JPS61245056A - Plate wave trasducer - Google Patents

Plate wave trasducer

Info

Publication number
JPS61245056A
JPS61245056A JP60086102A JP8610285A JPS61245056A JP S61245056 A JPS61245056 A JP S61245056A JP 60086102 A JP60086102 A JP 60086102A JP 8610285 A JP8610285 A JP 8610285A JP S61245056 A JPS61245056 A JP S61245056A
Authority
JP
Japan
Prior art keywords
coil
inspected
plate wave
detection
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086102A
Other languages
Japanese (ja)
Inventor
Satoru Inoue
悟 井上
Akiro Sanemori
実森 彰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60086102A priority Critical patent/JPS61245056A/en
Publication of JPS61245056A publication Critical patent/JPS61245056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To execute stably a flaw inspection without being influenced by the vibration of a material to be inspected by placing the material to be inspected between a generating coil and a detecting coil opposed to each other. CONSTITUTION:A trasducer 7 is provided with an electromagnet 6 consisting of a core 5 and a coil 4, a generating coil 13 placed in one end face of a gap part of the core 5 and a detecting coil 14 placed in the other end face. Also, the coils 13, 14 are opposed to each by holding an interval L and a material to be inspected 1 is placed between them. In this state, when an exciting power source 8 and a pulser 9 are controlled by a flaw detector 11 and a vertical magnetic field B is applied to the material to be inspected from the electromagnet 6 and also an impulsive AC current is supplied to the coil 13, a plate wave 2 is generated in the material to be inspected 1. In this case, the plate wave 2 is generated by the same form on the surface and the reverse side of the material to be inspected 1, therefore, a plate wave echo from a defect is also generated on the surface and the reverse side of the material to be inspected 1 and the plate wave 2 containing an echo by the defect can be detected by the coil 14 placed in the lower face side of the material to be inspected 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、導電性の薄板やパイプ、棒などの探傷用ト
ランスデユーサとして使用するもので、電磁超音波によ
る板波を利用した板波トランスデユーサに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used as a transducer for flaw detection of conductive thin plates, pipes, rods, etc. Regarding transducers.

〔従来の技術〕[Conventional technology]

電磁超音波による横波発生法による板波トランスデユー
サの従来の代表的な構成を第4図に示している。
FIG. 4 shows a typical conventional configuration of a plate wave transducer using a transverse wave generation method using electromagnetic ultrasonic waves.

第4図において、(7)は板波トランスデユーサ、(1
)は圧延鋼板などの導電性薄板からなる被検材を示す。
In Fig. 4, (7) is a plate wave transducer, (1
) indicates a material to be tested consisting of a conductive thin plate such as a rolled steel plate.

板波トランスデユーサ(7)は、C型コア(5)と励磁
コイル(4)とからなる電磁石(6)と、C型コア(5
)のギャップ部の一方の端面部分に配設された発生・検
出コイル(12)とで構成されている。被検材(1)は
C型コア(5)のギャップ部に配置され、矢印(IL)
のようにその板面方向に移送される。
The plate wave transducer (7) includes an electromagnet (6) consisting of a C-shaped core (5) and an excitation coil (4), and a C-shaped core (5).
) and a generating/detecting coil (12) disposed at one end face of the gap section. The material to be tested (1) is placed in the gap of the C-shaped core (5), and is indicated by the arrow (IL).
It is transferred in the direction of the plate surface like this.

励磁コイル(4)には励磁電源(8)から直流電流が供
給され、これによシミ磁石(6)が励磁され、被検材(
1)の表面に垂直な一方向の磁界が印加される。
DC current is supplied from the excitation power source (8) to the excitation coil (4), which excites the stain magnet (6) and causes the specimen to be inspected (
1) A unidirectional magnetic field perpendicular to the surface is applied.

発生・検出コイル(12)の具体的な4つの構成例を第
5図(a)〜(d)に示している。第5図(IL)は1
つのコイルを発生コイルと検出コイルに併用するもので
、他の3例では発生コイル(13)と検出コイル(14
)とを別々にしている。
Four specific configuration examples of the generation/detection coil (12) are shown in FIGS. 5(a) to 5(d). Figure 5 (IL) is 1
Two coils are used together as the generating coil and the detecting coil. In the other three examples, the generating coil (13) and the detecting coil (14) are used together.
) and are separated.

発生・検出コイル(12)は被検材(1)中に渦電流を
発生するとともに渦電流を検出するだめのコイルである
。第4図および第5図において、(9)は発生・検出コ
イル(12)にパルス性の交流電流を供給するためのパ
ルサ、(10)は発生・検出コイル(12)の検出信号
を増幅するための増幅器、(11)はパルサ(9)の送
信タイミングと励磁電源(8)のo N / OIF 
Fを制御するとともに、増幅器(10)の出力信号から
被検材(1)内の欠陥の有無、位置、大きさなどを判定
する探傷器である。
The generation/detection coil (12) is a coil that generates an eddy current in the material to be inspected (1) and detects the eddy current. In Figures 4 and 5, (9) is a pulsar for supplying pulsed alternating current to the generation/detection coil (12), and (10) is amplification of the detection signal of the generation/detection coil (12). (11) is the transmission timing of the pulser (9) and the ON/OIF of the excitation power supply (8).
This is a flaw detector that controls F and determines the presence, location, size, etc. of defects in the material to be inspected (1) from the output signal of the amplifier (10).

この従来のトランスデユーサ(7)による板波の発生と
欠陥の検出原理を第6図に示している。第6図における
発生・検出コイル(12)は!5図(Jl)の形式のも
のである。
FIG. 6 shows the principle of plate wave generation and defect detection using this conventional transducer (7). What is the generation/detection coil (12) in Figure 6? It is of the format shown in Figure 5 (Jl).

探傷器(11)によシ励磁電源(8)とパルサ(9)と
を制御し、電磁石(6)から被検材(1)に垂直な磁界
Bを印加するとともに、発生・検出コイル(12)に第
6図中に示すようなパルス性交流電流1を供給する。
The flaw detector (11) controls the excitation power source (8) and the pulser (9), applies a magnetic field B perpendicular to the test material (1) from the electromagnet (6), and also ) is supplied with a pulsed alternating current 1 as shown in FIG.

すると、被検材(1)の光層部では発生・検出コイル(
12)のピッチDに等しい間隔で渦電流J、。
Then, the generation/detection coil (
12) Eddy currents J, at intervals equal to the pitch D.

J、、 J、、 J、が誘導される。この渦電流:r、
、:r、。
J,, J,, J, are induced. This eddy current: r,
, :r,.

、T3.4T、と直流磁界Bとの相互作用(フレミング
の左手の法則)によってローレンツ力?、、  ?、。
, T3.4T, and the interaction with DC magnetic field B (Fleming's left-hand rule) causes Lorentz force? ,, ? ,.

?、、  IF4が生じ、この力によって被検材(1)
が図中の破線で示すモードの伸縮運動をおこし、矢印T
Lp  TRで示す両方向へ伝搬していく。これが板波
(2)である。
? ,, IF4 is generated, and this force causes the specimen material (1) to
causes an expansion and contraction movement in the mode shown by the broken line in the figure, and the arrow T
It propagates in both directions indicated by Lp TR. This is the plate wave (2).

図示した板波(2)H1被検材(1)の表裏で反対方向
に振動(変位)しておシ、これをSモードと呼んでいる
。被検材(1)の厚みおよびパルサ(9)の出力周波数
によっては、被検材(1)の表裏が同一方向に振動(変
位)するAモードと呼ぶ板波が発生する。
The illustrated plate wave (2) vibrates (displaces) in opposite directions on the front and back sides of the H1 test material (1), and this is called S mode. Depending on the thickness of the test material (1) and the output frequency of the pulser (9), a plate wave called A mode in which the front and back sides of the test material (1) vibrate (displace) in the same direction is generated.

検出動作は上記とは逆で、被検材(1)に直流磁界Bを
与えた状態で、発生・検出コイル(12)の直下に板波
(2)が伝搬してきて被検材(1)が振動すると、フレ
ミングの右手の法則に従う相互作用により、板波(2)
の振動波長りに等しいピッチで渦電流が発生し、発生・
検出コイル(12) K”誘起される。この誘起信号は
増幅器(lO)で増幅されて探傷器(11)に入力され
る。探傷器(11)では、パルサ(9)の送信タイミン
グから受信信号(上記誘起信号)の受信時間、振幅によ
って欠陥の有無、大きさ、位置などを判定する。
The detection operation is the opposite of the above, with the DC magnetic field B applied to the material to be inspected (1), the plate wave (2) propagates directly below the generation/detection coil (12), and the material to be inspected (1). When oscillates, a plate wave (2) is generated due to the interaction according to Fleming's right-hand rule.
Eddy currents are generated at a pitch equal to the vibration wavelength of
K'' is induced in the detection coil (12). This induced signal is amplified by the amplifier (lO) and input to the flaw detector (11). In the flaw detector (11), the reception signal is detected from the transmission timing of the pulser (9). The presence, size, location, etc. of a defect is determined based on the reception time and amplitude of (the above-mentioned induced signal).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した電磁超音波式の板波トランスデユーサは、電磁
誘導作用を利用しているため非接触で板波(超音波)を
発生・検出できるという特徴がある。しかし、板波の発
生および検出能(効率)が低い(圧電型トランスデユー
サに比して40〜50clBも低い)という欠点がある
The electromagnetic ultrasonic plate wave transducer described above utilizes electromagnetic induction and is therefore characterized in that it can generate and detect plate waves (ultrasonic waves) without contact. However, it has the drawback of low plate wave generation and detection ability (efficiency) (40 to 50 clB lower than piezoelectric transducers).

この欠点を少しでも補うだめに、パルサ(9)の出力電
圧をlO〜20 KV と極めて高くシ、発生・検出コ
イル(12)に大電流を流すことによって渦電流の訪導
量を増大させ、超音波の発生量を高めている。
In order to compensate for this drawback even a little, the output voltage of the pulser (9) is set to an extremely high level of 10 to 20 KV, and a large current is passed through the generation/detection coil (12) to increase the amount of eddy current introduced. The amount of ultrasonic waves generated is increased.

ところが、第5図(a)のように1つのコイルを発生コ
イルと検出コイルとに併用する構成の場合、パルサ(9
)の高電圧が直接的に増幅器(10)に入力される。増
幅器(10)の入力の耐電圧特性は限界があシ、これを
越えると増幅器(10)の出力電位が電源電圧まで上昇
し、短時間(超音波の反射波を検出する時間、例えば1
0〜100μ式後)で正常な電位に回復しなくなる。そ
うすると、その飽和した時間帯は正常な探傷動作を行な
えない。
However, in the case of a configuration in which one coil is used both as a generation coil and a detection coil as shown in FIG. 5(a), the pulsar (9
) is directly input to the amplifier (10). There is a limit to the withstand voltage characteristics of the input of the amplifier (10), and if this limit is exceeded, the output potential of the amplifier (10) will rise to the power supply voltage for a short period of time (the time it takes to detect the reflected ultrasound wave, for example 1
After 0 to 100 μm), the potential does not recover to normal. In this case, normal flaw detection cannot be performed during the saturated time period.

この時間帯は不感帯と呼ばれており、これは小さい程よ
い。
This time period is called a dead zone, and the smaller it is, the better.

第5図(b)のように発生コイル(13)と検出コイル
(14)とを重ね合わせて設置した構成の場合、発生コ
イル(13)から生じる磁束が検出コイル(14)に鎖
交するため、両コイルの直接的な相互誘導により検出コ
イル(14)に高電圧が誘導され、やはシ増幅器(10
)に過大電圧が入力される。そのため上記の場合とまっ
たく同様に、大きな不感帯を生じる。
In the case of a configuration in which the generating coil (13) and the detecting coil (14) are installed overlapping each other as shown in Fig. 5(b), the magnetic flux generated from the generating coil (13) interlinks with the detecting coil (14). , a high voltage is induced in the detection coil (14) by direct mutual induction between both coils, which in turn induces a high voltage in the detection coil (14).
) is input with excessive voltage. This results in a large dead zone, just as in the case above.

第5図(C)のように発生コイル(13)と検出コイル
(14)とを横に離して並設した場合、両コイル間の直
接の相互誘導はほぼなくなるが、検出コイル(14)の
前方に大きな不感領域を生じてしまう。
When the generating coil (13) and the detecting coil (14) are placed side by side apart from each other as shown in Fig. 5(C), direct mutual induction between the two coils is almost eliminated, but the This creates a large blind area in front of you.

第5図(d)のように発生コイル(13)と検出コイル
(14)とを縦に離して並設した場合は、板波の伝搬方
向に両コイルが大きく離れるため、不感領域がやはり大
きくなる。
When the generating coil (13) and the detecting coil (14) are arranged side by side and separated vertically as shown in Fig. 5(d), the dead area is also large because both coils are far apart in the propagation direction of the plate wave. Become.

また従来のトランスデユーサの第2の欠点として、第7
図に示すように、被検材(1)と発生・検出コイル(1
2)との間の距離(リフトオフ)Lの変動によって板波
エコーの振幅が大きく変動することがある。例えば、4
00KHzのSoモードの板波の場合6dB/mもの割
合で振幅が変化する。
Also, the second drawback of conventional transducers is that
As shown in the figure, the test material (1) and the generation/detection coil (1)
2) The amplitude of the plate wave echo may vary greatly due to variations in the distance (lift-off) L between the two. For example, 4
In the case of a 00 KHz So mode plate wave, the amplitude changes at a rate of 6 dB/m.

このような変動は、欠陥の検出性能および振幅による欠
陥の大きさおよび位置の評価能を低下させる原因になる
Such fluctuations cause deterioration in defect detection performance and ability to evaluate defect size and position based on amplitude.

この欠点を補うためには、被検材(1)の振動すなわち
リフトオフの変化を少なくしなければならない。例えば
、被検材(1)にローラでテンションをかけたシ、ロー
ラで振動を抑制するなどの対策が必要になる。しかし防
振対策にはコストがかかるし、高速の圧延ラインなどで
は充分な防振は非常に困難でもある。
In order to compensate for this drawback, it is necessary to reduce the vibration of the test material (1), that is, the change in lift-off. For example, it is necessary to take measures such as applying tension to the material to be inspected (1) with rollers or suppressing vibrations with rollers. However, anti-vibration measures are costly, and it is extremely difficult to provide sufficient anti-vibration in high-speed rolling lines.

この発明は上述した問題点に鑑みなされたもので、その
目的は、不感帯および不感領域が小さく、検出信号の増
幅系に過大電圧が入力されることがなく、リフトオフの
変化が板波エコーの振幅に影響しないようにした板波ト
ランスデユーサを提供することにある。
This invention was made in view of the above-mentioned problems.The purpose of this invention is to have a small dead zone and dead area, to prevent excessive voltage from being input to the detection signal amplification system, and to prevent changes in lift-off from increasing the amplitude of the plate wave echo. An object of the present invention is to provide a plate wave transducer that does not affect

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る板波トランスデユーサは、別々の発生コ
イルと検出コイルとを被検材を挾んで相対向するように
配置し、両コイルで挾まれた部分の被検材に対してその
表面に水平または垂直の磁界を印加するように構成した
ものである。
In the plate wave transducer according to the present invention, a separate generation coil and a detection coil are arranged so as to face each other while sandwiching the specimen material, and the surface of the specimen material is It is configured to apply a horizontal or vertical magnetic field to the

〔作用〕[Effect]

この発明においては、発生コイルと検出コイルとの間に
配置された被検材が電磁シールドの役目をはたし、発生
コイルに高電圧を印加しても検出コイルに過大な電圧は
誘起されない。そのため時間的な不感帯は短かくなシ、
また平面的には不感領域のほとんどないコイルの配置に
なる。しかも、被検材が振動しても、被検材上面と発生
コイルとの距離と、被検材下面と検出コイルとの距離と
の和が一定になるので、超音波エコーの検出性能ひいて
は探傷性能への影響がない。
In this invention, the test material placed between the generating coil and the detecting coil serves as an electromagnetic shield, and even if a high voltage is applied to the generating coil, no excessive voltage is induced in the detecting coil. Therefore, the temporal dead zone should be short.
In addition, the coils are arranged in a plane with almost no dead area. Moreover, even if the specimen material vibrates, the sum of the distance between the upper surface of the specimen material and the generating coil and the distance between the lower surface of the specimen material and the detection coil remains constant, which improves ultrasonic echo detection performance and flaw detection. No impact on performance.

〔実施例〕〔Example〕

第1図はこの発明の第1実施例を示しておシ、第4図の
従来のものと同一または対応する部分には同一符号を付
けている。
FIG. 1 shows a first embodiment of the present invention, and parts that are the same as or correspond to those of the conventional device shown in FIG. 4 are given the same reference numerals.

この板波トランスデユーサ(7)は、C型コア(5)お
よび励磁コイル(4)からなる電磁石(6)と、C型コ
ア(5)のギャップ部の一端面に配置された発生コイル
(13)と、ギャップ部の他端面に配置された検出コイ
ル(14)とを備える。発生コイル(13)と検出コイ
ル(14)とは間隔りを保って対向しておシ、この両コ
イル間に被検材(1)が配置され、矢印(a)方向に移
送される。
This plate wave transducer (7) includes an electromagnet (6) consisting of a C-shaped core (5) and an excitation coil (4), and a generating coil ( 13) and a detection coil (14) disposed on the other end surface of the gap portion. The generating coil (13) and the detecting coil (14) face each other with a distance maintained between them, and the material to be inspected (1) is placed between the coils and transported in the direction of arrow (a).

励磁電源(8)、パルサ(9)、増幅器(lO)、探傷
器(11)は従来のものと同じである。探傷器(]1)
によって励磁電源(8)およびバルサ(9)を制御し、
電磁石(6)から被検材(1)に垂直な磁界Bを印加す
るとともに、発生コイル(13)にパルス性の交流電流
を供給する。すると被検材(1)に板波(2)が発生す
る。図示した板波(2)は前述し九SモードとAモード
のうちの8モードである。
The excitation power source (8), pulser (9), amplifier (IO), and flaw detector (11) are the same as those of the conventional one. Flaw detector (]1)
controls the excitation power source (8) and the balsa (9),
A perpendicular magnetic field B is applied from the electromagnet (6) to the specimen (1), and a pulsed alternating current is supplied to the generating coil (13). Then, a plate wave (2) is generated in the test material (1). The illustrated plate waves (2) are eight modes out of the nine S modes and A modes described above.

被検材(1)の表裏に同じ形態で板波(2)が発生する
ので、欠陥からの板波エコーも被検材(1)の表裏に生
じ、被検材(1)の下面側に配置した検出コイル(14
)にて欠陥によるエコーを含んだ板波(2)を検出でき
る。
Since plate waves (2) are generated in the same manner on the front and back sides of the test material (1), plate wave echoes from defects are also generated on the front and back sides of the test material (1), and on the bottom side of the test material (1). The arranged detection coil (14
), plate waves (2) containing echoes due to defects can be detected.

ここで被検材(1)が上下に振動すると、第2図に示す
ように、発生コイル(13)と被検材(1)上面との距
離Ldと、検出コイル(14)と被検材(1)下面との
距離Lrとは相補的に増減するので、L(lとLrとの
和は常に一定である。
When the material to be tested (1) vibrates up and down, the distance Ld between the generating coil (13) and the top surface of the material to be tested (1), and the distance Ld between the generating coil (13) and the top surface of the material to be tested, as shown in FIG. (1) Since the distance Lr from the lower surface increases or decreases in a complementary manner, the sum of L(l and Lr is always constant).

第2図(b)に示すように、L(lが大きくなると板波
の発生性能は低下し、Lrが小さくなると板波の検出性
能が向上する。最終的に検出される探傷エコーの振幅(
減衰量)はこの両特性の合成であり、第2図(C)に示
すように、被検材(1)の振動に影響されず一定になる
。その結果、探傷器(11)において、リフトオフの変
化に影響されない探傷エコーが得られるので、精度よく
欠陥の評価(欠陥の位置、大きさなど)が可能になる。
As shown in Fig. 2(b), as L(l increases, the plate wave generation performance decreases, and as Lr decreases, the plate wave detection performance improves.The amplitude of the finally detected flaw detection echo (
The amount of attenuation) is a combination of these two characteristics, and as shown in FIG. 2(C), it remains constant without being affected by the vibration of the test material (1). As a result, the flaw detector (11) can obtain flaw detection echoes that are unaffected by changes in lift-off, making it possible to accurately evaluate defects (defect position, size, etc.).

しかも、被検材(1)は発生コイル(13)と検出コイ
ル(14)の電磁シールド板の役目をはたすので、発生
コイル(13)に高電圧を印加しても、検出コイル(1
4)への誘導起電力は非常に小さい。
Moreover, the test material (1) serves as an electromagnetic shield plate for the generating coil (13) and the detecting coil (14), so even if a high voltage is applied to the generating coil (13), the detecting coil (1)
The induced electromotive force to 4) is very small.

そのため増幅器(10)に過電圧が入力されることによ
る問題をなくせる。
Therefore, problems caused by overvoltage being input to the amplifier (10) can be eliminated.

また発生コイル(13)と検出コイル(14)とが相対
向しているので、これの周辺の不感領域特性は第5図(
JL) (b)と同じで、非常に小さい範囲となる。
Also, since the generating coil (13) and the detecting coil (14) are facing each other, the characteristics of the dead area around them are shown in Figure 5 (
JL) Same as (b), the range is very small.

第3図はこの発明の他の構成例を示している。FIG. 3 shows another example of the structure of the present invention.

この例では電磁石を(6a)と(6b)の2つに分割構
成している。両電磁石(6a) (sb)は同じ構成で
、コ字型コア(5a) (5b)と励磁コイル(4a)
(4b)とからなシ、両コア(sa) (sb)の両端
面を一定間隔をおいて対向配置している。この対向部分
の間に被検材(1)を配置する。
In this example, the electromagnet is divided into two parts (6a) and (6b). Both electromagnets (6a) (sb) have the same configuration, with U-shaped cores (5a) (5b) and excitation coils (4a).
(4b) and the cores (sa) and (sb) are arranged opposite to each other with both end surfaces being spaced apart from each other. The material to be tested (1) is placed between these opposing parts.

両コア(5a) (5b)の対向面が異極になるように
励磁コイル(4a) (41))に直流電流を供給する
と、被検材(1)に垂直な磁界Bが発生する。この場合
、励磁コイル(4jL) (4b)の対向面部分に発生
コイル(13)と検出コイル(14)を配設し、両コイ
ルで被検材(1)を挾む。これは第1図と同じ横波発生
法によるトランスデユーサとなる。
When direct current is supplied to the excitation coil (4a) (41) so that the opposing surfaces of both cores (5a) (5b) have different polarities, a magnetic field B perpendicular to the test material (1) is generated. In this case, a generation coil (13) and a detection coil (14) are arranged on opposing surfaces of the excitation coil (4jL) (4b), and the specimen (1) is sandwiched between both coils. This is a transducer using the same transverse wave generation method as in FIG.

また、両コア(sa) (sb)の対向面が同極になる
ように励磁コイル(4k) (4m))に直流電流を供
給すると、被検材(1)の表面に水平な磁界BHが発生
する。この場合、両コア(sa) (sb)の2つの対
向部の中央部分において、被検材(1)を挾むように発
生コイル(13a)と検出コイル(X4a)とを配設す
る。これは縦波発生法によるトランスデユーサとなる。
Furthermore, when direct current is supplied to the excitation coil (4k) (4m) so that the opposing surfaces of both cores (sa) and (sb) have the same polarity, a horizontal magnetic field BH is generated on the surface of the test material (1). Occur. In this case, a generating coil (13a) and a detecting coil (X4a) are arranged to sandwich the test material (1) in the center of the two opposing parts of both cores (sa) and (sb). This is a transducer using the longitudinal wave generation method.

なお、発生コイルに印加する交流電流の周波数や、発生
コイル、検出コイルのコイルピッチを変えることによシ
、表面波の発生、検出も行なえる。
Incidentally, surface waves can also be generated and detected by changing the frequency of the alternating current applied to the generation coil and the coil pitch of the generation coil and detection coil.

被検材の板厚が表面波の波長よシ小さければ、被検材で
の表面波の発生面と反対側の面も同時に振動するので、
本発明の構成で表面波の検出も可能となる。よって表面
波トランスデユーサとしても利用できる。
If the thickness of the material being tested is smaller than the wavelength of the surface waves, the surface of the material being tested opposite to the surface where the surface waves are generated will also vibrate at the same time.
With the configuration of the present invention, it is also possible to detect surface waves. Therefore, it can also be used as a surface wave transducer.

また、電磁石(6)は永久磁石に置き換えてもよいO 〔発明の効果〕 以上詳細に説明したように、この発明に係る板波トラン
スデユーサによれば、被検材が相対向する発生コイルと
検出コイルとの間に挾まれる形になるので、被検材の振
動に影響されずに安定に探傷でき、探傷性能や精度、信
頼性が向上する。また被検材が両コイル間の電磁シール
ドの役目をはたすので、検出コイル側に有害な高電圧が
誘起されなくなシ、不感帯が短かくなるとともに、増幅
器が簡単なものでよいなどの効果を奏する。
In addition, the electromagnet (6) may be replaced with a permanent magnet. [Effects of the Invention] As described in detail above, according to the plate wave transducer of the present invention, the generating coils in which the test materials face each other Since it is sandwiched between the test material and the detection coil, stable flaw detection can be performed without being affected by the vibration of the test material, improving flaw detection performance, accuracy, and reliability. In addition, since the material to be tested acts as an electromagnetic shield between the two coils, harmful high voltages are not induced in the detection coil, the dead zone is shortened, and a simple amplifier is required. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例に係る板波トランスデユ
ーサの構成図、第2図は同上第1実施例の作用説明図、
第3図はこの発明の他の2つの実施例を含んだ板波トラ
ンスデユーサの構成図、第4図は従来の板波トランスデ
ユーサの構成図、第5図は従来のものにおける発生・検
出コイルの4種類の構成を示す図、第6図は従来のもの
の作用説明図、第7図は従来のものの問題点を示す説明
図である。 図において、(1)は被検材、(2)は板波、(6)は
電磁石、(12)は発生・検出コイル、(13)は発生
コイル、(14)は検出コイルである。 なお、各図中の同一符号は同一または相当部分を示す。 代理人  弁理士  大 岩 増 雄 (ほか2名) 6シー〇 第2図 孜出コイルθす7トオ7・Lr0 第3図 b 第5図 第6図 第7図 1J7トオ7・L 手続補正書 (自発) 昭和  年  月  日 曝
FIG. 1 is a configuration diagram of a plate wave transducer according to a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the first embodiment.
FIG. 3 is a block diagram of a plate wave transducer including two other embodiments of the present invention, FIG. 4 is a block diagram of a conventional plate wave transducer, and FIG. 5 is a block diagram of a conventional plate wave transducer. FIG. 6 is an explanatory diagram of the operation of the conventional one, and FIG. 7 is an explanatory diagram showing the problems of the conventional one. In the figure, (1) is the material to be tested, (2) is the plate wave, (6) is the electromagnet, (12) is the generation/detection coil, (13) is the generation coil, and (14) is the detection coil. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa (and 2 others) 6 Sea (Spontaneous) Showa year, month, sun exposure

Claims (1)

【特許請求の範囲】[Claims] (1)被検材を挾んで相対向するようにその表裏に配置
される発生コイルおよび検出コイルと、これら発生コイ
ルと検出コイルとで挾まれた部分の被検材に対しその表
面に水平または垂直の磁界を印加する磁界発生手段とを
備えた板波トランスデューサ。
(1) A generating coil and a detecting coil are arranged on the front and back sides of the test material so as to sandwich and face each other, and the surface of the test material is horizontally or A plate wave transducer comprising a magnetic field generating means for applying a perpendicular magnetic field.
JP60086102A 1985-04-22 1985-04-22 Plate wave trasducer Pending JPS61245056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086102A JPS61245056A (en) 1985-04-22 1985-04-22 Plate wave trasducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086102A JPS61245056A (en) 1985-04-22 1985-04-22 Plate wave trasducer

Publications (1)

Publication Number Publication Date
JPS61245056A true JPS61245056A (en) 1986-10-31

Family

ID=13877341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086102A Pending JPS61245056A (en) 1985-04-22 1985-04-22 Plate wave trasducer

Country Status (1)

Country Link
JP (1) JPS61245056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230679A (en) * 2012-04-23 2013-11-14 Manroland Web Systems Gmbh Printer control system
CN109142545A (en) * 2018-10-09 2019-01-04 湖北工业大学 A kind of pure SH1Wave excitation and receiving transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286388A (en) * 1976-01-13 1977-07-18 Nippon Steel Corp Method of detecting flaw by supersonic waves
JPS5631637A (en) * 1979-08-24 1981-03-31 Nippon Steel Corp Instrument unit of electromagnetic ultrasonic wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286388A (en) * 1976-01-13 1977-07-18 Nippon Steel Corp Method of detecting flaw by supersonic waves
JPS5631637A (en) * 1979-08-24 1981-03-31 Nippon Steel Corp Instrument unit of electromagnetic ultrasonic wave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230679A (en) * 2012-04-23 2013-11-14 Manroland Web Systems Gmbh Printer control system
CN109142545A (en) * 2018-10-09 2019-01-04 湖北工业大学 A kind of pure SH1Wave excitation and receiving transducer

Similar Documents

Publication Publication Date Title
Murayama Driving mechanism on magnetostrictive type electromagnetic acoustic transducer for symmetrical vertical-mode Lamb wave and for shear horizontal-mode plate wave
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
JP2015206782A (en) Residual stress evaluation method and residual stress evaluation device
CN1022202C (en) Automatic defect detection technology using electromagnetic ultrasonic
JPS623900B2 (en)
Dobbs et al. Generation of ultrasonic waves without using a transducer
JPS61245056A (en) Plate wave trasducer
US7395715B2 (en) Electromagnetic ultrasound probe
CN214251332U (en) Rail stress measuring device
Murayama Non-Contact Stress Measurement during Tensile Testing Using an Emat for SH0-Plate Wave and Lamb Wave.
CN112763112A (en) Rail stress measuring device and method
Ohtsuka et al. P2E-6 New design of electromagnetic acoustic transducer for precise determination of defect
JP2001013118A (en) Electromagnetic ultrasonic probe
JPS60105960A (en) Electromagnetical ultrasonic transducer
Sun Application of guided acoustic waves to delamination detection
CA1189947A (en) Non-destructive, non-contact ultrasonic material testing method and apparatus
JPS6261884B2 (en)
CN110824390B (en) Ferromagnetic material local stress distribution nondestructive testing device based on MDL
JPS59173753A (en) Plate wave transmitter and receiver
RU2231055C1 (en) Device for ultrasonic monitoring of strength characteristics of material of moving rolled sheets
JPH07286916A (en) Method for measuring residual stress
Cap et al. EMAT Evaluation of Thin Conductive Sheets
SU1247742A1 (en) Method of non-destructive testing of ferromagnetic materials
JPH01248052A (en) Ultrasonic flaw detection method and apparatus therefor
JPH0145577B2 (en)