JPS61243402A - Half mirror - Google Patents

Half mirror

Info

Publication number
JPS61243402A
JPS61243402A JP8488585A JP8488585A JPS61243402A JP S61243402 A JPS61243402 A JP S61243402A JP 8488585 A JP8488585 A JP 8488585A JP 8488585 A JP8488585 A JP 8488585A JP S61243402 A JPS61243402 A JP S61243402A
Authority
JP
Japan
Prior art keywords
layer
layers
refractive index
group
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8488585A
Other languages
Japanese (ja)
Inventor
Hiroshi Mukai
弘 向井
Kazuo Kimura
和夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP8488585A priority Critical patent/JPS61243402A/en
Publication of JPS61243402A publication Critical patent/JPS61243402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Cameras In General (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain the mirror suitable to use for a main mirror of a single lens reflex camera by alternately laminating a transparent dielectric having a high refractive index and a dielectric having a low refractive index at a visible wavelength region respectively. CONSTITUTION:The titled mirror comprises a substrate plate G, an air layer Air and a translucency mirror part H. The translucency mirror part H is constituted by the first layer 1, the second layer 2, the third layer 3...the sixth layer 6 and the seventh layer 7 in order from the air side to the substrate side. The first-fourth layers belong to the A group A, and the fifth...seventh layers belong to the B group B. The max. optical film thickness among those of the A group is smaller than the min. optical film thickness among those of the B group. The first, third, fifth and seventh layers 1, 3, 5, and 7 are the dielectric layers having the higher refractive index than that of the substrate G. While, the second, fourth and sixth layers 2, 4, 6 are the dielectric layers having the lower refractive index than that of the substrate G. The titled mirror is prepared by alternately laminating the dielectric layers having the high refractive index and the low refractive index respectively on the substrate G.

Description

【発明の詳細な説明】 本発明は、入射光を透過光と反射光とに分割するための
半透鏡に関し、更に詳しくは、−[し7レツクスカメラ
の主ミラーに適した半透鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semi-transparent mirror for splitting incident light into transmitted light and reflected light, and more particularly to a semi-transparent mirror suitable for the main mirror of a 7-rex camera.

処迷!す11 従来、−眼し7レツクスカメラにおいて、ミラーボック
スの下に受光素子を配置して、露出制御や焦点検出用の
測光を行うことは知られている。
Lost! 11 Conventionally, it is known that a light receiving element is arranged under a mirror box in a 7-lens camera to perform exposure control and photometry for focus detection.

このような場合、−眼し7レツクスカメラの主ミラーは
半透鏡にする必要がある。
In such a case, the main mirror of the 7-lens camera must be a semi-transparent mirror.

このような半透鏡に適した条件としては、ファインダ像
ができるだけ明るく観察されうるとともに、受光素子に
も露出制御や焦点検出に十分な光量を与える必要がある
。第9図は、−mし7レツクスカメラの構成を示す断面
図である。同図において、撮影レンズ(2)を透過した
光は、半透鏡からなる主ミラー(4)によって反射され
て焦点板(6)、ペンタプリズム(8)および接眼レン
ズ(10)を有するファインダ系にすすむ光と、主ミラ
ー(4)を透過1f功1ミラー(12)に上。で反射さ
れ、レンズ(14)を介して受光素子(16)にすすむ
光とに分割される。ここで、半透鏡としては、従来、金
属を用いたものと、誘電体を用いたものとがある。しか
し、金属を用いた半透鏡は、金属による光の吸収がある
ので、効率が悪いという欠点がある。一方、誘電体を用
いた半透鏡は、用いられる誘電体自身に可視域で吸収が
無ければ効率が非常に良い。
Conditions suitable for such a semi-transparent mirror include that the finder image can be observed as brightly as possible, and that a sufficient amount of light must be provided to the light receiving element for exposure control and focus detection. FIG. 9 is a cross-sectional view showing the configuration of the -m7rex camera. In the figure, light transmitted through a photographic lens (2) is reflected by a main mirror (4) consisting of a semi-transparent mirror and enters a finder system having a focus plate (6), a pentaprism (8) and an eyepiece (10). The light passes through the main mirror (4) and passes through the 1st mirror (12). The light is reflected by the light beam and is split into light that passes through the lens (14) to the light receiving element (16). Here, conventional semi-transparent mirrors include those using metal and those using dielectric. However, semi-transparent mirrors made of metal have the disadvantage of poor efficiency because the metal absorbs light. On the other hand, a semi-transparent mirror using a dielectric material is very efficient if the dielectric material itself has no absorption in the visible range.

そこで、誘電体を多層に積層した半透鏡が用いられるが
、一般には、受光素子(16)に比べて眼の明るさに対
する感度の方が低いので、主ミラー(4)の半透鏡の反
射率の方を透過率よりも大きくする方が良い。しかしな
がら、反射率を大きくしすぎると、受光素子(16)に
入射する光量が減少するし、半透鏡の層数も多くなって
コストが高くなる上に、製作誤差が積み重なって設計値
に近い分光特性を得ることが困難になる。また、層数が
多くなるとクラックが発生しやすいという問題が有る。
Therefore, a semi-transparent mirror made of multi-layered dielectric material is used, but in general, the sensitivity to the brightness of the eye is lower than that of the light receiving element (16), so the reflectance of the semi-transparent mirror of the main mirror (4) is It is better to make it larger than the transmittance. However, if the reflectance is increased too much, the amount of light incident on the light-receiving element (16) will decrease, the number of layers of the semi-transparent mirror will increase, which will increase the cost, and manufacturing errors will accumulate, resulting in a spectral spectrum close to the design value. It becomes difficult to obtain the characteristics. Furthermore, there is a problem that cracks are more likely to occur when the number of layers increases.

たとえば、特開昭53−110541号公報には第1表
に示される構成の半透鏡が開示されている。
For example, Japanese Patent Application Laid-Open No. 53-110541 discloses a semi-transparent mirror having the configuration shown in Table 1.

第1表 但し、入は設計波長を示す。Table 1 However, "ON" indicates the design wavelength.

しかしながら、二のような構成では、この分光反射率特
性を示す第10図からも明らかなように、可視域全域に
おいでほぼフラットな分光特性を得られるものの、約5
0%の反射率しか得られず、−眼し7レツクスカメラの
主ミラーには適しない。
However, as is clear from FIG. 10, which shows the spectral reflectance characteristics, with the configuration 2, although almost flat spectral characteristics can be obtained over the entire visible range, approximately 5
Only a reflectance of 0% can be obtained, making it unsuitable for use as the main mirror of a 7-lens camera.

明が  しようとする  ζ 本発明の目的は、上述のごとき欠点が生じることがなく
、−眼し7レツクスカメラの主ミラーに適した半透鏡を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semi-transparent mirror that does not suffer from the above-mentioned drawbacks and is suitable for the main mirror of a 7-lens camera.

貞を解 するための そして、上記目的を達成するために、まず、本発明者た
ちは、−眼し7レツクスカメラの主ミラーとして用いら
れる半透鏡としては、可視域全域にわたって約55〜8
0%程度の反射率を有することが良いことを発見した。
In order to solve the problem and achieve the above object, the present inventors first determined that a semi-transparent mirror to be used as the main mirror of a 7-lens camera has a diameter of about 55 to 88 mm over the entire visible range.
It has been discovered that it is good to have a reflectance of about 0%.

これは、反射率が55%以下では7アイング像が暗すぎ
るし、80%以上になると受光素子への入射光量が少な
くなりすぎてしまうからである。
This is because if the reflectance is less than 55%, the 7-eye image will be too dark, and if it is more than 80%, the amount of light incident on the light receiving element will be too small.

この発見に基づいて、本発明者たちは、可視波長域で透
明な高屈折率誘電体と低屈折率誘電体とを基板上に交互
に積層してなる半透鏡において、全層数りが7〜10層
からなるとともに、空気側から基板側へ順に第1層、第
2層、・・・・としたときに、全層数りが偶数の場合は
空気側から第L/2NまでをA群、それより基板側の層
をB群と分け、全層数りが奇数の場合は空気側から第(
LB群と分け、A群のうちで光学的膜厚が最大の層の光
学的膜厚が、B群のうちで光学的膜厚が最小の層の光学
的膜厚よりも小さいことを特徴とする半透鏡が、上記可
視域全域にわたって約55%〜80%の反射率を有し、
かつその分光特性もフラットであることを見出だした。
Based on this discovery, the present inventors developed a semi-transparent mirror in which a high refractive index dielectric material and a low refractive index dielectric material that are transparent in the visible wavelength range are alternately laminated on a substrate, with a total number of layers of 7. It consists of ~10 layers, and from the air side to the substrate side, the first layer, the second layer, etc. If the total number of layers is even, the layer from the air side to the L/2N is A. Group, the layers closer to the substrate are divided into Group B, and if the total number of layers is odd, the layers from the air side (
It is separated from the LB group, and is characterized in that the optical thickness of the layer with the largest optical thickness in the A group is smaller than the optical thickness of the layer with the smallest optical thickness in the B group. The semi-transparent mirror has a reflectance of about 55% to 80% over the entire visible range,
We also found that its spectral characteristics were flat.

従って、本発明の要旨は、可視波長域で透明な高屈折率
誘電体を低屈折率誘電体とを基板上に交互に積層してな
る半透鏡において、全層数りが7〜10層からなるとと
もに、空気側から基板側へ順に第1層、第2層、・・・
・としたときに、全層数りが偶数の場合は空気側から第
L/2層までをA群、それより基板側の層をB群と分け
、全層数りが奇数の場合は空気側から第(L+1)72
層までをA群、それより基板側の層をB群と分け、A群
のうちで光学的膜厚が最大の層の光学的膜厚が、B群の
うちで光学的膜厚が最小の層の光学的膜厚よりも小さい
ことにある。
Therefore, the gist of the present invention is to provide a semi-transparent mirror in which a high refractive index dielectric transparent in the visible wavelength range and a low refractive index dielectric are alternately laminated on a substrate, and the total number of layers is from 7 to 10 layers. At the same time, from the air side to the substrate side, the first layer, second layer, etc.
・When the total number of layers is an even number, the air side to the L/2nd layer is divided into group A, and the layer closer to the substrate is divided into group B. If the total number of layers is odd, the air No. (L+1)72 from the side
The layers up to the substrate are divided into group A, and the layers on the substrate side are group B, and the optical thickness of the layer with the largest optical thickness in group A is the optical thickness of the layer with the smallest optical thickness in group B. The reason is that it is smaller than the optical thickness of the layer.

すなわち、本発明は空気側の層を薄くして基板数学的な
表現を用いれば、空気側から基板側へ順に、第1層、第
2層、・・・・とじた場合に、第1番目の層の光学的膜
厚をNiとすると、max[N1tN2*  ’  *
  、n  ] < min[Nk+19Nk+24 
 @  e  NLI但し、k=L/2      (
Lが偶数のどき)k=(L+1)/2    (Lが奇
数のとき)となる。
That is, in the present invention, if the layer on the air side is made thinner and the substrate is mathematically expressed, then when the layer on the air side is thinned and the layers are bound in order from the air side to the substrate side, the first layer, the second layer, etc. If the optical thickness of the layer is Ni, then max[N1tN2* ' *
, n ] < min[Nk+19Nk+24
@ e NLI However, k=L/2 (
When L is an even number) k=(L+1)/2 (When L is an odd number).

にJLfL 以下、本発明の実施例について説明する。to JLfL Examples of the present invention will be described below.

K良性1 第1図は本発明の実施例1の構成を示す断面図である。K benign 1 FIG. 1 is a sectional view showing the configuration of Example 1 of the present invention.

同図において、(G)は基板、(A ir)は空気層を
示し、半透鏡部(H)は空気側から基板側へ順に、第1
層(1)、第2層(2)、#IJ31(3)、第4層(
4)、第5層(5)、第6層(6)および第7層(7)
の7層構成からなり、第1層(1)〜第4層(4)がA
群(A)、第5層(5)〜第7層(7)がB群(B)で
ある。そして、第1.3.5.7層は、基板(G)より
も屈折率の高い誘電体からなる高屈折率誘電体層、第2
.4.6層は基板(G)よりも屈折率の低い誘電体から
なる低屈折率誘電体層である。
In the figure, (G) indicates the substrate, (Air) indicates the air layer, and the semi-transparent mirror section (H) is arranged in order from the air side to the substrate side.
Layer (1), second layer (2), #IJ31 (3), fourth layer (
4), 5th layer (5), 6th layer (6) and 7th layer (7)
It consists of seven layers, with the first layer (1) to the fourth layer (4) being A.
Group (A), the fifth layer (5) to the seventh layer (7) are group B (B). The 1.3.5.7 layer is a high refractive index dielectric layer made of a dielectric material having a higher refractive index than the substrate (G);
.. Layer 4.6 is a low refractive index dielectric layer made of a dielectric having a lower refractive index than the substrate (G).

各層の屈折率および光学的膜厚を第2表に示す。Table 2 shows the refractive index and optical thickness of each layer.

第2表 ここで、設計波長λは、550na+であり、半透鏡部
(H)への入射九は45゛である。本実施例において、
高屈折率誘電体層にはZ r O2もしくはZ r O
2とTiO2との混合物が適用され、低屈折率誘電体層
にはMgF2が適用される。そして、基板(G)の上に
、高屈折率誘電体層と低屈折率誘電体層とを交互に積層
することによって製造される。
Table 2 Here, the design wavelength λ is 550 na+, and the incidence 9 on the semi-transparent mirror portion (H) is 45°. In this example,
The high refractive index dielectric layer contains Z r O2 or Z r O
A mixture of 2 and TiO2 is applied, and MgF2 is applied for the low index dielectric layer. Then, it is manufactured by alternately stacking high refractive index dielectric layers and low refractive index dielectric layers on the substrate (G).

本実施例の分光反射゛率特性を第2図に(I)で示す。The spectral reflectance characteristics of this example are shown in FIG. 2 by (I).

第2図から明らかなように、本実施例によれば、400
n−〜700nmの可視域全域において反射率が72ツ
トで、かつ平均反射率60%以上を得ることができる。
As is clear from FIG. 2, according to this embodiment, 400
It is possible to obtain a reflectance of 72 over the entire visible range from n- to 700 nm, and an average reflectance of 60% or more.

K1九り 本実施例は、実施例1の7層構成において、低屈折率誘
電体層を屈折率1.47のSin、にし、高屈折率誘電
体層を屈折率2.3のTi0zにしで、それに応じて各
層の光学的膜厚を#l整したものである。実施例2の構
成を第3表に示す。
K19 In this example, in the seven-layer structure of Example 1, the low refractive index dielectric layer is made of Sin with a refractive index of 1.47, and the high refractive index dielectric layer is made of Ti0z with a refractive index of 2.3. , the optical thickness of each layer is adjusted by #l accordingly. The configuration of Example 2 is shown in Table 3.

第    3    表 屈折率 光学的膜厚 空気(Air)  1.0 第1層(1)2.3  0,159λA第2層(2) 
 1.47 0.219人第3層(3)2,3  0.
231人 第4層(4)  1,47 0,244λ鹸em、/e
\9つ^Q12QIQ 二二で、設計波長λは550nm、半透鏡部(H)への
入射角は45°である。本実施例の分光反射率特性を第
2図に線(II)で示す。第2図から明らかなように、
本実施例においても分光特性が7ラツトで、約60%の
平均反射率を得ることができる。
Table 3 Refractive index Optical film thickness Air 1.0 1st layer (1) 2.3 0,159λA 2nd layer (2)
1.47 0.219 people 3rd layer (3) 2,3 0.
231 people 4th layer (4) 1,47 0,244λken em, /e
\9^Q12QIQ 22, the design wavelength λ is 550 nm, and the angle of incidence on the semi-transparent mirror portion (H) is 45°. The spectral reflectance characteristics of this example are shown in FIG. 2 by line (II). As is clear from Figure 2,
In this example as well, the spectral characteristics are 7 lats and an average reflectance of about 60% can be obtained.

本実施例は、第3図の断面図に示すように、空気側から
基板側へ順に、第1層(1)、第2層(2)、第3層(
3)、第4層(4)、第5層(5)、第6層(6)、第
7層(7)および第8層(8)の8層構成としたもので
ある。もっとも空気側の第1層(1)は高屈折率誘電体
からなる。本実施例において、高屈折率誘電体層(1)
(3)(5)(7)はそれぞれTiO2からなり、低屈
折率誘電体層(2>(4)(608)はそれぞれ5i0
2からなる。本実施例の構成を第4表に示す。
In this embodiment, as shown in the cross-sectional view of FIG. 3, the first layer (1), the second layer (2), and the third layer (
3), a fourth layer (4), a fifth layer (5), a sixth layer (6), a seventh layer (7), and an eighth layer (8). The first layer (1) closest to the air is made of a high refractive index dielectric. In this example, the high refractive index dielectric layer (1)
(3), (5), and (7) are each made of TiO2, and each of low refractive index dielectric layers (2>(4) and (608) is 5i0
Consists of 2. Table 4 shows the configuration of this embodiment.

第4表 ここで、設計波長λは550ns+、半透鏡部(H)へ
の入射角は45°である。本実施例の分光反射率特性を
第4図に線(1)で示す。第4図から明らかなように、
本実施例においても分光特性が7ラツトで、約60%の
平均反射率を得ることができる。
Table 4 Here, the design wavelength λ is 550 ns+, and the angle of incidence on the semi-transparent mirror portion (H) is 45°. The spectral reflectance characteristics of this example are shown by line (1) in FIG. As is clear from Figure 4,
In this example as well, the spectral characteristics are 7 lats and an average reflectance of about 60% can be obtained.

本実施例は、実施例3の低屈折率誘電体層と高屈折率誘
電体層とを逆転させ、それに応じて各層の光学的膜厚を
調整したものである。実施例4の構成を第5表に示す。
In this example, the low refractive index dielectric layer and the high refractive index dielectric layer of Example 3 are reversed, and the optical thickness of each layer is adjusted accordingly. The configuration of Example 4 is shown in Table 5.

第5表 ここで、設計波長λは550nm、半透鏡部(H)への
入射角は45°である。本実施例の分光反射率特性を第
4図に線(ff)で示す、第4図から明らかなように、
本実施例においても分光特性が7ラツトで、約60%の
平均反射率を得ることができる。
Table 5 Here, the design wavelength λ is 550 nm, and the angle of incidence on the semi-transparent mirror portion (H) is 45°. The spectral reflectance characteristics of this example are shown in FIG. 4 by the line (ff). As is clear from FIG.
In this example as well, the spectral characteristics are 7 lats and an average reflectance of about 60% can be obtained.

犬J「医」一 本実施例は、第5図図示のように、空気側から順に、第
1層(1)、第2層(2)、第3層(3)、第4層(4
)、第5層(5)、第6層(6)、第7層(7)、第8
層(8)およV第9層(9)の9層構成の例である。本
実施例において、高屈折率誘電体層(1)(3)(5)
(7)(9)はZ r O2がらなり、低屈折率誘電体
層(2)(4)(6)(8)はMgF 2からなる。本
実施例の具体的構成を第6表に示す。
In this embodiment, as shown in Fig. 5, the first layer (1), the second layer (2), the third layer (3), and the fourth layer (4
), 5th layer (5), 6th layer (6), 7th layer (7), 8th layer
This is an example of a nine-layer structure including layer (8) and V-9th layer (9). In this example, high refractive index dielectric layers (1) (3) (5)
(7) and (9) are made of Z r O2, and the low refractive index dielectric layers (2), (4), (6), and (8) are made of MgF2. Table 6 shows the specific configuration of this embodiment.

第    6    表 への入射角は45°である。本実施例の分光反射率特性
を第6図に線(V)で示す。第6図から明らかなように
1、本実施例においても分光特性が7ラツトで、約65
%の平均反射率を得ることができる。
The angle of incidence on Table 6 is 45°. The spectral reflectance characteristics of this example are shown by line (V) in FIG. As is clear from FIG.
% average reflectance can be obtained.

尚、本実施例において、高屈折率誘電体として、ZrO
□の代わりにZrO2とT i O2との混合物を用い
ても良い。
In this example, ZrO was used as the high refractive index dielectric material.
A mixture of ZrO2 and T i O2 may be used instead of □.

及1九彰 本実施例は、実施例5の低屈折率誘電体層と高屈折率誘
電体層とを逆転させ、それに応じて各層の光学的膜厚を
調整したものである。実施例6の構成を第7表に示す。
In this example, the low refractive index dielectric layer and the high refractive index dielectric layer of Example 5 are reversed, and the optical thickness of each layer is adjusted accordingly. The configuration of Example 6 is shown in Table 7.

第    7    表 屈折率 光学的膜厚 空気(Air)  1.0 第1層(1)  1,385 0,009λA第2層(
2)2.12  0,214λ第3層(3)  1.3
85 0.246λ第4層(4)2,12 0.222
λ 内【ζh貨l(\1すQ(^すA^1 二二で、設計波長λは550nII、半透鏡部(H)へ
の入射角は45°である。本実施例の分光反射率特性を
第6図に線(Vl)で示す。第6図から明らかなように
、本実施例においては分光特性が7ラツトで、約60%
の平均反射率を得ることができる。
Table 7 Refractive index Optical film thickness Air 1.0 1st layer (1) 1,385 0,009λA 2nd layer (
2) 2.12 0,214λ 3rd layer (3) 1.3
85 0.246λ 4th layer (4) 2,12 0.222
The design wavelength λ is 550nII, and the angle of incidence on the semi-transparent mirror part (H) is 45°.The spectral reflectance of this example is The characteristics are shown by the line (Vl) in Figure 6. As is clear from Figure 6, in this example, the spectral characteristics are 7 lats, which is about 60%.
It is possible to obtain an average reflectance of .

尚、本実施例において、高屈折率誘電体層には、ZrO
2もしくはZrO2とT i O2との混合物が用いら
れ、低屈折率誘電体層にはMgF2が用いられる。
In this example, the high refractive index dielectric layer is made of ZrO.
2 or a mixture of ZrO2 and T i O2, and MgF2 is used for the low refractive index dielectric layer.

及(九り 本実施例は、第7図図示のように、空気側から順に、第
1層(1)、第2層(2)、第3層(3)、第4層(4
)、第5層(5)、第6層(6)、第7層(7)、第8
層(8)、第9層(9)および第10層(10)の10
層構成の例である。本実施例において、高屈折率誘電体
層(1)(3)(5)(7)(9)はCeO2もしくは
Z r O2とT i O2との混合物からなり、低屈
折率誘電体層(2>(4)<6)(8)(10)はMg
F 2からなる。本実施例の具体的構成を第8表に示す
In this embodiment, as shown in FIG. 7, the first layer (1), second layer (2), third layer (3), and fourth layer (4
), 5th layer (5), 6th layer (6), 7th layer (7), 8th layer
10 of layer (8), 9th layer (9) and 10th layer (10)
This is an example of layer structure. In this example, the high refractive index dielectric layer (1) (3) (5) (7) (9) is made of CeO2 or a mixture of ZrO2 and TiO2, and the low refractive index dielectric layer (2 >(4)<6)(8)(10) is Mg
Consists of F2. The specific configuration of this embodiment is shown in Table 8.

第    8    表 ここで、設計波長λは550 ns1半透鏡部(H)へ
の入射角は45°である。本実施例の分光反射率特性を
第8図に線(■)で示す。第8図から明らかなように、
本実施例においては分光特性が7ラツトで、約70%の
平均反射率を得ることができる。
Table 8 Here, the design wavelength λ is 550 ns1, and the angle of incidence on the semi-transparent mirror portion (H) is 45°. The spectral reflectance characteristics of this example are shown in FIG. 8 by the line (■). As is clear from Figure 8,
In this example, the spectral characteristics are 7 lats, and an average reflectance of about 70% can be obtained.

尚、ここで高屈折率誘電体層には、TiO□、Z r 
O2、Ce Oz、ZnSもしくはこれらの混合物が適
用可能であり、低屈折率誘電体層にはMgF、、5iO
zなどが適用可能である。
Here, the high refractive index dielectric layer includes TiO□, Z r
O2, CeOz, ZnS or a mixture thereof can be applied, and the low refractive index dielectric layer can include MgF, 5iO
z etc. are applicable.

発訓IL例迷。Illustrated IL example.

以上詳述したように、本発明は、可視波長域で透明な高
屈折率誘電体と低屈折率誘電体とを基板上に交互に積層
しでなる半透鏡において、全層数りが7〜10層からな
るとともに、空気側から基板側へ順に第1層、第2層、
・・・・としたときに、全層数りが偶数の場合は空気側
から第L/2層までをA群、それより基板側の層をB群
と分け、全層数りが奇数の場合は空気側から第(L +
 1 )72層までをA群、それより基板側の層をB群
と分け、A群のうちで光学的膜厚が最大の層の光学的膜
厚が、B群のうちで光学的膜厚が最小の層の光学的膜厚
よりも小さいことを特徴とするものであれ   + ^
 ト ニ I4 膿士+ t 書 し ?ゆ ト − 
ヂ  公本F射率特性が可視域全域でほぼフラットで、
かつ約55%〜80%の平均反射率を得ることができ、
−服し7レツクスカメラの主ミラーとして適した半透鏡
を得ることができる。
As detailed above, the present invention provides a semi-transparent mirror in which a high refractive index dielectric material and a low refractive index dielectric material that are transparent in the visible wavelength range are alternately laminated on a substrate, and the total number of layers is 7 to 7. Consisting of 10 layers, from the air side to the substrate side, the first layer, second layer,
..., if the total number of layers is even, the layers from the air side to the L/2nd layer are divided into group A, and the layers closer to the substrate are group B, and if the total number of layers is odd, In this case, the number (L +
1) Divide up to 72 layers into group A and the layers closer to the substrate into group B, and the optical thickness of the layer with the largest optical thickness in group A is the optical thickness of group B. is characterized by being smaller than the optical thickness of the smallest layer + ^
Toni I4 Pusshi + T book? Yuto -
も The F emissivity characteristic is almost flat throughout the visible range,
and can obtain an average reflectance of about 55% to 80%,
- It is possible to obtain a semi-transparent mirror suitable as the main mirror of a 7-rex camera.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例1及び2の膜構成を示す断面図、
第2図はその分光反射率特性を示すグラフ、第3図は本
発明実施例3及び4の膜構成を示す断面図、第4図はそ
の分光反射率特性を示すグラフ、第5図は本発明実施例
5及び6の膜構成を示す断面図、第6図はその分光反射
率特性を示すグラフ、#IJ7図は本発明実施例7の膜
構成を示す断面図、第8図はその分光反射率特性を示す
グラフ、第9図は一眼し7レツクスカメラの光学系を示
す断面図、第10図は従来例の分光反射率特性を示すグ
ラフである。 (1)(2)−−−−−;11層、第2層、・・・(A
 );A群 (B);B群 以  上 出願人 ミノルタカメラ株式会社 第1図 q 第2図 第3図 第4図 第5図 第6図 波−長 第7図 第8図
FIG. 1 is a sectional view showing the membrane structure of Examples 1 and 2 of the present invention;
FIG. 2 is a graph showing its spectral reflectance characteristics, FIG. 3 is a cross-sectional view showing the film structure of Examples 3 and 4 of the present invention, FIG. 4 is a graph showing its spectral reflectance characteristics, and FIG. 5 is a graph showing its spectral reflectance characteristics. A sectional view showing the film structure of Invention Examples 5 and 6, FIG. 6 is a graph showing the spectral reflectance characteristics, #IJ7 is a sectional view showing the film structure of Invention Example 7, and FIG. 8 is its spectral FIG. 9 is a sectional view showing the optical system of a single-lens 7-rex camera, and FIG. 10 is a graph showing the spectral reflectance characteristics of a conventional example. (1) (2) -------; 11 layers, 2nd layer, ... (A
); Group A (B); Group B and above Applicant Minolta Camera Co., Ltd. Figure 1 q Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Wave length Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 可視波長域で透明な高屈折率誘電体と低屈折率誘電体と
を基板上に交互に積層してなる半透鏡において、 全層数Lが7〜10層からなるとともに、 空気側から基板側へ順に第1層、第2層、・・・・とし
たときに、 全層数Lが偶数の場合は空気側から第L/2層までをA
群、それより基板側の層をB群と分け、全層数Lが奇数
の場合は空気側から第(L+1)/2層までをA群、そ
れより基板側の層をB群と分け、 A群のうちで光学的膜厚が最大の層の光学的膜厚が、B
群のうちで光学的膜厚が最小の層の光学的膜厚よりも小
さいことを特徴とする半透鏡。
[Claims] A semi-transparent mirror in which a high refractive index dielectric material and a low refractive index dielectric material transparent in the visible wavelength range are alternately laminated on a substrate, wherein the total number of layers L is 7 to 10 layers, and , from the air side to the substrate side, the first layer, the second layer, etc. If the total number of layers L is an even number, from the air side to the L/2nd layer is A.
group, the layers closer to the substrate are divided into group B, and if the total number of layers L is an odd number, the layers from the air side to the (L+1)/2nd layer are divided into group A, and the layers closer to the substrate are divided into group B. The optical thickness of the layer with the largest optical thickness in group A is B
A semi-transparent mirror characterized in that its optical thickness is smaller than the optical thickness of the smallest layer in the group.
JP8488585A 1985-04-19 1985-04-19 Half mirror Pending JPS61243402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8488585A JPS61243402A (en) 1985-04-19 1985-04-19 Half mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8488585A JPS61243402A (en) 1985-04-19 1985-04-19 Half mirror

Publications (1)

Publication Number Publication Date
JPS61243402A true JPS61243402A (en) 1986-10-29

Family

ID=13843214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8488585A Pending JPS61243402A (en) 1985-04-19 1985-04-19 Half mirror

Country Status (1)

Country Link
JP (1) JPS61243402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503312A (en) * 1992-10-29 1996-04-09 ザ・ダウ・ケミカル・カンパニー Formable reflective multilayer objects
JP2012083758A (en) * 2010-10-12 2012-04-26 Toyota Motor Engineering & Manufacturing North America Inc Semi-transparent reflector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503312A (en) * 1992-10-29 1996-04-09 ザ・ダウ・ケミカル・カンパニー Formable reflective multilayer objects
JP2012083758A (en) * 2010-10-12 2012-04-26 Toyota Motor Engineering & Manufacturing North America Inc Semi-transparent reflector
US10067265B2 (en) 2010-10-12 2018-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Semi-transparent reflectors

Similar Documents

Publication Publication Date Title
CN103718070B (en) Optics
KR101374755B1 (en) Infrared blocking filter
JP2007183525A (en) Dielectric multilayer film filter
JP2008020563A (en) Dielectric multilayer film filter
WO2012105343A1 (en) Optical filter module and optical filter system
JP2007206172A (en) Imaging system optical element
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JPH11101913A (en) Optical element
JPS61243402A (en) Half mirror
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
JPH0516003B2 (en)
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP2835535B2 (en) Anti-reflection coating for optical components
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JPS6032001A (en) Reflection preventing film
JPS5811901A (en) Multilayered semipermeable mirror
JPS6028603A (en) Prism type beam splitter
JP2001318221A (en) Optical filter intercepting long wavelength, optical filter intercepting short wavelength, cross prism, cross mirror and liquid crystal projector
JPS6028602A (en) Half mirror
JPS6057802A (en) Half-mirror for single-lens reflex camera
JPS6028601A (en) Prism type beam splitter
JPS6177018A (en) Filter
JPS6239801A (en) Semi-transparent mirror
TWI271551B (en) Neutral density filter
JP6268691B2 (en) Beam splitting optical element and digital single lens reflex camera