JPS61244997A - Hydrogen gas storage container - Google Patents
Hydrogen gas storage containerInfo
- Publication number
- JPS61244997A JPS61244997A JP60086570A JP8657085A JPS61244997A JP S61244997 A JPS61244997 A JP S61244997A JP 60086570 A JP60086570 A JP 60086570A JP 8657085 A JP8657085 A JP 8657085A JP S61244997 A JPS61244997 A JP S61244997A
- Authority
- JP
- Japan
- Prior art keywords
- container
- hydrogen gas
- cylindrical
- containers
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は水素ガスを各種の熱源として利用する場合に必
要とされる水素ガスの貯蔵容器(タンク)の改良に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in hydrogen gas storage containers (tanks) that are required when hydrogen gas is used as various heat sources.
熱源としての水素ガスを貯蔵しておくための容器として
は、水素ガスを水素化合物合金に吸着させて貯蔵する方
法が、水素ガスを低圧力下で大量に貯蔵できるという利
点を有するために、既に各種の分野において試作研究が
なされている。As a container for storing hydrogen gas as a heat source, the method of storing hydrogen gas by adsorbing it on a hydride alloy has already been used because it has the advantage of being able to store hydrogen gas in large quantities under low pressure. Prototype research is being conducted in various fields.
この水素ガスを水素化合物合金に吸着させて貯蔵する方
法においては、水素化合、物合金を詰込んだ容器内に外
部から水素ガスを充填補充し、水素1ヒ合物合金が充填
された水素ガスを吸着するに際して発生する熱を、外部
から冷却することにより水素ガスの吸着作用を促進させ
る。また水素ガスを使用するために水素化合物合金の容
器内から水素ガスを取出す際には、水素化合物合金が水
素ガスを排出するに際して周囲から熱を吸着するので、
そのために生ずる吸熱冷却状態を加熱することによって
水素ガスの排出作用を促進させる。In this method of storing hydrogen gas by adsorbing it on a hydrogen compound alloy, hydrogen gas is refilled from the outside into a container filled with a hydrogen compound alloy, and the hydrogen gas filled with a hydrogen compound alloy is filled with hydrogen gas. By cooling the heat generated when adsorbing hydrogen gas from the outside, the adsorption effect of hydrogen gas is promoted. Furthermore, when hydrogen gas is extracted from a hydride alloy container for use, the hydride alloy adsorbs heat from the surroundings as it discharges the hydrogen gas.
By heating the resulting endothermic cooling state, the evacuation action of hydrogen gas is promoted.
このように水素ガスの所定量を低圧力下の容器内に貯蔵
し、貯蔵した水素ガスを使用するために容器内から取出
すことは、理論的には上記のような手段によって得るこ
とができる。ところで例えば実際問題として水素ガスを
ある種の装置の燃料として使用する立場に立って、水素
ガスの貯蔵容器というものを考えた場合、当然のことな
がらこの種の貯蔵容器というものは、水素ガスの容器内
への充填補充、または使用に際しての容器外への排出と
いう作用が支障なく円滑に行えるようなものでなければ
ならない。Storing a predetermined amount of hydrogen gas in a container under low pressure and taking out the stored hydrogen gas from the container for use can theoretically be achieved by the above-described means. By the way, for example, if we consider a storage container for hydrogen gas from the perspective of actually using hydrogen gas as fuel for some kind of equipment, it goes without saying that this type of storage container is not suitable for storing hydrogen gas. It must be possible to refill the container and drain it out of the container during use without any problems.
このような立場で、前記のような水素化合物合金による
水素ガス貯蔵容器を考察した場合、この種の水素ガス貯
蔵容器というのは、外部から容器内に水素ガスを充填す
る際に、いったん水素ガスを容器内の水素化合物合金に
吸着させるという過程を必要とし、また容器内から水素
ガスを排出させるためには水素化合物合金から水素ガス
を放出させるという過程を得るために、水素ガスの容器
内への充填または容器外への排出に比較的多くの時間的
経過を必要とするという問題点がある。それ故従来にお
いて、この種の水素ガス貯蔵容器というのは、水素ガス
の充填、排出のための速度が遅いという欠点から実用性
が大幅に劣り、実用化のための開発に行詰りを生じてい
たのが現状である。From this standpoint, when considering hydrogen gas storage containers made of hydride alloys as described above, this type of hydrogen gas storage container does not allow hydrogen gas to be stored once when filling the container with hydrogen gas from the outside. In order to obtain the process of adsorbing hydrogen gas to the hydride alloy in the container, and to release hydrogen gas from the hydride alloy in order to discharge hydrogen gas from the container, it is necessary to adsorb hydrogen gas into the container. There is a problem in that it takes a relatively long time to fill or discharge the container. Therefore, in the past, this type of hydrogen gas storage container was significantly less practical due to the slow speed of filling and discharging hydrogen gas, and development for practical use stalled. is the current situation.
ところで前述のようにこの種の水素化合物合金を用いた
水素ガス貯蔵容器というのは、充填に際して水素ガスを
水素化合物合金に吸着させるために冷却作用を必要とし
、排出のために水素化合物合金から水素ガスを放出させ
るために加熱作用を必要とする。そのためこの種の貯蔵
容器における水素ガスの充填、排出量というのは、容器
内に詰込んだ水素化合物合金の冷却、加熱効率に比例し
てくることとなり、水素ガスの充填貯蔵速度または排出
速度を早めるためには、水素化合物合金の冷却、加熱の
ための熱交換効率をいかにして高めるかということが肝
要となる。By the way, as mentioned above, hydrogen gas storage containers using this type of hydride alloy require a cooling action to adsorb hydrogen gas to the hydride alloy during filling, and hydrogen gas is removed from the hydride alloy for discharge. Requires heating action to release gas. Therefore, the amount of filling and discharging hydrogen gas in this type of storage container is proportional to the cooling and heating efficiency of the hydrogen compound alloy packed in the container, and the filling and storage rate or discharge rate of hydrogen gas is In order to speed up the process, it is important to find a way to increase the heat exchange efficiency for cooling and heating the hydride alloy.
本発明者はこのような観点から、従来において試作され
てきたこの種の水素ガス貯蔵容器の問題点を検討した結
果、従来の貯蔵容器は水素化合物合金を詰込むための容
器がステンレスもしくは銅からなる円筒形の容器を用い
ていたために、この容器の外周に対して作用される冷却
、加熱のための熱交換効率に限界があり、そのため水素
ガス貯蔵容器としての性能向上が充分に発揮できないと
いう問題点を有していることが判明した。From this perspective, the present inventor investigated the problems of this type of hydrogen gas storage container that has been prototyped in the past, and found that in conventional storage containers, the container for filling the hydride alloy is made of stainless steel or copper. Because a cylindrical container was used, there was a limit to the heat exchange efficiency for cooling and heating that was applied to the outer periphery of the container, and as a result, the performance improvement as a hydrogen gas storage container could not be fully demonstrated. It turned out that there were some problems.
本発明は上記のような従来の水素ガス貯蔵容器の問題点
を解決するための手段として、水素化合物合金を詰込ん
だ容器外周に対して作用する冷却、加熱のための熱交換
効率を向上するために、水素化合物合金を詰込むための
容器を超硬アルミ軽合金からなる断面正三角形の筒状体
により構成して、これら多数個の該正三角形筒形容器を
、互いに外周に略均等な流路が設けられるように間隔を
置いて外側容器内に配列させ、夫々の筒形容器内への水
素ガスの充填または排出に際して、外側容器内における
各筒形容器外周の゛前記゛流路に冷却、または加熱媒体
を流通させるようにしたことを特徴とするもの゛である
。 ゛〔作 用〕
この発明の水素ガス貯蔵容器のように、水素化合物合金
を詰込む容器を断面正三角形状の筒形容器(チューブ)
とした場合、単位容積光りにおいて同量の水素化合物合
金を詰込む従来の円筒形の容器(チューブ)に比較して
、各容器の熱交換表面積を約1.28倍にすることが可
能となる。The present invention improves the efficiency of heat exchange for cooling and heating that acts on the outer periphery of a container filled with a hydride alloy, as a means to solve the problems of conventional hydrogen gas storage containers as described above. Therefore, a container for packing the hydride alloy is constructed of a cylindrical body made of a light carbide aluminum alloy and has an equilateral triangular cross section, and a large number of these equilateral triangular cylindrical containers are arranged so that the outer periphery thereof is approximately equal to each other. They are arranged in the outer container at intervals so that a flow path is provided, and when filling or discharging hydrogen gas into each cylindrical container, the ``above'' flow path on the outer periphery of each cylindrical container in the outer container is arranged. This device is characterized by allowing a cooling or heating medium to flow through it.゛[Function] Like the hydrogen gas storage container of this invention, the container in which the hydrogen compound alloy is packed is a cylindrical container (tube) with an equilateral triangular cross section.
In this case, it is possible to increase the heat exchange surface area of each container by approximately 1.28 times compared to a conventional cylindrical container (tube) packed with the same amount of hydride alloy in a unit volume of light. .
次に本発明に係る水素ガス貯蔵容器を図面に示す実施例
により説明すると、第2図は貯蔵容器全体の平面図であ
る。第3図及び第4図に示すように、この貯蔵容器は密
閉された外側容器lと、この外側容器1内に配列される
水素化合物合金を内部に詰込んだ多数の筒形容器2とか
らなっている。Next, the hydrogen gas storage container according to the present invention will be described with reference to an embodiment shown in the drawings. FIG. 2 is a plan view of the entire storage container. As shown in FIGS. 3 and 4, this storage container consists of a sealed outer container 1 and a number of cylindrical containers 2 arranged inside the outer container 1 and filled with hydride alloys. It has become.
夫々の筒形容器2は第3図に示すように、断面が正三角
形をなすものであり、外側容器l内において互いに隣接
する各容器2の天地が逆向きとなるようにして、両端が
第4図のように外側容器1の両側壁1a及び1b内面に
固定されるようにして配列されている。また第3図のよ
うに、゛夫々の筒形容器2の外周には、上下左右の方向
において隣接する他の筒形容器2との間に略均等な間隙
からなる流路3が形成されるように外側容器1内に配列
されている。As shown in FIG. 3, each cylindrical container 2 has an equilateral triangular cross section, and the top and bottom of the containers 2 adjacent to each other in the outer container 1 are turned upside down, and both ends are arranged in the shape of a triangle. As shown in FIG. 4, they are arranged so as to be fixed to the inner surfaces of both side walls 1a and 1b of the outer container 1. Further, as shown in FIG. 3, on the outer periphery of each cylindrical container 2, a flow path 3 is formed with approximately equal gaps between it and other cylindrical containers 2 adjacent in the vertical and horizontal directions. They are arranged in the outer container 1 as follows.
夫々の筒形容器2は、第4図のように内部に容器の長さ
方向に沿って配管したフィルタパイプ4と、このフィル
タパイプ4の周囲に詰込まれた水素化合物合金5 (ラ
ンタン、セリウム、プラセオジウム、ネオジウム、ニッ
ケル)とからなっており、夫々のフィルタパイプ4の一
端は筒形容器2及び外側容器lの一方の側壁1aを貫通
して該側壁1aに設けた水素ガス給徘管7を有するマニ
ホールド6に連通されている。As shown in FIG. 4, each cylindrical container 2 has a filter pipe 4 piped inside the container along the length direction, and a hydride alloy 5 (lanthanum, cerium) packed around the filter pipe 4. , praseodymium, neodymium, nickel), and one end of each filter pipe 4 passes through one side wall 1a of the cylindrical container 2 and the outer container 1, and a hydrogen gas supply pipe 7 is provided on the side wall 1a. It is connected to a manifold 6 having a.
外側容器1における前面壁1cの中央上方部分には、バ
ルブ9を有するドレン8が設けられ、また底面1dの中
央前面壁側には、バルブ11を有するドレン10が縦形
に設けられている。なおこのドレン10にはバルブ11
と外側容器底面1dとの間にバルブ13を有する分岐ド
レン12が接続されている。A drain 8 having a valve 9 is provided at the upper center of the front wall 1c of the outer container 1, and a drain 10 having a valve 11 is vertically provided at the center front wall side of the bottom surface 1d. Note that this drain 10 has a valve 11.
A branch drain 12 having a valve 13 is connected between the bottom surface 1d of the outer container and the bottom surface 1d of the outer container.
水素ガスを貯蔵容器内に充填貯蔵する際は、水素ガス給
排管7より水素ガスを10気圧程度の圧力を加えて夫々
の筒形容器2内に供給し、フィルタパイプ4を通して該
容器2内の水素化合物合金5に吸着させる。When filling and storing hydrogen gas in a storage container, hydrogen gas is supplied into each cylindrical container 2 from the hydrogen gas supply/discharge pipe 7 under a pressure of about 10 atmospheres, and is passed through the filter pipe 4 into the container 2. is adsorbed onto the hydride alloy 5.
水素化合物合金5を水素ガスを吸着する際には、吸着に
伴って高熱を発生するので、外側容器1下面のドレン1
2から該容器1内に冷却水を供給し、容器1上部のドレ
ン8から流出させるような冷却水循環を行う。冷却水は
容器1内の各筒形容器2の間の流路3を流動して筒形容
器2の外周面を冷却する。When the hydrogen compound alloy 5 adsorbs hydrogen gas, high heat is generated due to the adsorption, so the drain 1 on the bottom surface of the outer container 1 is
Cooling water is supplied into the container 1 from 2 and is circulated so as to flow out from a drain 8 at the top of the container 1. The cooling water flows through the channels 3 between the cylindrical containers 2 in the container 1 to cool the outer peripheral surface of the cylindrical containers 2.
水素ガスの使用に当り貯蔵容器から排出させる際は、図
示外のバルブを開いて筒形容器2内の圧力を解放するこ
とにより水素ガスをマニホールド6から給徘管7を通じ
て外部に排出するが、筒形容器内の水素化合物合金が吸
着した水素ガスを放出する際には、周囲から熱を吸収し
て冷却化するので、外側容器1上方のドレン8から容器
1内に高温ガス或いは蒸気を供給して、容器下部のドレ
ン10から流出させるような加熱循環を行う。前記と同
様に高熱ガス或いは蒸気は容器1内における各筒形容器
2の間の流路を流動して筒形容器2の外周面を加熱する
。When hydrogen gas is used and discharged from the storage container, a valve not shown is opened to release the pressure inside the cylindrical container 2, and the hydrogen gas is discharged from the manifold 6 to the outside through the supply pipe 7. When the hydrogen compound alloy in the cylindrical container releases the adsorbed hydrogen gas, it absorbs heat from the surroundings and cools it, so high-temperature gas or steam is supplied into the container 1 from the drain 8 above the outer container 1. Then, heating circulation is performed so that the water flows out from the drain 10 at the bottom of the container. Similarly to the above, the high-temperature gas or steam flows through the channels between the cylindrical containers 2 in the container 1 and heats the outer peripheral surface of the cylindrical containers 2.
この発明の水素ガス貯蔵容器においては、水素化合物合
金5を詰込むための容器(チューブ)を断面三角形の筒
状体としたので、単位容積当りにおいて同量の水素化合
物合金を詰込む円筒形容器゛に比較して、各容器の熱交
換表面積を約1.28倍に増加でき、従って同容量の従
来形貯蔵容器としてみた場合、水素ガスの充填及び排出
に要する時間を28.6%程度短縮することが可能とな
る。In the hydrogen gas storage container of the present invention, the container (tube) for filling the hydride alloy 5 is a cylindrical body with a triangular cross section, so that the cylindrical container is filled with the same amount of the hydride alloy per unit volume. The heat exchange surface area of each container can be increased by approximately 1.28 times compared to the conventional storage container of the same capacity. Therefore, the time required for filling and discharging hydrogen gas is reduced by approximately 28.6% when viewed as a conventional storage container with the same capacity. It becomes possible to do so.
即ち、第6図aに示すように例えば正三角形の一辺下の
長さを2C11とした場合、その面積Sは、S = ’
A X 2 X5in60゜s =R=1.732
次に同図すに示すように円の面積S2を前記正三角形の
面積Sと同じとする。That is, as shown in Figure 6a, if the length of the bottom side of an equilateral triangle is 2C11, the area S is S = '
A x 2
従ってs=s、=JTとなり、S!の半径rを求めると
、
5t=ttr”=5
rt=J5iπ (π=3.14とする)r =0.7
427
三角筒の断面積を同一とすれば、三角筒所面の三辺の和
F、と円筒断面の円周F2の比較において、適確な表面
積の比較が可能となる。Therefore, s=s,=JT, and S! Find the radius r of
427 If the cross-sectional areas of the triangular cylinders are made the same, it becomes possible to accurately compare the surface areas when comparing the sum F of the three sides of the triangular cylinder surface and the circumference F2 of the cylinder cross section.
F+=2X3=6 Fz=2ffr、’、F、
= 6 、’、Fz =4.664従って
、
F!
故に同一体積において三角筒の表面積は円筒の表面積よ
り28.64%大き0こととなる。F+=2X3=6 Fz=2ffr,',F,
= 6, ', Fz = 4.664 Therefore, F! Therefore, in the same volume, the surface area of the triangular cylinder is 28.64% larger than the surface area of the cylinder.
以上の理由からも理解できるように、本発明に係る正三
角形筒状体の水素化合物合金容器を備えた水、素ガス貯
蔵容器は、従来の円筒形の水素化合物合金容器からなる
貯蔵容器に比較して、水素ガスの充填、排出に必要とす
る熱交換率をはるかに良好とすることができるので水素
ガスの充填及び排出時間を能率化できるという効果を有
する。As can be understood from the above reasons, the water and gas storage container equipped with the equilateral triangular cylindrical hydride alloy container according to the present invention is better than the conventional storage container made of a cylindrical hydride alloy container. As a result, the heat exchange rate required for filling and discharging hydrogen gas can be made much better, so it has the effect that the time for filling and discharging hydrogen gas can be streamlined.
また本発明の三角形筒状体容器は材質的にも超硬アルミ
合金を用いているためステンレス製のものに比較して熱
伝導率も良好で、しかも重量的にも約3分の1程度軽量
であるので可搬容器としても有利であるという効果を有
する。In addition, since the triangular cylindrical container of the present invention is made of cemented carbide aluminum, it has better thermal conductivity than stainless steel containers, and is also about one-third lighter in weight. Therefore, it has the effect of being advantageous as a portable container.
第1図は本発明に係る水素ガス貯蔵容器の構成を示す斜
視図、第2図は平面図、第3図は第2図のm−m線の断
面図、第4図は同じ(IV−IV線の断面図、第5図は
内部流路における流体の動きを示す第3図と同じ断面図
、第6図は本発明の三角形筒形容器と従来の円筒形容器
との表面積の比較を示すための説明図である。図におい
て、l・・・・・・外側容器、2・・・・・・三角形筒
形容器、3・・・・・・流路、4・・・・・・フィルタ
パイプ、5・・・・・・水素化合物合金、6・・・・・
・マニホールド、7・・・・・・給徘管、8,10,1
2・・・・・・ドレン。
FIG、3
FIG、5FIG. 1 is a perspective view showing the structure of a hydrogen gas storage container according to the present invention, FIG. 2 is a plan view, FIG. 3 is a cross-sectional view taken along line mm in FIG. 2, and FIG. FIG. 5 is a cross-sectional view taken along line IV. FIG. 5 is the same cross-sectional view as FIG. 3 showing the movement of fluid in the internal flow path. FIG. It is an explanatory diagram for showing.In the figure, 1... Outer container, 2... Triangular cylindrical container, 3... Channel, 4... Filter pipe, 5...Hydrogen compound alloy, 6...
・Manifold, 7...Feed pipe, 8, 10, 1
2...Drain. FIG, 3 FIG, 5
Claims (1)
出する特性をもった水素化合物合金を詰込んだ多数の断
面正三角形の超硬アルミ軽合金製の筒形容器を、互いに
外周に略均等な流路を隔てるようにして外側容器内に配
列し、前記筒形容器内に外部から水素ガスを充填する際
には、前記外側容器内の流路中に冷却気体もしくは液体
を流通して筒形容器の発熱を冷却し、筒形容器内より水
素ガスを外部に排出する際には、前記流路中に加熱気体
もしくは液体を流通して筒形容器の吸熱による冷却状態
を加熱する水素ガス貯蔵容器。(1) A large number of cylindrical containers made of cemented carbide aluminum light alloy with equilateral triangular cross sections are filled with a hydrogen compound alloy that has the property of absorbing and ejecting hydrogen gas using pressure and thermal energy. They are arranged in an outer container so as to separate the flow paths, and when filling the cylindrical container with hydrogen gas from the outside, cooling gas or liquid is passed through the flow path in the outer container to form the cylindrical container. When cooling the heat generated by the container and discharging hydrogen gas from the inside of the cylindrical container to the outside, hydrogen gas storage that circulates heated gas or liquid through the flow path to heat the cooling state due to heat absorption in the cylindrical container. container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60086570A JPS61244997A (en) | 1985-04-24 | 1985-04-24 | Hydrogen gas storage container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60086570A JPS61244997A (en) | 1985-04-24 | 1985-04-24 | Hydrogen gas storage container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61244997A true JPS61244997A (en) | 1986-10-31 |
JPH0261401B2 JPH0261401B2 (en) | 1990-12-20 |
Family
ID=13890672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60086570A Granted JPS61244997A (en) | 1985-04-24 | 1985-04-24 | Hydrogen gas storage container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61244997A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2781555A1 (en) * | 1998-07-22 | 2000-01-28 | Guy Negre | Container for high-pressure fluids such as compressed air has inner cells formed by flat sided plastic tubes linked through holes in their walls |
WO2011058044A1 (en) * | 2009-11-13 | 2011-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hydrogen storage tank having metal hydrides |
JP2016528452A (en) * | 2013-08-02 | 2016-09-15 | オールタナティブ フュエル コンテイナーズ、エル・エル・シーAlternative Fuel Containers, Llc | Conformable fuel gas tank |
WO2017093522A1 (en) | 2015-12-04 | 2017-06-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hydrogen storage tank produced from a thermally insulating material forming cylindrical casings containing hydrides |
CN107664456A (en) * | 2016-07-28 | 2018-02-06 | 青岛海尔智能技术研发有限公司 | Metal hydride reactor |
-
1985
- 1985-04-24 JP JP60086570A patent/JPS61244997A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2781555A1 (en) * | 1998-07-22 | 2000-01-28 | Guy Negre | Container for high-pressure fluids such as compressed air has inner cells formed by flat sided plastic tubes linked through holes in their walls |
WO2000005535A1 (en) * | 1998-07-22 | 2000-02-03 | Guy Negre | Reservoir for fluids under high pressure, in particular compressed air or another gas |
WO2011058044A1 (en) * | 2009-11-13 | 2011-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hydrogen storage tank having metal hydrides |
FR2952696A1 (en) * | 2009-11-13 | 2011-05-20 | Commissariat Energie Atomique | METAL HYDRIDE HYDROGEN STORAGE TANK |
US8985319B2 (en) | 2009-11-13 | 2015-03-24 | Commissariat á l 'ènergie atomique et aux énergies alternatives | Hydrogen storage tank having metal hydrides |
JP2016528452A (en) * | 2013-08-02 | 2016-09-15 | オールタナティブ フュエル コンテイナーズ、エル・エル・シーAlternative Fuel Containers, Llc | Conformable fuel gas tank |
WO2017093522A1 (en) | 2015-12-04 | 2017-06-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hydrogen storage tank produced from a thermally insulating material forming cylindrical casings containing hydrides |
CN107664456A (en) * | 2016-07-28 | 2018-02-06 | 青岛海尔智能技术研发有限公司 | Metal hydride reactor |
Also Published As
Publication number | Publication date |
---|---|
JPH0261401B2 (en) | 1990-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030209147A1 (en) | Honeycomb hydrogen storage structure | |
US6708546B2 (en) | Honeycomb hydrogen storage structure with restrictive neck | |
US4881958A (en) | Adsorption device for gas separation | |
JP2000507673A (en) | Apparatus and method for storage and release of hydrogen | |
US20160201855A1 (en) | Sorption store with improved heat transfer | |
CA2621054A1 (en) | Hydrogen storage device | |
GB1581639A (en) | Storage of gas | |
GB1531862A (en) | Hydrogen storage and heat exchanger system | |
WO2007018306A1 (en) | Hydrogen storage device | |
JPS61244997A (en) | Hydrogen gas storage container | |
JPS61171998A (en) | Metal hydride container | |
JPS6233269A (en) | Heat exchanger utilizing hydrogen storage alloy | |
TW201221822A (en) | Hydrogen storage device | |
CN101238323B (en) | Hydrogen storage device | |
JPS6176887A (en) | Vessel for accommodating metallic hydrides | |
JPS5925956B2 (en) | metal hydride container | |
JPH06117724A (en) | Chemical heat accumulation heat pump | |
JPS6334487A (en) | Hydrogenated metal heat exchanger | |
JP2000146092A (en) | Occulsion type natural gas storage tank | |
JPS6249100A (en) | Metal hydride container | |
JP2607677B2 (en) | Generator hydrogen purity maintenance device by metal hydride | |
JPS6118003Y2 (en) | ||
JPS60205191A (en) | Vessel for metallic hydrogenated substance | |
JP2003278996A (en) | Gas storage tank | |
JPH04278186A (en) | Heat accumulator employing paraffin as heat accumulating material |