first aspect is that the load of the separation process such as distillation can be reduced by extracting the fluid (B). More advantageous. However, fluid (B) is a fluid having the same composition as fluid (A), and the concentration of the aromatic compound is higher than that of fluid (H) obtained in the second mode. Therefore, the process is selected according to the intended use of the fluid to be extracted.
[0088] 第 3の態様  [0088] Third aspect
<炭素数 4以上の炭化水素のリサイクル:工程 (4C) >  <Recycling hydrocarbons with 4 or more carbons: Process (4C)>
工程 (3C)で分離された炭素数 4以上の炭化水素に富んだ流体 (N) (以下「炭素数 4以上の炭化水素流体(N)と称す。)の一部(P)は本プロセスから抜き出され、残りの 流体(Q)は反応器にリサイクルされる。また、圧縮工程において凝縮した炭素数 4以 上の炭化水素に富み、芳香族化合物を含んだ液流体 (M)の少なくとも一部は本プ ロセスから抜き出される。  Part (P) of the fluid rich in hydrocarbons with 4 or more carbon atoms (N) separated in step (3C) (hereinafter referred to as “hydrocarbon fluids with 4 or more carbon atoms (N)”) The remaining fluid (Q) is withdrawn and recycled to the reactor, and at least one of the liquid fluid (M) rich in hydrocarbons having 4 or more carbons condensed in the compression process and containing aromatic compounds. Departments are extracted from this process.
ここで、「本プロセスから抜き出される」とは、本プロセスの反応器にリサイクルされな いことを意味しており、配管を通して他のプロセスに直接供給しても良いし、配管を通 して一度タンクに貯蔵したものを他のプロセスに供給しても良い。また、他のプロセス に供給せずに燃料として使用しても良い。 Here, “extracted from the process” is not recycled to the reactor of the process. This means that it may be supplied directly to other processes through piping, or once stored in a tank through piping, it may be supplied to other processes. It may also be used as fuel without being supplied to other processes.
[0089] 液流体 (M)は蒸留により、芳香族化合物濃度(重量%)が液流体 (M)より低!/ヽ流 体 (R)と炭素数 4の炭化水素濃度が液流体 (M)より低レ、流体 (S)とに分離しても良 い。この場合、流体 (R)は流体 (K)、(L)、(N)、(P)、 (Q)から選ばれるいずれか 1 箇所または複数の流体の流通箇所に戻すことが好ましい。液流体 (M)の中に炭素 数 4以下の炭化水素が多く含まれる場合には、この蒸留操作を行うことが特に好まし い。 [0089] Liquid fluid (M) has a lower concentration of aromatic compounds (wt%) than liquid fluid (M) due to distillation! The concentration of fluid (R) and hydrocarbons with 4 carbon atoms is higher than liquid fluid (M). It may be separated into lower fluid and fluid (S). In this case, the fluid (R) is preferably returned to one or a plurality of fluid circulation locations selected from the fluids (K), (L), (N), (P), and (Q). This distillation operation is particularly preferred when the liquid fluid (M) contains a large amount of hydrocarbons having 4 or less carbon atoms.
[0090] 炭素数 4以上のォレフィン原料として、炭素数 4以上のパラフィンを含有した原料を 用いる場合には、上記の流体 (M)、(P)、(R)は、パラフィンを多く含んだ組成流体 であることから、ブテン等の有効成分を分離精製するのは難しい。そのため、該プロ セスがスチームクラッキングプロセスの近くにある場合には、これらの流体(M)、(P)、 (R)のいずれ力、 1以上の流体をスチームクラッキングプロセスに供給し、クラッカー原 料として有効利用することが好ましレ、。  [0090] When a raw material containing paraffin having 4 or more carbon atoms is used as the olefin raw material having 4 or more carbon atoms, the fluids (M), (P), and (R) have a composition containing a large amount of paraffin. Since it is a fluid, it is difficult to separate and purify active ingredients such as butene. Therefore, when the process is in the vicinity of the steam cracking process, one of these fluids (M), (P), (R), one or more fluids are supplied to the steam cracking process, and the cracker raw material is supplied. It is preferable to use as effective.
[0091] これによりスチームクラッキングおけるエチレンやプロピレン製造用の原料と成り得る 。この際、流体 (M)、(P)、(R)の少なくとも一部を水素添加触媒と接触させ、パラフィ ン濃度を流体 (M)、(P)、(R)より増加させた流体をスチームクラッキングプロセスに 供給するのが好ましレ、。ォレフィン濃度の高レ、流体をスチームクラッキングプロセスの クラッカーに供給するとクラッカー内でカーボン析出が起こりやすいため好ましくない [0091] This can be a raw material for producing ethylene or propylene in steam cracking. At this time, at least a part of the fluids (M), (P), and (R) is brought into contact with the hydrogenation catalyst, and the fluid whose paraffin concentration is increased from the fluids (M), (P), and (R) is steamed. It is preferable to supply it to the cracking process. It is not preferable to feed a fluid with a high olefin concentration to the cracker in the steam cracking process because carbon is likely to precipitate in the cracker.
Yes
[0092] また、この場合、流体 (M)、 (P)、 (R)に含まれる芳香族化合物濃度の合計が 5. 0 体積%未満であることが好ましい。さらに好ましくは 3. 0体積%未満である。芳香族 化合物濃度が高いとクラッカーに供給した場合にカーボン析出が多いと共に、ェチレ ン収率が低下する傾向があるため好ましくない。  [0092] In this case, the total concentration of aromatic compounds contained in the fluids (M), (P), and (R) is preferably less than 5.0% by volume. More preferably, it is less than 3.0 volume%. A high concentration of the aromatic compound is not preferable because when it is supplied to the cracker, there is a large amount of carbon precipitation and the ethylene yield tends to decrease.
[0093] また、上記の流体(S)は、スチームクラッキングプロセス等の分解ガソリン留分に混 合することが好ましい。このことにより、流体(S)を有効利用することが可能である。ま た、流体 (M)の中の炭素数 4以下の炭化水素濃度が低い場合には、流体 (M)を直 接分解ガソリン留分に混合しても良い。 [0093] The fluid (S) is preferably mixed with a cracked gasoline fraction such as a steam cracking process. As a result, the fluid (S) can be used effectively. If the concentration of hydrocarbons with 4 or less carbon atoms in the fluid (M) is low, the fluid (M) You may mix with a catalytic cracking gasoline fraction.
[0094] ここでいう分解ガソリンとは、炭素数 5以上 10以下のパラフィン、ォレフィン、ジェン、 芳香族化合物を主に含む流体であり、必要に応じて分解ガソリンから有効成分を回 収すること力 Sできる。有効成分としては、例えば炭素数 5の炭化水素やベンゼン、トル ェン、キシレンなどの芳香族化合物が挙げられる。 [0094] The cracked gasoline here is a fluid mainly containing paraffin, olefin, gen, and aromatic compounds having 5 to 10 carbon atoms, and has the ability to collect active ingredients from the cracked gasoline as necessary. S can. Examples of active ingredients include hydrocarbons having 5 carbon atoms and aromatic compounds such as benzene, toluene and xylene.
[0095] 分解ガソリンに炭素数 4の炭化水素が含まれていると、分解ガソリンから回収される 炭素数 5の炭化水素流体中に炭素数 4の炭化水素が混入してしまうため好ましくない[0095] When cracked gasoline contains hydrocarbons having 4 carbon atoms, it is not preferable because hydrocarbons having 4 carbon atoms are mixed in the hydrocarbon fluid having 5 carbon atoms recovered from the cracked gasoline.
。そのため、分解ガソリン留分に混合する流体 (M)または流体(S)中の炭素数 4の炭 化水素は 5重量%未満であることが好ましい。さらに好ましくは 2重量%未満である。 . Therefore, it is preferable that the C4 hydrocarbon in the fluid (M) or fluid (S) mixed with the cracked gasoline fraction is less than 5% by weight. More preferably, it is less than 2% by weight.
[0096] <反応器入口の基質濃度の制御〉 [0096] <Control of substrate concentration at reactor inlet>
上記の第 1の態様において、流体 (B)および流体 (E)の流量を制御することにより、 反応器にリサイクルされる流体 (D)に含まれるパラフィンなどの希釈ガス流量を制御 することが可能である。  In the first aspect described above, by controlling the flow rates of fluid (B) and fluid (E), it is possible to control the flow rate of dilution gas such as paraffin contained in fluid (D) recycled to the reactor. It is.
また、第 2の態様においては、流体 (F)と流体 (H)の流量を制御することにより、反 応器にリサイクルされる流体 (I)に含まれるパラフィンなどの希釈ガス流量を制御する ことが可能である。  In the second mode, the flow rate of the dilution gas such as paraffin contained in the fluid (I) recycled to the reactor is controlled by controlling the flow rates of the fluid (F) and the fluid (H). Is possible.
[0097] 上記の第 3の態様にお!/、て、流体(M)および流体(P)、あるいは流体(P)、流体 (R )および流体(S)の流量、更には、流体 (K)、 (L)、 (N)、(P)、および(Q)から選ば れるいずれ力、 1または 2以上の流体の箇所に戻す流体 (R)の流量やその返送箇所を 制御することにより、反応器にリサイクルされる流体(Q)に含まれるパラフィンなどの 希釈ガス流量を制御することが可能である。  [0097] In the third embodiment, the fluid (M) and the fluid (P), the flow rate of the fluid (P), the fluid (R) and the fluid (S), and the fluid (K ), (L), (N), (P), and (Q), and by controlling the flow rate of fluid (R) to be returned to one or more fluid locations and the return location, It is possible to control the flow rate of dilution gas such as paraffin contained in the fluid (Q) recycled to the reactor.
これにより、反応器に供給する全供給原料中の、炭素数 4以上のォレフィンとメタノ 一ルとジメチルエーテルの合計濃度(基質濃度)を 20体積%以上 80体積%以下に 制御することが好ましい。  Thereby, it is preferable to control the total concentration (substrate concentration) of olefins, methanol and dimethyl ether having 4 or more carbon atoms in all the feeds supplied to the reactor to 20 vol% or more and 80 vol% or less.
[0098] [スチームクラッキングプロセスとの統合]  [0098] [Integration with steam cracking process]
スチームクラッキングプロセスにおいては、得られる炭素数 4の炭化水素流体 (BB 留分)から必要成分を除去した価値の低!/、流体(主に C4ラフイネ一トー 2)を水添して クラッカーに戻して!/、ること力 S多レ、。 本プロセスでは、この価値の低い流体を原料とすることが可能であり、さらに本プロ セスで不要となる流体をスチームクラッキングプロセスで利用が可能であるという点で 、お互いの低価値流体の有効利用が可能な極めて効率の良いプロセスである。 In the steam cracking process, the required value is removed from the obtained hydrocarbon fluid (BB fraction) with 4 carbon atoms! /, And the fluid (mainly C4 rough rice toe 2) is hydrogenated and returned to the cracker. Te! In this process, this low-value fluid can be used as a raw material, and fluids that are unnecessary in this process can be used in the steam cracking process. It is an extremely efficient process that can.
[0099] [プロセスの実施態様]  [0099] [Process Embodiment]
以下に、本発明プロセスの実施態様について図面を参照して説明する。 図 1は本発明プロセスの第 1の態様を示し、図 2は第 2の態様を示す。  Hereinafter, embodiments of the process of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the process of the present invention, and FIG. 2 shows a second embodiment.
[0100] 図 1 , 2において、 10は反応器、 20は第 1の分離精製系、 30A, 30Bは第 2の分離 精製系である。 10;!〜 114はそれぞれ配管を示す。  In FIGS. 1 and 2, 10 is a reactor, 20 is a first separation and purification system, and 30A and 30B are second separation and purification systems. 10;! To 114 each indicate piping.
[0101] <第 1の態様(図 1)の説明〉  [0101] <Description of first mode (Fig. 1)>
炭素数 4以上のォレフィン原料、第 2の分離精製系 30Aからの炭素数 4以上の炭化 水素流体(D)、メタノールおよびジメチルエーテルのうち少なくとも 1つはそれぞれ配 管 101、 102、 103および配管 104を経て反応器 10に供給される。反応器 10に供給 される炭素数 4以上のォレフィン原料には炭素数 4以上のパラフィン類、例えばカレ マルブタンやイソブタンなどが含まれていても良い。また、配管 104を経て反応器 10 に供給される原料流体にはブタジエンや芳香族化合物が含まれていても良い。前述 の如ぐ原料流体中のブタジエン濃度としては通常 2. 0体積%以下であり、芳香族 化合物の合計量は配管 104の原料流体に含まれる炭素数 4以上のォレフィンの合計 量に対してモル比で通常 0. 05未満である。なお、原料流体は、配管 101、 102およ び 103を経て供給される流体の合計を意味している力 S、これらは必ずしも反応器 10 に入る前に合流する必要は無ぐ別々に反応器 10に供給されても良い。反応器 10 に供給された原料ガスは反応器 10内で触媒と接触して反応し、プロピレン、その他 のォレフイン、パラフィン類、芳香族化合物および水を含有した反応器出口ガスが得 られる。  At least one of the olefin raw material having 4 or more carbon atoms, the hydrocarbon fluid (D) having 4 or more carbon atoms from the second separation and purification system 30A, methanol and dimethyl ether is connected to pipes 101, 102, 103 and 104, respectively. Then, it is supplied to the reactor 10. The olefin raw material having 4 or more carbon atoms supplied to the reactor 10 may contain paraffins having 4 or more carbon atoms, such as calalebutane and isobutane. The raw material fluid supplied to the reactor 10 via the pipe 104 may contain butadiene or an aromatic compound. The butadiene concentration in the raw material fluid as described above is usually 2.0% by volume or less, and the total amount of aromatic compounds is moles relative to the total amount of olefins having 4 or more carbon atoms contained in the raw material fluid in the pipe 104. The ratio is usually less than 0.05. Note that the feed fluid is a force S, which means the sum of the fluids supplied via pipes 101, 102 and 103, which do not necessarily have to be joined before entering reactor 10, 10 may be supplied. The raw material gas supplied to the reactor 10 reacts in contact with the catalyst in the reactor 10 to obtain a reactor outlet gas containing propylene, other olefins, paraffins, aromatic compounds and water.
[0102] 反応器出口ガスは配管 105を経て冷却、圧縮、蒸留などの一般的な分離精製系 2 0に送給され、この分離精製系 20で炭素数 3以下の炭化水素に富んだ流体、炭素数 4以上の炭化水素に富んだ流体 (A)および水に富んだ流体に分離され、それぞれ 配管 106、 108、 107を経て取り出される。ここで、炭素数 3以下の炭化水素に富ん だ流体は一つ以上の流体を示す。例えば、炭素数 3以下の炭化水素を全て含んだ 一つの流体でも良いし、炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水 素に富んだ流体や、炭素数 2以下の炭化水素と炭素数 3の炭化水素を含む流体と炭 素数 3の炭化水素に富んだ流体のような二つの流体でも良い。さらには三つ以上の 流体でも良い。 [0102] The reactor outlet gas is sent to a general separation and purification system 20 such as cooling, compression, and distillation through a pipe 105, and in this separation and purification system 20, a fluid rich in hydrocarbons having 3 or less carbon atoms, They are separated into a hydrocarbon-rich fluid (A) and water-rich fluid with 4 or more carbon atoms, and taken out through pipes 106, 108, and 107, respectively. Here, a hydrocarbon-rich fluid having 3 or less carbon atoms indicates one or more fluids. For example, including all hydrocarbons with 3 or less carbon atoms One fluid may be used, a fluid rich in hydrocarbons having 2 or less carbon atoms and a fluid rich in hydrocarbons having 3 carbon atoms, or a fluid containing hydrocarbons having 2 or less carbon atoms and hydrocarbons having 3 carbon atoms. Two fluids, such as a fluid rich in 3 carbon atoms, may be used. Furthermore, three or more fluids may be used.
[0103] 炭素数 4以上の炭化水素に富んだ流体 (A)の一部は配管 109よりプロセス外へ抜 き出され、残りの流体 (C)は配管 110を経て蒸留等の一般的な分離精製系 30Aに 供給される。流体 (A)の一部の流体 (B)はプロセス外へ抜き出しても良い。この際、 抜き出し流体 (B)は、スチームクラッキングプロセスのクラッカー原料として利用しても 良い。その場合には、抜き出し流体 (B)を水素添加触媒に接触させてパラフィン濃度 を高めた流体としてスチームクラッキングプロセスに供給するのが好ましい。このとき の抜き出し流体 (B)の芳香族化合物濃度の合計は 5. 0体積%未満であることが好ま しい。  [0103] A part of the hydrocarbon-rich fluid (A) with 4 or more carbon atoms is withdrawn out of the process through the pipe 109, and the remaining fluid (C) is separated through the pipe 110 through general separation such as distillation. Supplied to purification system 30A. A part of the fluid (A) (B) may be extracted out of the process. At this time, the extracted fluid (B) may be used as a cracker raw material for the steam cracking process. In that case, it is preferable to supply the extracted fluid (B) to the steam cracking process as a fluid in which the concentration of paraffin is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the extracted fluid (B) is preferably less than 5.0% by volume.
[0104] 分離精製系 30Aでは、芳香族化合物濃度が流体 (C)より低!/ヽ流体 (D)と炭素数 4 以上の炭化水素濃度が流体 (C)より低い流体 (E)とに分離され、流体 (D)の少なくと も一部は配管 102を経て反応器 10にリサイクルされ、流体 )は配管 111より該プロ セスから抜き出される。抜き出し流体 (E)は、スチームクラッキングプロセス等の分解 ガソリン留分に混合しても良い。その場合には、流体 (E)に含まれる炭素数 4の炭化 水素の合計濃度力 ¾重量%未満であることが好ましい。  [0104] In the separation and purification system 30A, the aromatic compound concentration is lower than the fluid (C)! / Soot fluid (D) and the fluid (E) in which the hydrocarbon concentration of 4 or more carbon atoms is lower than the fluid (C) At least a part of the fluid (D) is recycled to the reactor 10 via the pipe 102, and the fluid) is extracted from the process via the pipe 111. The extracted fluid (E) may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, the total concentration force of hydrocarbons having 4 carbon atoms contained in the fluid (E) is preferably less than 3% by weight.
流体 (D)の一部の流体(以下、「流体 (X)」)はプロセス外へ抜き出しても良い。この 際、抜き出し流体 (X)は、スチームクラッキングプロセスのクラッカー原料として利用し ても良い。その場合には、抜き出し流体 (X)を水素添加触媒に接触させてパラフィン 濃度を高めた流体としてスチームクラッキングプロセスに供給するのが好ましい。この ときの抜き出し流体 (X)の芳香族化合物濃度の合計は 5. 0モル%未満であることが 好ましい。  A part of the fluid (D) (hereinafter, “fluid (X)”) may be extracted out of the process. At this time, the extracted fluid (X) may be used as a cracker raw material for the steam cracking process. In that case, it is preferable to supply the extracted fluid (X) to the steam cracking process as a fluid in which the concentration of paraffin is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the drawn fluid (X) is preferably less than 5.0 mol%.
[0105] 前記流体 (D)と流体 (X)は必ずしも必要では無いが、ノ ラフィン類の蓄積を防止す るために少なくともいずれかの流体をプロセスから抜き出すことが好ましい。  [0105] The fluid (D) and the fluid (X) are not necessarily required, but it is preferable to extract at least one of the fluids from the process in order to prevent accumulation of norafines.
[0106] <第 2の態様(図 2)の説明〉 <Description of Second Mode (FIG. 2)>
炭素数 4以上のォレフィン原料、第 2の分離精製系 30Bからの炭素数 4以上の炭化 水素流体(I)、メタノールおよびジメチルエーテルのうち少なくとも 1つはそれぞれ配 管 101、 102、 103および配管 104を経て反応器 10に供給される。この後、第 1の分 離精製系 20において、反応器 10の出口ガスから、炭素数 3以下の炭化水素に富ん だ流体、炭素数 4以上の炭化水素流体 (A)、および水に富んだ流体に分離されるま での工程は図 1と同様であるので説明を省略する。 Carbon 4 or more olefin raw material, carbonization of 4 or more carbon from the second separation and purification system 30B At least one of hydrogen fluid (I), methanol, and dimethyl ether is supplied to the reactor 10 via pipes 101, 102, 103 and pipe 104, respectively. Thereafter, in the first separation purification system 20, from the outlet gas of the reactor 10, a fluid rich in hydrocarbons having 3 or less carbon atoms, a hydrocarbon fluid having 4 or more carbon atoms (A), and rich in water. The process until separation into a fluid is the same as in FIG.
[0107] 炭素数 4以上の炭化水素流体 (A)は、配管 108より、蒸留等の一般的な分離精製 系 30Bに供給される。分離精製系 30Bでは、芳香族化合物濃度が流体 (A)より低い 流体 (G)と、炭素数 4以上の炭化水素濃度が流体 (A)より低!/、流体 (F)とに分離され る。流体 (F)は、配管 112より該プロセスから抜き出される。抜き出し流体 (F)は、スチ ームクラッキングプロセス等の分解ガソリン留分に混合しても良い。その場合には、流 体 (F)に含まれる炭素数 4の炭化水素の合計濃度が 5重量%未満であることが好まし い。 [0107] The hydrocarbon fluid (A) having 4 or more carbon atoms is supplied from a pipe 108 to a general separation and purification system 30B such as distillation. Separation and purification system 30B separates the fluid (G) with a lower aromatic compound concentration than the fluid (A) and the hydrocarbon concentration with 4 or more carbon atoms lower than the fluid (A)! /, Fluid (F). . Fluid (F) is withdrawn from the process through line 112. The extraction fluid (F) may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, it is preferable that the total concentration of hydrocarbons having 4 carbon atoms contained in the fluid (F) is less than 5% by weight.
[0108] 流体(G)は配管 113より取り出され、その一部(H)は配管 114を経て該プロセスか ら抜き出され、残りの流体 (I)は配管 102を経て反応器 10にリサイクルされる。抜き出 し流体 (H)は、スチームクラッキングプロセスのクラッカー原料として利用しても良い。 その場合には、流体 (H)を水素添加触媒に接触させてパラフィン濃度を高めた流体 としてスチームクラッキングプロセスに供給されるのが好ましい。このときの流体(H)の 芳香族化合物濃度の合計は 5. 0体積%未満であることが好ましい。  [0108] The fluid (G) is taken out from the pipe 113, a part (H) is taken out from the process through the pipe 114, and the remaining fluid (I) is recycled to the reactor 10 through the pipe 102. The The extracted fluid (H) may be used as a cracker raw material for the steam cracking process. In that case, the fluid (H) is preferably supplied to the steam cracking process as a fluid in which the concentration of paraffin is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the fluid (H) is preferably less than 5.0% by volume.
[0109] 前記流体(H)のプロセス外への抜き出しは、必ずしも必要ではないが、パラフィン 類の蓄積を防止するために、少なくともいずれかの流体の一部をプロセスから抜き出 すことが好ましい。  [0109] It is not always necessary to extract the fluid (H) out of the process, but it is preferable to extract at least a part of the fluid from the process in order to prevent accumulation of paraffins.
[プロセスの実施態様]  [Process embodiment]
<第 3の実施態様(図 3)〉  <Third embodiment (Fig. 3)>
以下に、本発明プロセスの実施態様について図面を参照して説明する。  Hereinafter, embodiments of the process of the present invention will be described with reference to the drawings.
図 3は本発明プロセスの一態様を示す。  FIG. 3 illustrates one embodiment of the process of the present invention.
[0110] 図 3において、 13は反応器、 23は圧縮機、 33はノックアウトドラム、 43は油水分離 機、 53は第 1の分離精製系、 63は第 2の分離精製系である。 30;!〜 315はそれぞれ 配管を示す。 [0111] 炭素数 4以上のォレフィン原料、第 1の分離精製系 53からの炭素数 4以上の炭化 水素流体(Q)、メタノールおよびジメチルエーテルのうち少なくとも 1つはそれぞれ配 管 301 , 302、 303および配管 304を経て反応器 13に供給される。反応器 13に供給 される炭素数 4以上のォレフィン原料には炭素数 4以上のパラフィン類、例えばカレ マルブタンやイソブタンなどが含まれていても良い。また、配管 304を経て反応器 13 に供給される原料流体にはブタジエンや芳香族化合物が含まれていても良い。前述 の如ぐ原料流体中のブタジエン濃度としては通常 2. 0体積%以下であり、芳香族 化合物の合計量は配管 304の原料流体に含まれる炭素数 4以上のォレフィンの合計 量に対してモル比で通常 0. 05未満である。なお、原料流体は、配管 301 , 302、お よび 303を経て供給される流体の合計を意味して!/、る力 これらは必ずしも反応器 1 3に入る前に合流する必要は無ぐ別々に反応器 13に供給されても良い。反応器 13 に供給された原料ガスは反応器 13内で触媒と接触して反応し、プロピレン、その他 のォレフイン、パラフィン類、芳香族化合物および水を含有した反応器出口ガスが得 られる。 In FIG. 3, 13 is a reactor, 23 is a compressor, 33 is a knockout drum, 43 is an oil-water separator, 53 is a first separation and purification system, and 63 is a second separation and purification system. 30;! To 315 indicate piping. [0111] At least one of the olefin raw material having 4 or more carbon atoms, the hydrocarbon fluid (Q) having 4 or more carbon atoms from the first separation and purification system 53, methanol, and dimethyl ether is provided in the pipes 301, 302, 303, and It is supplied to the reactor 13 through the pipe 304. The olefin raw material having 4 or more carbon atoms supplied to the reactor 13 may contain paraffins having 4 or more carbon atoms, such as calalebutane and isobutane. The raw material fluid supplied to the reactor 13 via the pipe 304 may contain butadiene or an aromatic compound. The butadiene concentration in the raw material fluid as described above is usually 2.0% by volume or less, and the total amount of aromatic compounds is mol relative to the total amount of olefins having 4 or more carbon atoms contained in the raw material fluid of the pipe 304. The ratio is usually less than 0.05. Note that the raw material fluid means the sum of the fluids supplied via the pipes 301, 302, and 303! /, And these forces are not necessarily merged before entering the reactor 13 separately. It may be supplied to the reactor 13. The raw material gas supplied to the reactor 13 is reacted with the catalyst in the reactor 13 to obtain a reactor outlet gas containing propylene, other olefins, paraffins, aromatic compounds and water.
[0112] 反応器出口ガスは、例えば熱交換器を通じて冷却され、冷却後のガス流体 (K)は 配管 305より圧縮機 23により昇圧される。圧縮機 23は 1つでも良いが、複数の方が 好ましい。各圧縮機 23の後には熱交換器およびノックアウトドラム 33を設置し、圧縮 後のガスを冷却した後にガス流体 (L)と凝縮成分とに分離する。凝縮成分は配管 30 8を経て油水分離器 43に送給され炭素数 4以上の炭化水素に富んだ液流体 (M)と 水に富んだ流体とに分離され、水に富んだ流体は配管 310より抜き出され、炭素数 4 以上の炭化水素に富んだ液流体 (M)は配管 309より第 2の分離精製系 63に送給さ れる。  [0112] The reactor outlet gas is cooled through, for example, a heat exchanger, and the cooled gas fluid (K) is pressurized by the compressor 23 through the pipe 305. One compressor 23 may be used, but a plurality of compressors 23 are preferable. A heat exchanger and a knockout drum 33 are installed after each compressor 23, and after the compressed gas is cooled, it is separated into a gas fluid (L) and a condensed component. Condensed components are sent to the oil / water separator 43 via the pipe 30 8 and separated into a hydrocarbon-rich liquid fluid (M) having 4 or more carbon atoms and a water-rich fluid. The liquid fluid (M) rich in hydrocarbons with 4 or more carbon atoms extracted is sent to the second separation / purification system 63 through the pipe 309.
[0113] ノックアウトドラム 33で分離されたガス流体 (L)は配管 307を経て蒸留などの一般 的な第 1の分離精製系 53に送給され、炭素数 3以下の炭化水素に富んだ流体と、炭 素数 4以上の炭化水素に富んだ流体 (N)とに分離され、それぞれ配管 313, 314を 経て取り出される。ここで、炭素数 3以下の炭化水素に富んだ流体は一つ以上の流 体を示す。例えば、炭素数 3以下の炭化水素を全て含んだ一つの流体でも良いし、 炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水素に富んだ流体や、炭 素数 2以下の炭化水素と炭素数 3の炭化水素を含む流体と炭素数 3の炭化水素に富 んだ流体のような二つの流体でも良い。さらには三つ以上の流体でも良い。 [0113] The gas fluid (L) separated by the knockout drum 33 is sent to a general first separation / purification system 53 such as distillation through a pipe 307, and a fluid rich in hydrocarbons having 3 or less carbon atoms. Then, it is separated into a hydrocarbon-rich fluid (N) having 4 or more carbon atoms and taken out via pipes 313 and 314, respectively. Here, a hydrocarbon-rich fluid having 3 or less carbon atoms represents one or more fluids. For example, a single fluid containing all hydrocarbons with 3 or less carbon atoms, a fluid rich in hydrocarbons with 2 or less carbon atoms, a fluid rich in hydrocarbons with 3 carbon atoms, Two fluids may be used, such as a fluid containing a hydrocarbon having a carbon number of 2 or less and a hydrocarbon having 3 carbon atoms and a fluid rich in a hydrocarbon having 3 carbon atoms. Furthermore, three or more fluids may be used.
[0114] 炭素数 4以上の炭化水素に富んだ流体 (N)の一部(P)は、配管 315を経て該プロ セスから抜き出され、残りの流体(Q)は配管 302を通して反応器 13にリサイクルされ る。流体 (P)は、スチームクラッキングプロセスのクラッカー原料として利用しても良い 。その場合には、流体 (P)を水素添加触媒に接触させてパラフィン濃度を高めた流 体としてスチームクラッキングプロセスに供給されるのが好ましい。このときの流体 (P) の芳香族化合物濃度の合計は 5. 0体積%未満であることが好まし!/、。  [0114] A part (P) of the fluid (N) rich in hydrocarbons having 4 or more carbon atoms is extracted from the process through the pipe 315, and the remaining fluid (Q) is supplied to the reactor 13 through the pipe 302. Recycled. The fluid (P) may be used as a cracker raw material for the steam cracking process. In that case, the fluid (P) is preferably supplied to the steam cracking process as a fluid in which the paraffin concentration is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the fluid (P) is preferably less than 5.0% by volume! /.
[0115] 一方、油水分離機 43で分離された液流体 (M)は、炭素数 4以上の炭化水素に富 み、芳香族化合物を含んだ液成分であるが、これはそのまま該プロセスから抜き出し ても良く、この場合、液流体 (M)は、スチームクラッキングプロセスのクラッカー原料と して利用しても良い。その場合には、流体 (M)を水素添加触媒に接触させてパラフィ ン濃度を高めた流体としてスチームクラッキングプロセスに供給されるのが好ましい。 このときの流体 (M)の芳香族化合物濃度の合計は 5. 0体積%未満であることが好ま しい。  [0115] On the other hand, the liquid fluid (M) separated by the oil / water separator 43 is a liquid component rich in hydrocarbons having 4 or more carbon atoms and containing an aromatic compound, which is directly extracted from the process. In this case, the liquid fluid (M) may be used as a cracker raw material for the steam cracking process. In that case, the fluid (M) is preferably supplied to the steam cracking process as a fluid in which the paraffin concentration is increased by contacting the hydrogenation catalyst. At this time, the total concentration of aromatic compounds in the fluid (M) is preferably less than 5.0% by volume.
[0116] また、液流体 (M)の中の炭素数 4の炭化水素濃度が低い場合にはスチームクラッ キングプロセス等の分解ガソリン留分に混合しても良い。その場合には、流体 (M)に 含まれる炭素数 4の炭化水素の合計濃度が 5重量%未満であることが好ましい。  [0116] When the hydrocarbon concentration of carbon number 4 in the liquid fluid (M) is low, it may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, it is preferable that the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (M) is less than 5% by weight.
[0117] また、液流体 (M)の少なくとも一部は蒸留等の一般的な分離工程である第 2の分 離精製系 60で、芳香族化合物濃度が液流体 (M)より低!/、流体 (R)と炭素数 4の炭 化水素濃度が液流体 (M)より低レ、流体(S)とに分離することが好ましレ、。ここで分離 された流体 (R)は配管 111より抜き出されるが、流体 (R)は流体 (K)、流体 (L)、流 体(N)、流体(P)、流体(Q)カ流通する酉己管 305, 307, 314, 315, 302のうちの 1 箇所または複数の箇所に戻すことが好ましレ、。  [0117] Further, at least a part of the liquid fluid (M) is the second separation / purification system 60, which is a general separation step such as distillation, and the concentration of the aromatic compound is lower than that of the liquid fluid (M)! /, It is preferable to separate the fluid (R) and the C4 hydrocarbon concentration from the liquid fluid (M) and the fluid (S). The separated fluid (R) is extracted from the pipe 111, but the fluid (R) is fluid (K), fluid (L), fluid (N), fluid (P), fluid (Q) flow. It is preferable to return to one or more of 305, 307, 314, 315, 302.
[0118] 一方、流体(S)は配管 312より抜き出され、この流体(S)はスチームクラッキングプ ロセス等の分解ガソリン留分に混合しても良い。その場合には、流体(S)に含まれる 炭素数 4の炭化水素の合計濃度が 5重量%未満であることが好ましい。  [0118] On the other hand, the fluid (S) is extracted from the pipe 312 and the fluid (S) may be mixed with a cracked gasoline fraction such as a steam cracking process. In that case, the total concentration of C 4 hydrocarbons contained in the fluid (S) is preferably less than 5% by weight.
前記流体(P)のプロセス外への抜き出しは、必ずしも必要ではないが、パラフィン類 の蓄積を防止するために、少なくともいずれかの流体の一部をプロセスから抜き出す ことが好ましい。 Extraction of the fluid (P) out of the process is not always necessary, but paraffins In order to prevent accumulation of at least one of the fluids is preferably withdrawn from the process.
実施例  Example
[0119] 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例 に何ら限定されるものではなレ、。  [0119] The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.
[0120] [触媒調製] [0120] [Catalyst preparation]
以下の実施例、比較例で用いた触媒は、次のようにして調製した。  The catalysts used in the following examples and comparative examples were prepared as follows.
<触媒調製例 >  <Catalyst preparation example>
臭化テトラー n—プロピルアンモニゥム(TPABr) 26. 6gおよび水酸化ナトリウム 4· 8gを順次、水 280gに溶角早し、次にコロイダノレシリカ(SiO =40重量0 /0、Α1< 0· 1重 i%) 75gと水 35gとの混合液をゆっくり加え、十分攪拌して水性ゲルを得た。次に、 このゲルを 1000mlのオートクレーブに仕込み、自圧下、 300rpmで攪拌しな力 Sら; 17 0°Cで 72時間、水熱合成を行った。生成物は加圧濾過により固体成分を分離し、十 分水洗を行った後に 100°Cで 24時間乾燥した。乾燥後の触媒は、空気流通下 550 °Cで 6時間焼成を行い、 Na型のアルミノシリケートを得た。 Bromide tetra n- propyl ammonium Niu beam (TPABr) 26. 6 g of sodium hydroxide 4 · 8 g successively, in water 280g溶角Hayashi, then roller Ida Honoré silica (SiO = 40 weight 0/0, [alpha] 1 < (0.1% i%) 75 g and a mixture of 35 g of water were slowly added and stirred sufficiently to obtain an aqueous gel. Next, this gel was charged into a 1000 ml autoclave and hydrothermal synthesis was performed for 72 hours at a force of S, etc .; The product was separated from solid components by pressure filtration, washed thoroughly with water, and dried at 100 ° C for 24 hours. The dried catalyst was calcined at 550 ° C for 6 hours under air flow to obtain Na type aluminosilicate.
[0121] この Na型のアルミノシリケート 2. Ogを 1Mの硝酸アンモニゥム水溶液 40mlに懸濁 させ、 80°Cで 2時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、十 分水洗を行った後、再度 1Mの硝酸アンモニゥム水溶液 40mlに懸濁させ、 80°Cで 2 時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、十分水洗を行った 後、 100°Cで 24時間乾燥した。乾燥後の触媒は、空気流通下 500°Cで 4時間焼成を 行い、 H型のアルミノシリケートを得た。  [0121] This Na-type aluminosilicate 2. Og was suspended in 40 ml of 1M ammonium nitrate aqueous solution and stirred at 80 ° C for 2 hours. After the treatment, the solid component was separated by suction filtration, washed thoroughly with water, then suspended in 40 ml of 1M aqueous ammonium nitrate solution and stirred at 80 ° C for 2 hours. After the treatment, the solid component was separated by suction filtration, washed thoroughly with water, and dried at 100 ° C for 24 hours. The dried catalyst was calcined at 500 ° C for 4 hours under air flow to obtain H-type aluminosilicate.
[0122] この触媒は、 XRD (X線回折)によりゼォライトの構造が MFI型であることを確認した 。 触媒の組成を化学分析により定量したところ、 SiO /Al O = 1100 (モル比)であ  [0122] This catalyst was confirmed by XRD (X-ray diffraction) to have a zeolite structure of MFI type. When the composition of the catalyst was quantified by chemical analysis, it was SiO 2 / Al 2 O = 1100 (molar ratio).
2 2 3  2 2 3
つた。  I got it.
[0123] [プロピレンの製造]  [0123] [Production of propylene]
以下に上記触媒を用いたプロピレンの製造実施例及び比較例を示す。  The production examples and comparative examples of propylene using the above catalyst are shown below.
[0124] <実施例 1〉 [0124] <Example 1>
前記の触媒を用いてプロピレンの製造を行った。 反応には常圧固定床流通反応装置を用い、内径 6mmの石英製反応管に、上記 触媒 0. 10gと、石英砂 1. Ogの混合物を充填した。この反応器に本発明における反 応器入口ガス(図 1または図 2の配管 104)組成に相当する模擬ガスとしてイソブテン (40体積0 /0)、メタノール(20体積0 /0)、ベンゼン(0. 8体積0 /0)、ブタジエン(0. 1体 積%)およびイソブタン (39. 1体積%)に調製したガスを蒸発器を通して供給した。 反応温度(反応器入口ガス温度)は 550°Cとした。反応開始後、 70分後にガスクロマ トグラフィ一で生成物の分析を行った。 その時の反応条件および反応結果を表 1に 示した。 Propylene was produced using the above catalyst. A normal pressure fixed bed flow reactor was used for the reaction, and a quartz reaction tube having an inner diameter of 6 mm was filled with a mixture of the above catalyst (0.10 g) and quartz sand (1 Og). Anti応器inlet gas of the present invention in the reactor isobutene (40 vol 0/0) as a model gas, which corresponds to the composition (Fig. 1 or the pipe 104 in FIG. 2), methanol (20 vol 0/0), benzene (0 . 8 vol 0/0), were fed through butadiene (0.1 body volume%) and isobutane (evaporator 39. was prepared in 1% by volume) gas. The reaction temperature (reactor inlet gas temperature) was 550 ° C. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. The reaction conditions and reaction results at that time are shown in Table 1.
プロピレンの選択率は 54. 8%であり、非常に高いレベルであった。  The selectivity for propylene was 54.8%, a very high level.
さらに反応を継続し、メタノールの転化率が 99%を下回るまでの時間を触媒寿命と して評価した。その結果、触媒寿命は 312時間であった。  Further, the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life. As a result, the catalyst life was 312 hours.
[0125] <実施例 2〉 [0125] <Example 2>
反応器に供給するベンゼン濃度を 1. 6体積%とし、イソブタン濃度を 38. 3体積% にした以外は実施例 1と同様の方法で反応を行った。反応開始後、 70分後にガスク 口マトグラフィ一で生成物の分析を行った。 その時の反応条件および反応結果を表 The reaction was carried out in the same manner as in Example 1 except that the concentration of benzene supplied to the reactor was 1.6% by volume and the isobutane concentration was 38.3% by volume. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. Table of reaction conditions and reaction results at that time
1に示した。 Shown in 1.
プロピレンの選択率は 54. 4%であり、非常に高いレベルであった。  The selectivity for propylene was 54.4%, a very high level.
さらに反応を継続し、メタノールの転化率が 99%を下回るまでの時間を触媒寿命と して評価した。その結果、触媒寿命は 305時間であった。  Further, the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life. As a result, the catalyst life was 305 hours.
[0126] <比較例 1〉 [0126] <Comparative Example 1>
反応器に供給するベンゼン濃度を 3. 2体積%とし、イソブタン濃度を 36. 7体積% にした以外は実施例 1と同様の方法で反応を行った。反応開始後、 70分後にガスク 口マトグラフィ一で生成物の分析を行った。 その時の反応条件および反応結果を表 The reaction was performed in the same manner as in Example 1 except that the concentration of benzene supplied to the reactor was 3.2% by volume and the isobutane concentration was 36.7% by volume. 70 minutes after the start of the reaction, the product was analyzed by gas chromatography. Table of reaction conditions and reaction results at that time
1に示した。 Shown in 1.
プロピレンの選択率は 51. 4%であり、実施例 1および 2と比較して非常に低いレべ ノレであった。  The selectivity for propylene was 51.4%, which was a very low level compared to Examples 1 and 2.
これは、原料のブテンおよび/またはメタノールとベンゼンとが反応し、アルキル化 ベンゼンが生成したことにより、本来プロピレン生成に使用されるべきブテンおよび/ またはメタノールを無駄に消費したことによるものである。 This is because butene and / or methanol and benzene react with each other to produce alkylated benzene. Or it is due to wasteful consumption of methanol.
さらに反応を継続し、メタノールの転化率が 99%を下回るまでの時間を触媒寿命と して評価した。その結果、触媒寿命は 221時間であり、実施例 1および 2と比較して非 常に短い結果となった。これは前記アルキル化ベンゼンが触媒の細孔を塞ぐと共に コーキングを促進しているためであると推定される。  Further, the reaction was continued, and the time until the methanol conversion fell below 99% was evaluated as the catalyst life. As a result, the catalyst life was 221 hours, which was very short compared to Examples 1 and 2. This is presumably because the alkylated benzene blocks the pores of the catalyst and promotes coking.
このように、本発明の方法に従って、芳香族化合物の少なくとも一部をリサイクルせ ずに抜き出すことにより反応器入口の芳香族化合物濃度を下げることは高いプロピレ ン収率の達成および触媒コーキング劣化の抑制に非常に効果的である。  Thus, in accordance with the method of the present invention, reducing the aromatic compound concentration at the inlet of the reactor by extracting at least a part of the aromatic compound without recycling can achieve a high propylene yield and suppress catalyst coking deterioration. It is very effective.
[表 1] [table 1]
Figure imgf000044_0001
Figure imgf000044_0001
« 1:炭素数 5以上のォレフィンの選択率  «1: Selectivity of olefins with 5 or more carbon atoms
« 2 :芳香族化合物とパラフィンの合計の選択率  «2: Total selectivity of aromatic compounds and paraffin
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら 力、である。  Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
本出願は、 2006年 9月 21日出願の日本特許出願(特願 2006-255503)、 2006年 9月 2 1日出願の日本特許出願(特願 2006-255504)、に基づくものであり、その内容はここ に参照として取り込まれる。  This application is based on a Japanese patent application filed on September 21, 2006 (Japanese Patent Application 2006-255503) and a Japanese patent application filed on September 21, 2006 (Japanese Patent Application 2006-255504). The contents are incorporated here by reference.
産業上の利用可能性 本発明は、炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち 少なくとも 1つを反応させてプロピレンを製造するための新規で経済的なプロセス、及 び本プロセスとスチームクラッキングを統合した新規で経済的なプロセスを提供する こと力 Sでさる。 Industrial applicability The present invention is a new and economical process for producing propylene by reacting olefins having 4 or more carbon atoms with at least one of methanol and dimethyl ether, and a new and economical process that integrates this process with steam cracking. To provide a realistic process.

Claims

請求の範囲 The scope of the claims
[1] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つを含む原料を触媒の存在下、反応器中で接触させてプロピレンを製造する方法に おいて、  [1] In a method of producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst,
該反応器出口流出ガス(反応器出口ガス)中において含まれる芳香族化合物の少な くとも一部は抜き出すと共に、  At least a part of the aromatic compound contained in the reactor outlet effluent gas (reactor outlet gas) is withdrawn, and
該反応器出口流出ガス(反応器出口ガス)中にお!/、て含まれる炭素数 4以上のォレ フィンの少なくとも一部を該反応器にて再度触媒と接触させることを特徴とするプロピ レンの製造方法  In the reactor outlet effluent gas (reactor outlet gas), at least part of the olefin having 4 or more carbon atoms contained in the reactor is again brought into contact with the catalyst in the reactor. Len production method
[2] 請求項 1にお!/、て、前記炭素数 4以上のォレフィン原料が、炭素数 4以上のパラフィ ン類を含有することを特徴とするプロピレンの製造方法。  [2] The method for producing propylene according to claim 1, wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[3] 請求項 2において、前記パラフィン類がノルマルブタンおよびイソブタンのうち少なく とも 1つを含むことを特徴とするプロピレンの製造方法。 [3] The method for producing propylene according to claim 2, wherein the paraffins contain at least one of normal butane and isobutane.
[4] 請求項 1〜3のいずれ力、 1項において、前記反応器に供給される原料中にブタジェ ンを含有することを特徴とするプロピレンの製造方法。 [4] The propylene production method according to any one of claims 1 to 3, wherein the raw material supplied to the reactor contains butadiene.
[5] 請求項;!〜 4のいずれか 1項において、前記反応器に供給される全原料に含まれる 芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィンの合計量 に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法。 [5] Claims: In any one of! To 4, the total amount of aromatic compounds contained in all raw materials supplied to the reactor is the sum of olefins having 4 or more carbon atoms contained in all the raw materials. A method for producing propylene, wherein the molar ratio is less than 0.05 with respect to the amount.
[6] 請求項 1〜5のいずれ力、 1項において、前記反応器に供給する炭素数 4以上のォレ フィンの量力 該反応器に供給するメタノールのモル数とジメチルエーテルのモル数 の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とするプロピレ ンの製造方法。 [6] In any one of claims 1 to 5, the amount of olefin having 4 or more carbon atoms to be supplied to the reactor is twice the number of moles of methanol to be fed to the reactor and the number of moles of dimethyl ether. The method for producing propylene, wherein the molar ratio is 0.2 or more and 10 or less with respect to the total.
[7] 請求項;!〜 6のいずれか 1項において、前記反応器に供給される全原料に含まれる 炭素数 4以上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積%以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。  [7] Claim: In any one of! To 6, the total concentration (substrate concentration) of olefins having 4 or more carbon atoms, methanol and dimethyl ether contained in all raw materials fed to the reactor is 20% by volume or more. Propylene production method characterized by controlling to 80% by volume or less.
[8] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む原料を、触媒の存在下、反応器中で接触させてプロピレンを製造する方 法において、以下の工程(1) , (2)および(3A)を含むプロセスよりなることを特徴とす るプロピレンの製造方法。 [8] In the method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following step (1) , (2) and (3A) Propylene production method.
工程(1):炭素数 4以上のォレフィン原料、工程 (3A)からリサイクルされた炭化水素 流体(D)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器 に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォ レフインのモル流量に対して 20%以上 90%未満になるような反応条件で前記触媒と 接触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族 化合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied. The molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%. Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2):前記工程(1)からの反応器出口ガスを、炭素数 3以下の炭化水素に富ん だ流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分 離する工程 Step (2): Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
工程 (3A):前記工程(2)における流体 (A)の少なくとも一部の流体(C)を、芳香族化 合物濃度が該流体 (C)より低!/、流体 (D)と炭素数 4の炭化水素濃度が該流体 (C)よ り低い流体 (E)とに分離し、前記流体 (D)は反応器にリサイクルし、前記流体 (E)を 該プロセスから抜き出す工程 Step (3A): At least a part of fluid (C) of fluid (A) in step (2) above has an aromatic compound concentration lower than that of fluid (C) !, fluid (D) and carbon number 4 is separated into a fluid (E) having a hydrocarbon concentration lower than that of the fluid (C), the fluid (D) is recycled to the reactor, and the fluid (E) is extracted from the process.
炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む原料を、触媒の存在下、反応器中で接触させてプロピレンを製造する方 法において、以下の工程(1) , (2)および(3A)を含むプロセスよりなることを特徴とす るプロピレンの製造方法。  In a method for producing propylene by contacting a raw material containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1), (2 ) And (3A), and a process for producing propylene.
工程(1):炭素数 4以上のォレフィン原料、工程 (3A)からリサイクルされた炭化水素 流体(D)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器 に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォ レフインのモル流量に対して 20%以上 90%未満になるような反応条件で前記触媒と 接触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族 化合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (D) recycled from step (3A), and at least one of methanol and dimethyl ether are supplied to the reactor, and carbon at the outlet of the reactor is supplied. The molar flow rate of olefins of 4 or more is contacted with the catalyst under reaction conditions such that the molar flow rate of the olefins at the inlet of the reactor is 20% or more and less than 90%. Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2):前記工程(1)からの反応器出口ガスを、炭素数 3以下の炭化水素に富ん だ流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分 離する工程 Step (2): Reactor outlet gas from step (1) above is rich in hydrocarbons rich in hydrocarbons having 3 or less carbon atoms, fluids rich in hydrocarbons having 4 or more carbon atoms (A), and rich in water. Separating into fluid
工程 (3A):前記工程(2)における流体 (A)の一部(B)を該プロセスから抜き出し、残 りの流体 (C)を、芳香族化合物濃度が該流体 (C)より低!/ヽ流体 (D)と炭素数 4の炭 化水素濃度が該流体(C)より低!/、流体 (E)とに分離し、前記流体 (D)は反応器にリ サイクルし、前記流体 (E)を該プロセスから抜き出す工程 Step (3A): A part (B) of the fluid (A) in the step (2) is extracted from the process, and the residue The fluid (C) has a lower aromatic compound concentration than the fluid (C)! / ヽ fluid (D) and the hydrocarbon concentration of 4 carbon atoms is lower than the fluid (C)! /, Fluid (E And the fluid (D) is recycled to the reactor, and the fluid (E) is withdrawn from the process.
[10] 請求項 8または 9において、前記反応器が直列に接続された二つ以上の反応部か らなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよびジ メチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭化水素含有流体( D)のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部とに分割して 供給することを特徴とするプロピレンの製造方法。  [10] The olefin raw material having 4 or more carbon atoms, which is composed of two or more reaction parts connected in series, and is supplied to the reactor according to claim 8 or 9, of methanol and dimethyl ether At least one; and at least one of the recycled hydrocarbon-containing fluid (D) is divided and supplied to the first-stage reaction section and the second-stage and subsequent reaction sections. Propylene production method.
[11] 請求項 8から 10のいずれ力、 1項において、前記流体(B)をスチームクラッキングプ 口セスに供給し、クラッカー原料として利用することを特徴とするプロピレンの製造方 法。  [11] A method for producing propylene according to any one of claims 8 to 10, wherein the fluid (B) is supplied to a steam cracking process and used as a cracker raw material.
[12] 請求項 11にお!/、て、前記流体 (B)の少なくとも一部を水素添加触媒と接触させた 後、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法  [12] The method for producing propylene according to claim 11, wherein at least a part of the fluid (B) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
[13] 請求項 8ないし 12のいずれ力、 1項において、前記流体(B)に含まれる芳香族化合 物濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。 [13] The process for producing propylene according to any one of claims 8 to 12, wherein the total concentration of the aromatic compounds contained in the fluid (B) is less than 5.0% by volume.
[14] 請求項 8ないし 13のいずれ力、 1項において、前記流体(E)をスチームクラッキング プロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。  14. The propylene production method according to any one of claims 8 to 13, wherein the fluid (E) is mixed with a cracked gasoline fraction of a steam cracking process.
[15] 請求項 8ないし 14のいずれか 1項において、前記流体(E)に含まれる炭素数 4の炭 化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。  [15] The method for producing propylene according to any one of claims 8 to 14, wherein the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (E) is less than 5% by weight.
[16] 請求項 8ないし 15のいずれ力、 1項において、前記流体(B)および前記流体(E)の 流量を制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以上 のォレフインとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積%以 上 80体積%以下に制御することを特徴とするプロピレンの製造方法。  [16] The power of any one of claims 8 to 15, wherein the number of carbon atoms contained in all raw materials supplied to the reactor is 4 by controlling the flow rates of the fluid (B) and the fluid (E). A method for producing propylene, characterized in that the total concentration (substrate concentration) of olefin, methanol and dimethyl ether is controlled to 20 vol% or more and 80 vol% or less.
[17] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造する 方法において、以下の工程(1) , (2)および (3B)を含むプロセスよりなることを特徴と するプロピレンの製造方法。 工程(1):炭素数 4以上のォレフィン原料、工程 (3B)からリサイクルされた炭化水素 流体(I)並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器に 供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォレ フィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接触さ せ、反応器出口から、プロピレンと、その他ォレフィン、パラフィン類、芳香族化合物 および水を含有するガス(反応器出口ガス)を得る工程 [17] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1), A method for producing propylene characterized by comprising a process comprising (2) and (3B). Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% of the molar flow rate of the olefins at the inlet of the reactor. Step of obtaining gas (reactor outlet gas) containing olefin, paraffins, aromatic compounds and water
工程(2) :前記工程(1)からの反応器出口ガスを炭素数 3以下の炭化水素に富んだ 流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分離 する工程工程 (3B):前記工程(2)における流体 (A)を、芳香族化合物濃度が流体( A)より低!/、流体 (G)と炭素数 4の炭化水素濃度が流体 (A)より低!/、流体 (F)とに分 離し、前記前記流体 (G)の少なくとも一部(I)は反応器にリサイクルする工程  Step (2): The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water Step (3B): In the step (2), the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) lower! /, Separated into the fluid (F), and at least a part (I) of the fluid (G) is recycled to the reactor.
[18] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造する 方法において、以下の工程(1) , (2)および (3B)を含むプロセスよりなることを特徴と するプロピレンの製造方法。 [18] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1), A method for producing propylene characterized by comprising a process comprising (2) and (3B).
工程(1):炭素数 4以上のォレフィン原料、工程 (3B)からリサイクルされた炭化水素 流体(I)並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応器に 供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該ォレ フィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接触さ せ、反応器出口から、プロピレンと、その他ォレフィン、パラフィン類、芳香族化合物 および水を含有するガス(反応器出口ガス)を得る工程  Step (1): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (I) recycled from step (3B), and at least one of methanol and dimethyl ether are supplied to the reactor, and the number of carbons at the outlet of the reactor Contact with the catalyst under reaction conditions such that the molar flow rate of 4 or more olefins is 20% or more and less than 90% of the molar flow rate of the olefins at the inlet of the reactor. Step of obtaining gas (reactor outlet gas) containing olefin, paraffins, aromatic compounds and water
工程(2) :前記工程(1)からの反応器出口ガスを炭素数 3以下の炭化水素に富んだ 流体、炭素数 4以上の炭化水素に富んだ流体 (A)、および水に富んだ流体に分離 する工程工程 (3B):前記工程(2)における流体 (A)を、芳香族化合物濃度が流体( A)より低!/、流体 (G)と炭素数 4の炭化水素濃度が流体 (A)より低!/、流体 (F)とに分 離し、前記流体 (F)を該プロセスから抜き出すと共に、前記流体 (G)の一部(I)は反 応器にリサイクルし、残りの流体 (H)を該プロセスから抜き出す工程  Step (2): The reactor outlet gas from the step (1) is a fluid rich in hydrocarbons having 3 or less carbon atoms, a fluid rich in hydrocarbons having 4 or more carbon atoms (A), and a fluid rich in water Step (3B): In the step (2), the fluid (A) has an aromatic concentration lower than that of the fluid (A) !, and the fluid (G) and the hydrocarbon concentration of 4 carbon atoms are fluid ( A) is separated into a fluid (F), and the fluid (F) is withdrawn from the process, and a part (I) of the fluid (G) is recycled to the reactor, and the remaining fluid Step of extracting (H) from the process
[19] 請求項 17または 18において、前記反応器が直列に接続された二つ以上の反応部 力、らなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよび ジメチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭化水素含有流体 (I)のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部とに分割して 供給することを特徴とするプロピレンの製造方法。 [19] The two or more reaction parts according to claim 17 or 18, wherein the reactors are connected in series. The olefin raw material having 4 or more carbon atoms to be fed to the reactor; at least one of methanol and dimethyl ether; and at least one of the recycled hydrocarbon-containing fluid (I), A method for producing propylene, characterized in that it is divided into a reaction part for the second eye and a reaction part for the second and subsequent stages.
[20] 請求項 17から 19のいずれ力、 1項において、前記流体(H)をスチームクラッキングプ 口セスに供給し、クラッカー原料として利用することを特徴とするプロピレンの製造方 法。 [20] The propylene production method according to any one of claims 17 to 19, wherein the fluid (H) is supplied to a steam cracking process and used as a cracker raw material.
[21] 請求項 20にお!/、て、前記流体 (H)の少なくとも一部を水素添加触媒と接触させた 後、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法 [21] The method for producing propylene according to claim 20, wherein at least a part of the fluid (H) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
Yes
[22] 請求項 17ないし 21のいずれか 1項において、前記流体(H)に含まれる芳香族化 合物濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。  [22] The method for producing propylene according to any one of claims 17 to 21, wherein the total concentration of aromatic compounds contained in the fluid (H) is less than 5.0% by volume.
[23] 請求項 17ないし 22のいずれ力、 1項において、前記流体(F)をスチームクラッキング プロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。  23. The method for producing propylene according to any one of claims 17 to 22, wherein the fluid (F) is mixed with a cracked gasoline fraction of a steam cracking process.
[24] 請求項 17から 23のいずれか 1項において、前記流体(F)に含まれる炭素数 4の炭 化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。  [24] The method for producing propylene according to any one of claims 17 to 23, wherein the total concentration of the hydrocarbon having 4 carbon atoms contained in the fluid (F) is less than 5% by weight.
[25] 請求項 17から 24のいずれ力、 1項において、前記流体(F)および流体(H)の流量を 制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以上のォレ フィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積%以上 80体 積%以下に制御することを特徴とするプロピレンの製造方法。  [25] The force of any one of claims 17 to 24, wherein the number of carbon atoms contained in all the raw materials supplied to the reactor is 4 or more by controlling the flow rates of the fluid (F) and the fluid (H). A method for producing propylene, characterized in that the total concentration (substrate concentration) of olefin, methanol, and dimethyl ether is controlled to 20% by volume or more and 80% by volume or less.
[26] 請求項 8から 25に記載のいずれ力、 1項において、前記工程(2)が、前記反応器出 口ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 2以下の炭化水素に富んだ流体と炭素数 3以上の炭化水素に富んだ流体とに分離し 、前記炭素数 3以上の炭化水素に富んだ流体を、蒸留により炭素数 3の炭化水素に 富んだ流体と炭素数 4以上の炭化水素に富んだ流体とに分離する工程を含むことを 特徴とするプロピレンの製造方法。  [26] The force according to any one of claims 8 to 25, wherein the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step and then distills to remove 2 carbon atoms. The following fluids rich in hydrocarbons and fluids rich in hydrocarbons having 3 or more carbon atoms are separated, and the fluids rich in hydrocarbons having 3 or more carbon atoms are enriched in hydrocarbons having 3 or more carbon atoms by distillation. A method for producing propylene, comprising a step of separating a fluid and a fluid rich in hydrocarbons having 4 or more carbon atoms.
[27] 請求項 8から 25に記載のいずれ力、 1項において、前記工程(2)が、前記反応器出 口ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体とに分離し 、前記炭素数 3以下の炭化水素に富んだ流体を、蒸留により炭素数 2以下の炭化水 素に富んだ流体と炭素数 3の炭化水素に富んだ流体とに分離する工程を含むことを 特徴とするプロピレンの製造方法。 [27] The force according to any one of claims 8 to 25, wherein the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, and then the number of carbon atoms by distillation. A hydrocarbon-rich fluid having 3 or less carbon atoms and a hydrocarbon-rich fluid having 4 or more carbon atoms are separated, and the hydrocarbon-rich fluid having 3 or less carbon atoms is separated by distillation into a hydrocarbon having 2 or less carbon atoms. A process for producing propylene, comprising a step of separating a fluid rich in water and a fluid rich in hydrocarbons having 3 carbon atoms.
[28] 請求項 8から 25に記載のいずれ力、 1項において、前記工程(2)が、前記反応器出 口ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素 数 2以下の炭化水素および炭素数 3の炭化水素を含む流体と炭素数 3以上の炭化 水素に富んだ流体とに分離し、前記炭素数 3以上の炭化水素に富んだ流体を、蒸留 により炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体と に分離する工程を含むことを特徴とするプロピレンの製造方法。  [28] The power according to any one of claims 8 to 25, wherein, in the step (2), water is condensed and removed from the reactor outlet gas by a cooling and compression step, and then the number of carbon atoms is reduced by distillation. The fluid containing the following hydrocarbons and hydrocarbons having 3 carbon atoms and the fluid rich in hydrocarbons having 3 or more carbon atoms are separated, and the fluid rich in hydrocarbons having 3 or more carbon atoms is distilled to obtain 3 carbon atoms. A process for producing propylene, comprising a step of separating a fluid rich in hydrocarbons and a fluid rich in hydrocarbons having 4 or more carbon atoms.
[29] 請求項 8から 25に記載のいずれ力、 1項において、前記工程(2)が、前記反応器出 口ガスから、冷却および圧縮工程により水分を凝縮除去した後に、蒸留により炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体とに分離し 、前記炭素数 3以下の炭化水素に富んだ流体を、蒸留により炭素数 2以下の炭化水 素および炭素数 3の炭化水素を含む流体と炭素数 3の炭化水素に富んだ流体とに 分離する工程を含むことを特徴とするプロピレンの製造方法。  [29] The power according to any one of claims 8 to 25, wherein the step (2) condenses and removes moisture from the reactor outlet gas by a cooling and compression step, and then distills to remove 3 carbon atoms. The following hydrocarbon-rich fluid and hydrocarbon-rich fluid having 4 or more carbon atoms are separated, and the hydrocarbon-rich fluid having 3 or less carbon atoms is separated by distillation into hydrocarbons having 2 or less carbon atoms and A method for producing propylene, comprising a step of separating a fluid containing a hydrocarbon having 3 carbon atoms and a fluid rich in a hydrocarbon having 3 carbon atoms.
[30] 請求項 8ないし 29のいずれ力、 1項において、前記炭素数 4以上のォレフィン原料が 、炭素数 4以上のパラフィン類を含有することを特徴とするプロピレンの製造方法。  [30] The process for producing propylene according to any one of claims 8 to 29, wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[31] 請求項 30において、前記パラフィン類がノルマルブタンおよびイソブタンのうち少な くとも 1つを含むことを特徴とするプロピレンの製造方法。  31. The method for producing propylene according to claim 30, wherein the paraffins contain at least one of normal butane and isobutane.
[32] 請求項 8ないし 31のいずれ力、 1項において、前記反応器に供給される原料中にブ タジェンを含有することを特徴とするプロピレンの製造方法。  32. The method for producing propylene according to any one of claims 8 to 31, wherein the raw material supplied to the reactor contains butagen.
[33] 請求項 8ないし 32のいずれ力、 1項において、前記反応器に供給される全原料に含 まれる芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィンの 合計量に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法。  [33] The power of any one of claims 8 to 32, wherein the total amount of aromatic compounds contained in all raw materials supplied to the reactor is olefins having 4 or more carbon atoms contained in all the raw materials. A method for producing propylene, wherein the molar ratio is less than 0.05 with respect to the total amount.
[34] 請求項 8ないし 33のいずれ力、 1項において、前記反応器に供給する炭素数 4以上 のォレフインの量が、該反応器に供給するメタノールのモル数とジメチルエーテルの モル数の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とするプ ロピレンの製造方法。 [34] The force of any one of claims 8 to 33, wherein the amount of olefin having 4 or more carbon atoms fed to the reactor is twice the number of moles of methanol and dimethyl ether fed to the reactor. The molar ratio is 0.2 or more and 10 or less with respect to the total. A method for producing lopyrene.
[35] 請求項 8ないし 34のいずれ力、 1項において、前記反応器に供給する炭素数 4以上 のォレフイン原料力 S、スチームクラッキングプロセスで得られる炭素数 4の炭化水素流 体を含むことを特徴とするプロピレンの製造方法。  [35] The power of any one of claims 8 to 34, comprising the olefin raw material power S having 4 or more carbon atoms fed to the reactor, and a hydrocarbon fluid having 4 carbon atoms obtained by a steam cracking process. A method for producing propylene, which is characterized.
[36] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造する 方法において、以下の工程(1C) , (2C) , (3C)および(4C)を含むプロセスよりなる ことを特徴とするプロピレンの製造方法。 [36] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1C), A process for producing propylene characterized by comprising a process comprising (2C), (3C) and (4C).
工程(1C):炭素数 4以上のォレフィン原料、工程 (4C)からリサイクルされた炭化水 素流体(Q)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応 器に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該 ォレフィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接 触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族化 合物および水を含有するガス(反応器出口ガス)を得る工程  Step (1C): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (Q) recycled from step (4C), and at least one of methanol and dimethyl ether are supplied to the reactor, and the reactor outlet The catalyst is brought into contact with the catalyst under reaction conditions such that the molar flow rate of olefins having 4 or more carbon atoms is 20% or more and less than 90% with respect to the molar flow rate of the olefins at the inlet of the reactor, and propylene and other components are discharged from the reactor outlet Of obtaining gas (reactor outlet gas) containing olefins, paraffins, aromatic compounds and water
工程(2C):前記工程(1C)からの反応器出口ガスを冷却し、ガス流体 (L)、炭素数 4以上の炭化水素に富み、芳香族化合物を含んだ液流体 (M)、および水に富んだ 流体に分離する工程  Step (2C): Reactor outlet gas from step (1C) is cooled, gas fluid (L), liquid fluid (M) rich in hydrocarbons having 4 or more carbon atoms and containing aromatic compounds, and water To separate into a rich fluid
工程(3C):前記工程(2C)におけるガス流体 (L)を炭素数 3以下の炭化水素に富 んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N)とに分離する工程  Step (3C): a step of separating the gas fluid (L) in the step (2C) into a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms.
工程 (4C):前記流体 (N)の少なくとも一部の流体(Q)を反応器にリサイクルするェ 程  Step (4C): Process of recycling at least a part of the fluid (N) (Q) to the reactor.
[37] 炭素数 4以上のォレフィンと、メタノールおよびジメチルエーテルのうち少なくとも 1 つとを含む混合物を、触媒の存在下、反応器中で接触させてプロピレンを製造する 方法において、以下の工程(1C) , (2C) , (3C)および(4C)を含むプロセスよりなる ことを特徴とするプロピレンの製造方法。  [37] In a method for producing propylene by contacting a mixture containing olefin having 4 or more carbon atoms and at least one of methanol and dimethyl ether in a reactor in the presence of a catalyst, the following steps (1C), A process for producing propylene characterized by comprising a process comprising (2C), (3C) and (4C).
工程(1C):炭素数 4以上のォレフィン原料、工程 (4C)からリサイクルされた炭化水 素流体(Q)、並びに、メタノールおよびジメチルエーテルのうち少なくとも 1つを反応 器に供給し、反応器出口の炭素数 4以上のォレフィンのモル流量が反応器入口の該 ォレフィンのモル流量に対して 20%以上 90%未満になるような反応条件で触媒と接 触させ、反応器出口から、プロピレンと、その他のォレフィン、パラフィン類、芳香族化 合物および水を含有するガス(反応器出口ガス)を得る工程 Step (1C): olefin raw material having 4 or more carbon atoms, hydrocarbon fluid (Q) recycled from step (4C), and at least one of methanol and dimethyl ether are supplied to the reactor, and the reactor outlet The molar flow rate of olefins with 4 or more carbon atoms Contact with the catalyst under reaction conditions such that the molar flow rate of olefin is 20% or more and less than 90%. From the reactor outlet, propylene and other olefins, paraffins, aromatic compounds and water are contained. To obtain gas to be discharged (reactor outlet gas)
工程(2C):前記工程(1C)からの反応器出口ガスを冷却し、冷却後のガス流体 (K )を圧縮によりガス流体 (L)、炭素数 4以上の炭化水素に富み、芳香族化合物を含ん だ液流体 (M)、および水に富んだ流体に分離する工程  Step (2C): The reactor outlet gas from the step (1C) is cooled, and the gas fluid (K) after cooling is compressed by gas fluid (L), rich in hydrocarbons having 4 or more carbon atoms, and aromatic compounds. Separation into liquid fluid (M) containing water and fluid rich in water
工程(3C):前記工程(2C)におけるガス流体 (L)を炭素数 3以下の炭化水素に富 んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N)とに分離する工程  Step (3C): a step of separating the gas fluid (L) in the step (2C) into a fluid rich in hydrocarbons having 3 or less carbon atoms and a fluid (N) rich in hydrocarbons having 4 or more carbon atoms.
工程 (4C):前記流体(N)の一部(P)を該プロセスから抜き出し、残りの流体(Q)を 反応器にリサイクルする工程  Step (4C): A step of extracting a part (P) of the fluid (N) from the process and recycling the remaining fluid (Q) to the reactor.
[38] 請求項 36または 37において、前記液流体 (M)を、蒸留により、芳香族化合物濃度 が液流体 (M)中よりも低!/、流体 (R)と炭素数 4の炭化水素濃度が液流体 (M)よりも 低い流体(S)とに分離することを特徴とするプロピレンの製造方法。 38. The liquid fluid (M) according to claim 36 or 37, wherein the concentration of the aromatic compound is lower than that in the liquid fluid (M) by distillation! /, The concentration of the fluid (R) and the hydrocarbon having 4 carbon atoms. Is separated into a fluid (S) lower than the liquid fluid (M).
[39] 請求項 38において、前記流体(R)を、前記流体(K)、 (L)、(M)、(P)、および(Q )から選ばれるいずれ力、 1または 2以上の流体の流通箇所に戻すことを特徴とするプ ロピレンの製造方法。 39. The fluid (R) according to claim 38, wherein the fluid (R) is any force selected from the fluids (K), (L), (M), (P), and (Q), and one or more fluids. A method for producing propylene, which is returned to the distribution location.
[40] 請求項 36ないし 39のいずれ力、 1項において、前記工程(3C)が、前記ガス流体(L )を、蒸留により、炭素数 2以下の炭化水素に富んだ流体と炭素数 3以上の炭化水素 に富んだ流体とに分離し、さらに、炭素数 3以上の炭化水素に富んだ流体を、蒸留に より、炭素数 3の炭化水素に富んだ流体と炭素数 4以上の炭化水素に富んだ流体 (N )とに分離する工程を含むことを特徴とするプロピレンの製造方法。  [40] The force according to any one of claims 36 to 39, wherein the step (3C) comprises distilling the gas fluid (L) into a hydrocarbon-rich fluid having 2 or less carbon atoms and 3 or more carbon atoms by distillation. The hydrocarbon-rich fluid is separated into a hydrocarbon-rich fluid with a carbon number of 3 or more, and the hydrocarbon-rich fluid with a carbon number of 3 or more is distilled into a hydrocarbon-rich fluid with a carbon number of 3 and a hydrocarbon with a carbon number of 4 or more. A process for producing propylene, comprising a step of separating into a rich fluid (N).
[41] 請求項 36ないし 39のいずれ力、 1項において、前記工程(3C)が、前記ガス流体(L )を、蒸留により、炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素 に富んだ流体 (N)とに分離し、さらに、炭素数 3以下の炭化水素に富んだ流体を、蒸 留により、炭素数 2以下の炭化水素に富んだ流体と炭素数 3の炭化水素に富んだ流 体とに分離する工程を含むことを特徴とするプロピレンの製造方法。  [41] The force of any one of claims 36 to 39, wherein the step (3C) comprises distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms and 4 or more carbon atoms. The hydrocarbon-rich fluid (N) is separated into a hydrocarbon-rich fluid having a carbon number of 3 or less, and a hydrocarbon-rich fluid having a carbon number of 2 or less and a fluid having a carbon number of 3 or less by distillation. A method for producing propylene, comprising a step of separating into a hydrocarbon-rich fluid.
[42] 請求項 36ないし 39のいずれ力、 1項において、前記工程(3C)が、前記ガス流体(L )を、蒸留により、炭素数 2以下の炭化水素と炭素数 3の炭化水素を含んだ流体と炭 素数 3以上の炭化水素に富んだ流体とに分離し、さらに、炭素数 3以上の炭化水素 に富んだ流体を、蒸留により、炭素数 3の炭化水素に富んだ流体と炭素数 4以上の 炭化水素に富んだ流体 (N)とに分離する工程を含むことを特徴とするプロピレンの 製造方法。 [42] The force according to any one of claims 36 to 39, wherein the step (3C) includes a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms by distillation of the gas fluid (L). Fluid and charcoal A fluid rich in hydrocarbons having 3 or more carbon atoms is separated into a fluid rich in hydrocarbons having 3 or more carbon atoms, and a fluid rich in hydrocarbons having 3 or more carbon atoms is distilled, and a fluid rich in hydrocarbons having 3 or more carbon atoms and carbonized with 4 or more carbon atoms. A method for producing propylene, comprising a step of separating into a fluid (N) rich in hydrogen.
[43] 請求項 36ないし 39のいずれ力、 1項において、前記工程(3C)が、前記ガス流体(L )を、蒸留により、炭素数 3以下の炭化水素に富んだ流体と炭素数 4以上の炭化水素 に富んだ流体 (N)とに分離し、さらに、炭素数 3以下の炭化水素に富んだ流体を、蒸 留により、炭素数 2以下の炭化水素と炭素数 3の炭化水素を含んだ流体と炭素数 3の 炭化水素に富んだ流体とに分離する工程を含むことを特徴とするプロピレンの製造 方法。  [43] The force according to any one of claims 36 to 39, wherein the step (3C) comprises distilling the gas fluid (L) into a hydrocarbon-rich fluid having 3 or less carbon atoms and 4 or more carbon atoms. The hydrocarbon-rich fluid (N) is separated into a hydrocarbon-rich fluid (N), and a hydrocarbon-rich fluid containing 3 or less carbon atoms contains a hydrocarbon having 2 or less carbon atoms and a hydrocarbon having 3 carbon atoms by distillation. A method for producing propylene, comprising a step of separating the fluid into a fluid rich in hydrocarbons having 3 carbon atoms.
[44] 請求項 36ないし 43のいずれか 1項において、前記反応器が直列に接続された二 つ以上の反応部からなり、前記反応器に供給する炭素数 4以上のォレフィン原料; メタノールおよびジメチルエーテルのうち少なくとも 1つ; 並びに、リサイクルされた炭 化水素含有流体のうち少なくとも一つを、第 1段目の反応部と第 2段目以降の反応部 とに分割して供給することを特徴とするプロピレンの製造方法。  [44] The olefin raw material of 4 or more carbon atoms according to any one of claims 36 to 43, wherein the reactor comprises two or more reaction parts connected in series and is supplied to the reactor; methanol and dimethyl ether And at least one of the recycled hydrocarbon-containing fluid is divided and supplied to the first-stage reaction section and the second-stage and subsequent reaction sections. Propylene production method.
[45] 請求項 36ないし 44のいずれ力、 1項において、前記炭素数 4以上のォレフィン原料 力 炭素数 4以上のパラフィン類を含有することを特徴とするプロピレンの製造方法。  [45] The propylene production method according to any one of claims 36 to 44, wherein the olefin raw material having 4 or more carbon atoms contains paraffins having 4 or more carbon atoms.
[46] 請求項 45にお!/、て、前記パラフィン類がノルマルブタンおよびイソブタンのうち少な くとも 1つを含むことを特徴とするプロピレンの製造方法。  [46] The method for producing propylene according to claim 45, wherein the paraffins contain at least one of normal butane and isobutane.
[47] 請求項 36ないし 46のいずれ力、 1項において、前記反応器に供給される原料中に ブタジエンを含有することを特徴とするプロピレンの製造方法。  [47] The method for producing propylene according to any one of claims 36 to 46, wherein the raw material supplied to the reactor contains butadiene.
[48] 請求項 36ないし 47のいずれ力、 1項において、前記反応器に供給される全原料に 含まれる芳香族化合物の合計量が、該全原料に含まれる炭素数 4以上のォレフィン の合計量に対してモル比で 0. 05未満であることを特徴とするプロピレンの製造方法  [48] The power of any one of claims 36 to 47, wherein the total amount of aromatic compounds contained in all the raw materials fed to the reactor is the sum of olefins having 4 or more carbon atoms contained in all the raw materials. Propylene production method, characterized in that the molar ratio with respect to the amount is less than 0.05
[49] 請求項 36ないし 48のいずれか 1項において、前記流体(M)および前記流体(P) のうち少なくとも 1つをスチームクラッキングプロセスに供給し、クラッカー原料として利 用することを特徴とするプロピレンの製造方法。 [50] 請求項 49において、前記流体(M)および前記流体(P)の少なくとも 1つの少なくと も一部を水素添加触媒と接触させた後、スチームクラッキングプロセスに供給すること を特徴とするプロピレンの製造方法。 [49] The method according to any one of claims 36 to 48, wherein at least one of the fluid (M) and the fluid (P) is supplied to a steam cracking process and used as a cracker raw material. Propylene production method. [50] The propylene according to claim 49, wherein at least a part of at least one of the fluid (M) and the fluid (P) is contacted with a hydrogenation catalyst and then supplied to a steam cracking process. Manufacturing method.
[51] 請求項 36ないし 50のいずれ力、 1項において、前記流体(M)および前記流体(P) のうち少なくとも 1つに含まれる芳香族化合物濃度の合計が 5. 0体積%未満であるこ とを特徴とするプロピレンの製造方法。 [51] The force according to any one of claims 36 to 50, wherein the total concentration of aromatic compounds contained in at least one of the fluid (M) and the fluid (P) is less than 5.0% by volume. And a method for producing propylene.
[52] 請求項 36ないし 51のいずれ力、 1項において、前記流体(M)をスチームクラツキン グプロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。 [52] The propylene production method according to any one of claims 36 to 51, wherein the fluid (M) is mixed with a cracked gasoline fraction of a steam cracking process.
[53] 請求項 36ないし 52のいずれ力、 1項において、前記流体(M)に含まれる炭素数 4の 炭化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。 53. The method for producing propylene according to any one of claims 36 to 52, wherein the total concentration of hydrocarbons having 4 carbon atoms contained in the fluid (M) is less than 5% by weight.
[54] 請求項 36ないし 53のいずれか 1項において、前記流体(M)および前記流体(P) の流量を制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以 上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積% 以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。 [54] In any one of claims 36 to 53, by controlling the flow rates of the fluid (M) and the fluid (P), the number of carbon atoms contained in all the raw materials supplied to the reactor is 4 or less. A method for producing propylene, characterized in that the total concentration (substrate concentration) of the above olefin, methanol and dimethyl ether is controlled to 20 vol% or more and 80 vol% or less.
[55] 請求項 38ないし 54のいずれ力、 1項において、前記流体(R)をスチームクラッキング プロセスに供給し、クラッカー原料として利用することを特徴とするプロピレンの製造 方法。 [55] The method for producing propylene according to any one of claims 38 to 54, wherein the fluid (R) is supplied to a steam cracking process and used as a cracker raw material.
[56] 請求項 55にお!/、て、前記流体 (R)の少なくとも一部を水素添加触媒と接触させた 後、スチームクラッキングプロセスに供給することを特徴とするプロピレンの製造方法  [56] The method for producing propylene according to claim 55, wherein at least a part of the fluid (R) is brought into contact with a hydrogenation catalyst and then supplied to a steam cracking process.
[57] 請求項 38ないし 56のいずれか 1項において、前記流体(R)に含まれる芳香族化 合物濃度の合計が 5. 0体積%未満であることを特徴とするプロピレンの製造方法。 [57] The method for producing propylene according to any one of claims 38 to 56, wherein the total concentration of the aromatic compounds contained in the fluid (R) is less than 5.0% by volume.
[58] 請求項 38ないし 57のいずれ力、 1項において、前記流体(S)をスチームクラッキング プロセスの分解ガソリン留分に混合することを特徴とするプロピレンの製造方法。 58. The method for producing propylene according to any one of claims 38 to 57, wherein the fluid (S) is mixed with a cracked gasoline fraction of a steam cracking process.
[59] 請求項 38ないし 58のいずれ力、 1項において、前記流体(S)に含まれる炭素数 4の 炭化水素の合計濃度が 5重量%未満であることを特徴とするプロピレンの製造方法。 [59] The method for producing propylene according to any one of claims 38 to 58, wherein the total concentration of hydrocarbons having 4 carbon atoms contained in the fluid (S) is less than 5% by weight.
[60] 請求項 38ないし 59のいずれ力、 1項において、前記流体(P)、流体(R)および流体 [60] The force of any one of claims 38 to 59, wherein the fluid (P), fluid (R) and fluid
(S)の流量を制御することにより、前記反応器に供給される全原料に含まれる炭素数 4以上のォレフィンとメタノールとジメチルエーテルの合計濃度(基質濃度)を 20体積 %以上 80体積%以下に制御することを特徴とするプロピレンの製造方法。 By controlling the flow rate of (S), the number of carbons contained in all raw materials supplied to the reactor A method for producing propylene, comprising controlling the total concentration (substrate concentration) of 4 or more olefins, methanol and dimethyl ether to 20 vol% or more and 80 vol% or less.
[61] 請求項 38ないし 60のいずれかにおいて、前記流体(R)を、前記流体(K)、 (L)、 ( N)、 (P)、および(Q)から選ばれるいずれ力、 1または 2以上の流体の箇所に戻すにあ たり、前記流体 (R)の返送箇所およびその流量を制御することにより、前記反応器に 供給される全原料に含まれる炭素数 4以上のォレフィンとメタノールとジメチルエーテ ルの合計濃度 (基質濃度)を 20体積%以上 80体積%以下に制御することを特徴と するプロピレンの製造方法。  [61] The fluid according to any one of claims 38 to 60, wherein the fluid (R) is any force selected from the fluids (K), (L), (N), (P), and (Q), 1 or When returning to the location of two or more fluids, by controlling the return location of the fluid (R) and its flow rate, olefin and methanol having 4 or more carbon atoms contained in all the raw materials supplied to the reactor A method for producing propylene, characterized in that the total concentration (substrate concentration) of dimethyl ether is controlled to 20 vol% or more and 80 vol% or less.
[62] 請求項 36ないし 61のいずれ力、 1項において、前記反応器に供給する炭素数 4以 上のォレフィンの量力 S、該反応器に供給するメタノールのモル数とジメチルエーテル のモル数の 2倍との合計に対して、モル比で 0. 2以上 10以下であることを特徴とする プロピレンの製造方法。  [62] The power of any one of claims 36 to 61, wherein the quantity S of olefins having 4 or more carbon atoms fed to the reactor is 2; the number of moles of methanol fed to the reactor and the number of moles of dimethyl ether The method for producing propylene, characterized in that the molar ratio is 0.2 or more and 10 or less with respect to the total.
[63] 請求項 36ないし 62のいずれ力、 1項において、前記反応器に供給する炭素数 4以 上のォレフィン原料力 S、スチームクラッキングプロセスで得られる炭素数 4の炭化水素 流体を含むことを特徴とするプロピレンの製造方法。  [63] The force according to any one of claims 36 to 62, comprising the olefin raw material power S having 4 or more carbon atoms fed to the reactor, and a hydrocarbon fluid having 4 carbon atoms obtained by a steam cracking process. A method for producing propylene, which is characterized.
PCT/JP2007/068299 2006-09-21 2007-09-20 Process for production of propylene WO2008035743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020097005802A KR101435230B1 (en) 2006-09-21 2007-09-20 Process for production of propylene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006255504 2006-09-21
JP2006-255504 2006-09-21
JP2006255503 2006-09-21
JP2006-255503 2006-09-21

Publications (1)

Publication Number Publication Date
WO2008035743A1 true WO2008035743A1 (en) 2008-03-27

Family

ID=39200567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068299 WO2008035743A1 (en) 2006-09-21 2007-09-20 Process for production of propylene

Country Status (4)

Country Link
KR (1) KR101435230B1 (en)
CN (1) CN102766010B (en)
TW (1) TWI405750B (en)
WO (1) WO2008035743A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074764A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Method for producing propylene
JP2008081417A (en) * 2006-09-26 2008-04-10 Mitsubishi Chemicals Corp Manufacturing method of propylene
WO2010100069A1 (en) * 2009-03-03 2010-09-10 Total Petrochemicals Research Feluy Process to make olefins from organics and paraffins
WO2011013780A1 (en) * 2009-07-30 2011-02-03 三菱化学株式会社 Method for producing propylene and catalyst for producing propylene
WO2012015060A1 (en) * 2010-07-30 2012-02-02 日本ガス合成株式会社 Process for manufaturing propylene
CN108276238A (en) * 2018-02-12 2018-07-13 浙江大学 The method that F- T synthesis light oil is total to preparing low-carbon olefin by catalytically cracking with methanol
CN110041157A (en) * 2019-05-10 2019-07-23 国家能源投资集团有限责任公司 A method of it improving preparing propylene from methanol yield and extends catalyst life

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124526A (en) * 1984-07-14 1986-02-03 Agency Of Ind Science & Technol Preraration of lower olefin
WO2005016856A1 (en) * 2003-08-19 2005-02-24 Total Petrochemicals Research Feluy Production of olefins
WO2007023706A1 (en) * 2005-08-24 2007-03-01 Jgc Corporation Process for production of lower hydrocarbon and apparatus for the production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195424A1 (en) * 2000-10-05 2002-04-10 ATOFINA Research A process for cracking an olefin-rich hydrocarbon feedstock
US6888038B2 (en) * 2002-03-18 2005-05-03 Equistar Chemicals, Lp Enhanced production of light olefins
US7060865B2 (en) * 2002-11-12 2006-06-13 Exxonmobil Chemical Patents Inc. Recovery of C4 olefins from a product stream comprising C4 olefins, dimethyl ether and C5+ hydrocarbons
CN100487080C (en) * 2004-03-08 2009-05-13 中国石油化工股份有限公司 Chemical oil-refining method for preparing low carbon olefin and arene
CN1333052C (en) * 2004-07-14 2007-08-22 中国石油化工股份有限公司 Method and device for preparing low carbon olefine and arene
US7405337B2 (en) * 2004-09-21 2008-07-29 Uop Llc Conversion of oxygenate to propylene with selective hydrogen treatment of heavy olefin recycle stream

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124526A (en) * 1984-07-14 1986-02-03 Agency Of Ind Science & Technol Preraration of lower olefin
WO2005016856A1 (en) * 2003-08-19 2005-02-24 Total Petrochemicals Research Feluy Production of olefins
WO2007023706A1 (en) * 2005-08-24 2007-03-01 Jgc Corporation Process for production of lower hydrocarbon and apparatus for the production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074764A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Method for producing propylene
JP2008081417A (en) * 2006-09-26 2008-04-10 Mitsubishi Chemicals Corp Manufacturing method of propylene
WO2010100069A1 (en) * 2009-03-03 2010-09-10 Total Petrochemicals Research Feluy Process to make olefins from organics and paraffins
WO2011013780A1 (en) * 2009-07-30 2011-02-03 三菱化学株式会社 Method for producing propylene and catalyst for producing propylene
CN102471180A (en) * 2009-07-30 2012-05-23 三菱化学株式会社 Method for producing propylene and catalyst for producing propylene
EA019862B1 (en) * 2009-07-30 2014-06-30 Мицубиси Кемикал Корпорейшн Method for producing propylene and catalyst for producing propylene
JP5700376B2 (en) * 2009-07-30 2015-04-15 三菱化学株式会社 Propylene production method and propylene production catalyst
WO2012015060A1 (en) * 2010-07-30 2012-02-02 日本ガス合成株式会社 Process for manufaturing propylene
JPWO2012015060A1 (en) * 2010-07-30 2013-09-12 日本ガス合成株式会社 Propylene production method
CN108276238A (en) * 2018-02-12 2018-07-13 浙江大学 The method that F- T synthesis light oil is total to preparing low-carbon olefin by catalytically cracking with methanol
CN108276238B (en) * 2018-02-12 2021-02-02 浙江大学 Method for preparing low-carbon olefin by Fischer-Tropsch synthesis light oil and methanol co-catalytic cracking
CN110041157A (en) * 2019-05-10 2019-07-23 国家能源投资集团有限责任公司 A method of it improving preparing propylene from methanol yield and extends catalyst life

Also Published As

Publication number Publication date
CN102766010B (en) 2015-08-19
KR101435230B1 (en) 2014-08-28
TWI405750B (en) 2013-08-21
TW200831453A (en) 2008-08-01
KR20090059123A (en) 2009-06-10
CN102766010A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5050469B2 (en) Propylene production method
RU2375337C2 (en) Method of converting oxygen-containing compounds to propylene with selective hydrofining recirculating stream of heavy olefins
JP5135839B2 (en) Propylene production method
JP5135840B2 (en) Propylene production method
US20030028059A1 (en) Integrated process for producing an alkenyl-substituted aromatic compound
JP5391537B2 (en) Propylene production method
WO2008035743A1 (en) Process for production of propylene
WO2007114195A1 (en) Method for producing propylene
CN100355708C (en) Process for recovering and reusing water in an oxygenate-to-olefin process
JP5023638B2 (en) Propylene production method
JP5521264B2 (en) Propylene production method
JP4826707B2 (en) Propylene production method
JP2009161444A (en) Method for producing propylene
JP4774813B2 (en) Propylene production method
JP6172024B2 (en) Propylene production method
JP5023637B2 (en) Propylene production method
JP5023639B2 (en) Propylene production method
JP4774812B2 (en) Propylene production method
JP2015189720A (en) Method for producing propylene
WO2015084507A1 (en) Removal of bromine index-reactive compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035328.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097005802

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2463/DELNP/2009

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07807651

Country of ref document: EP

Kind code of ref document: A1